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S1 The meteorological model-data assimilation framework

This section of the supplement describes the Local Ensemble Kalman Filter (LETKF) in greater
detail. Many of the equations listed below are abbreviated versions of those detailed in Hunt
et al. (2004), Desroziers et al. (2005), Hunt et al. (2007), Li et al. (2009), and Miyoshi (2011).
For a mathematical derivation of either the meteorology optimization or covariance matrix
estimation within LETKF, refer to any of those studies.

The model-data assimilation system (abbreviated CAM-LETKF) can be summarized in a
number of steps. First, we create an initial condition for modeled meteorology, in this case
using NCEP-DOE AMIP-II reanalysis (Kanamitsu et al., 2002). We generate a set of small
perturbations to the initial conditions and use these perturbations to create a set of k initial
conditions that are all slightly different. In this case, we set k = 64 (as in Liu et al., 2011, 2012).
This choice represents a compromise between thorough statistical sampling and computational
considerations: a very large k will exhaustively sample the model uncertainties. However,
k CAM-CLM realizations require 4k computer cores, so a very large k would also become
computationally prohibitive.

Second, we run a 6-hour weather forecast using CAM-CLM for each of the £ model initial
conditions. The spread of this model ensemble represents our prior uncertainty in the modeled
meteorology:

xi = £+ X; wherei=1..k (S1)

where x; (m x 1) is a single model realization, Z (m x 1) is the mean of the model ensemble,
and X; (m x k) refers to the i'" column of the matrix that defines the model ensemble spread.
In the main article (e.g., Eq. 1), we defined these variables to refer to all model time steps,
collectively. In the supplement, by contrast, we will instead define these variables to refer to
the model-data assimilation at a single, 6 hourly time step. In other words, m and n now
refer to the model outputs and number of weather observations, respectively, associated with a
single model-data assimilation cycle. This redefinition of the variables facilitates a discussion
of time-stepping in the remainder of this section.

Third, we calculate a set of k weights such that the weighted average of the realizations
best matches the meteorological observations:

z° = & 4 X'w (S2)

The superscript b refers to the model state before assimilation and a the model state after data
assimilation. The k x 1 vector of weights (w) are estimated by minimizing a statistical cost
function with respect to the meteorological observations (Hunt et al., 2007):

Jw) = (k- w"w+ (= HE + wa))T R (z- H@ +X'w))  (53)

In the above equation, z (nx 1) represents the meteorological observations, and H () is a function
or operator that maps the model output to the observations. For example, the function H ()
may convert the model units to the measurement units or may interpolate the model output
to an observation site that lies between multiple model grid boxes. Lastly, the diagonal matrix
R (n x n) represents the nugget variance, variance in the model-data residuals that is due to
measurement errors or meteorological processes too small in scale to be captured by CAM-
CLM.
The following equation further elucidates the role of the R covariance matrix in the analysis
(e.g., Hunt et al., 2007):
z = H(x)+ N(0,R) (S4)



In the above equation, x refers to the true value of the meteorological parameters averaged to
the resolution of the model grid. This vector is an unknown quantity, and the estimated values
() are only a best guess of this unknown quantity. Any differences between the true, unknown
values and the measurements must be due to one of two causes: either measurement error or
errors due to the finite model resolution. These errors should follow a normal distribution with
a mean of zero and a covariance matrix R. We estimate the elements of this matrix using actual
model-data residuals, as described in greater detail below.

In order to estimate the weights (w), we use a localization procedure. In practice, we never
compute the weights simultaneously for the entire global model output. Rather, we estimate a
different set of weights for each model grid box using model-measurement pairs within a certain
radius (in this case, within 1500km). As such, the matrices in Eqs. S2 and S3 represent a
subset of the global model output, and the dimensions n and m are small relative to the total
number of global observations and model grid boxes, respectively.

As part of this localization procedure, we interpolate the gridded model output to the ob-
servation locations and times; we use these model-measurement pairs to compute each set of
weights. We further taper the influence of model-observation pairs on the optimization de-
pending on their distance from the grid box in question (using a Blackman window function as
described by Oppenheim and Schafer (1989) and Liu et al. (2012)). Hence, model-measurement
pairs located within the model grid box of interest will influence the optimization much more
strongly than model-observation pairs located 1000km away. A radius of 1500km for the Black-
man window function is comparable to values used throughout the meteorological literature.
For example, Liu et al. (2011) and Liu et al. (2012) also used a 1500km radius. Furthermore,
Miyoshi (2011) set a 1825 km radius of influence, Miyoshi and Kunii (2012) used a 1460km
radius, and Szunyogh et al. (2008) used an 800km radius.

This localization approach ensures coherence among adjacent grid boxes and ensures that the
optimization is not an over-fit to the data. For example, if we estimated the weights using only
model-measurement pairs in the grid box of interest, several problems could arise. First, there
may not be many relevant observations that are sensitive to that specific grid box, particularly
over the open ocean or near the poles. In those circumstances, the estimated weights could
be inaccurate. Second, that approach could produce vastly different weights in adjacent grid
boxes, a result that is unlikely to be physically realistic. For example, the estimated weights
for one model grid box over eastern North Dakota should look somewhat similar to the weights
for a grid box over western North Dakota. If the two sets of weights were completely unrelated,
one could argue that the optimization would be an over-fit. A localization radius of 1500km
precludes these potential problems.

The weights (), estimated using this localization procedure, will have the following covari-
ance matrix (k x k) (Hunt et al., 2007):

P = (k- DI+ (YO)TRY? (S5)
where H(Z" + X’w) ~ §° + Ylw (S6)

Fourth, we generate 64 realizations that collectively represent our posterior uncertainty in
the meteorology. Like the best estimate (Z%), these posterior realizations are also a linear
combination of the prior model realizations (Hunt et al., 2007):

20 = %+ X <[(k - 1)?@} ) (S7)

where ‘%’ denotes the symmetric square root of the covariance matrix. The subscript i on the

right hand side of the equation refers to individual columns of the matrix.



Fifth, and finally, we adjust the overall model ensemble spread to match the model un-
certainties implied by the meteorological observations. We refer to this process as adaptive
covariance inflation (e.g., Li et al., 2009; Miyoshi, 2011). Note that this step is new since
previous CAM-LETKEF studies by Liu et al. (2011) and Liu et al. (2012).

Adaptive inflation operates on the following principle: the ensemble variance and nugget
variance should match against the actual model-data residuals (e.g., Li et al., 2009):

E {(z ~H(@") (=~ H(:Eb))T] — HPHT + R (38)
where P = (k—1)"'X%X"T (S9)

In that equation, E denotes the expected value, and the matrix H (n x m) is a linearization of
the function H(). In practice, however, these covariance matrices can diverge from the actual
residuals (Refer to Miyoshi (2011) for more detail.). Therefore, we estimate a scaling factor
() for the diagonal elements of the covariance matrix P (m x m). This scaling factor can be
estimated by manipulating Eq. S8 as in Li et al. (2009) and Miyoshi (2011):

tr[(z = H(@) (z— H@")" oR7}] —n

= tr [HPHT o R—] (510)

In this equation, tr refers to the matrix trace, and the symbol o indicates element-wise multi-
plication. The result of Eq. S10 is then weighted against the scaling factor from the previous
model time step to produce a final scaling factor estimate (refer to Li et al., 2009; Miyoshi,
2011).

To date, the use of a single scaling factor (a) per grid box has been a standard practice
in ensemble Kalman filters applied to weather models (e.g., Szunyogh et al., 2008; Liu et al.,
2011, 2012; Miyoshi and Kunii, 2012; Kang et al., 2012), and we do the same here. When
we estimate a single scaling factor per box, we leverage more observations to make a more
stable inflation estimate. Otherwise, adaptive inflation can become challenging to implement;
adaptive inflation performs poorly when observations are sparse (e.g., Miyoshi, 2011).

We also estimate the nugget variance (0%7 j) for a given observation type () using the model
output and observations (Desroziers et al., 2005; Li et al., 2009):

012:{7]' _ (zj - H(i”a)):;‘(z]' B H(jb)) (Sll)

As with «, the result in Eq. S11 is also weighted against the estimated variance from the
previous time step to produce a final variance estimate (Li et al., 2009). Unlike the localized
LETKEF calculations, we estimate a single nugget variance for the entire globe (for each mete-
orological observation type). In other words, in Eq. S11, the inputs represent global values for
observation type j, not a localized implementation as in previous equations.

After these steps, the model-assimilation cycle begins again with another 6-hour CAM-
CLM forecast. The posterior ensemble members (x¢) become the initial conditions for this
next CAM-CLM forecast.

In our study, we utilize biospheric, oceanic, biomass burning, and fossil fuel CO, fluxes from
CarbonTracker (CT), and we do not change these fluxes in response to any parameters within
CAM-CLM. The original CT fluxes have a temporal resolution of 3 h. We average these fluxes
to a 6 h resolution for all of the CAM-CLM simulations in this study, the length of each model
time step.



Furthermore, we use CT as the initial condition for global atmospheric CO2 mixing ratios
on 1 January and 1 May 2009. Each CAM ensemble member uses the same initial condition
for atmospheric CO2, so any subsequent differences in CO, among the model realizations are
due entirely to meteorological uncertainties.

S2 CAM-LETKEF performance metrics

The paragraphs that follow discuss two different metrics of CAM-LETKEF performance: large-
scale meteorology model-data comparisons and a more in-depth view of the estimated variances
(i.e., the variance inflation and the nugget variance).

First, we examine the meteorology model-data residuals for the model best-guess (Z). Fig-
ure S1 displays the root mean squared model-measurement error (RMSE, \/(1/n) > (y — H(Z%))?),
broken down by time and by observation type. Each point plotted in Fig. S1 is the RMSE
computed from all available global observations. This RMSE appears comparable in magni-
tude to several existing weather reanalysis products. For example, these statistics are similar to
CAM-LETKEF simulations by Liu et al. (2011), though simulations in that paper cover a much
shorter time period. Furthermore, the temperature, pressure, and wind errors reported here are
in the range of those listed for North American Regional Reanalysis (NARR) and ERA-Interim
reanalysis (Mesinger et al., 2006; Dee et al., 2011).

The remainder of this section discusses the estimated covariance matrix parameters. Fig.
S2 displays a map of the average variance inflation factors («) in the model surface layer for
February and July, 2009, and Fig. S3 shows how the average variance inflation factor changes
over time through five months of CAM-LETKEF simulations.

These figures show several notable patterns, three of which we discuss in more detail. First,
the inflation factors in Fig. S2 are highest over North America, Asia, and Australia, regions
with relatively abundant meteorological observations. A number of previous studies confirm
this positive relationship between data density and covariance inflation (e.g., Anderson, 2009;
Miyoshi, 2011; Miyoshi and Kunii, 2012). Furthermore, Miyoshi (2011) points out that a high
inflation factor in observation-rich regions may cause the ensemble spread to be too large down-
wind. This explanation may account for the adjacent regions of high inflation (over continents)
and low inflation (over the oceans) in Fig. S2.

Second, the global average of the inflation factors is less than one (Fig. S3). Even though
the inflation factors, on average, decrease the ensemble variance, the global ensemble variance
remains relatively constant over time. For example, the average 6 hourly model ensemble spread
at meteorology observation sites is comparable in February, June, and July: ~1.5 m s~! for
zonal and meridional wind (standard deviation), ~0.7 K for surface temperature, and ~1.1 mb
for surface pressure. This consistency, in spite of the small inflation average, may be due to the
nonlinear nature of the meteorological model — differences among individual ensemble members
can escalate or intensify over the 6-hour meteorology forecast.

A third notable feature is the low inflation values over eastern, tropical Pacific Ocean. These
low values are intentional by design; we set a very low initial estimate for the variance inflation in
this region of the globe. Higher inflation values cause the ensemble variance to increase rapidly
in this region and lead to unphysical temperature estimates near the tropopause. This issue is
due to an enigmatic temperature instability in the meteorological model. In the forecast stage
of the CAM model, the ensemble’s temperature spread in this region can increase rapidly if the
initial conditions (i.e., the posterior ensemble from the previous time step) have a sufficiently
large spread.

Normally, one might expect the adaptive inflation to correct for this issue; the adaptive
inflation adjusts the variance of the meteorology model ensemble to match the actual model-
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Figure S1: Root mean squared errors for the CAM-LETKF best estimate compared against
various meteorological observations (RMSE, /(1/n) Y (y — H(z%))?).




a) February

Figure S2: The variance inflation factors for the CAM model surface layer, averaged over each
6 hourly estimation period in February and July, 2009. In this study, we estimate a different
inflation factor for each model grid box and each 6 hourly estimation period. More specifically,
we estimate a single inflation factor for all model parameters (e.g., wind, temperature, surface
pressure, and specific humidity) in each box.
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Figure S3: Time series of the average variance inflation factors, both at the surface and for
all vertical model levels. The inflation factors show some variability during the model spin-up
periods, then stabilize to relatively constant values.



data residuals. In theory, this procedure should prevent the ensemble spread from exploding
(given sufficient data). However, the inflation factor, by design, cannot change suddenly from
one time step to another. The adaptive inflation procedure uses the previous time step as the
prior inflation estimate, and that prior estimate has a finite uncertainty (in this case, a prior
standard deviation of 0.03 — similar to the values used by Miyoshi (2011)). Because of this prior
uncertainty, the adaptive inflation factor must evolve slowly over many days if it changes at
all. In most cases, this property is desirable because it prevents a small number of observations
from making dramatic changes to the evolution of the model-data system. However, in the case
of this temperature instability, the instability in the model develops over 4-5 model time steps,
much faster than the response time of the adaptive inflation factor.

The adaptive inflation procedure requires an initial inflation estimate for the first time step
of the model run (i.e., an initial condition). The adaptive procedure then updates this estimate
at the each model time step (e.g., Eq. S10). For this initial estimate or initial condition, we
set a small value (0.4) for the equatorial western Pacific. During the one-month model spin-up
period, the estimated inflation value evolves substantially from the initial estimate in most
regions of the globe (e.g., Fig. S3). Over this region of the Pacific, however, the estimated
inflation factor does not evolve or change very much; either this initial estimate is consistent
with the actual model-data residuals, or the meteorological data (and the adaptive inflation
procedure) are not very informative over the region. In either case, this small initial condition
prevents the ensemble spread from becoming unstable over the region.

In addition to the covariance inflation, the nugget variance also remains consistent over
time. Fig. S4 shows the square root of the nugget variance for each observation type and at
each model time period. Note that we estimate different values of the nugget variances by
observation type and time, but the estimated variances are spatially constant across the globe.
These estimates remain consistent over time, except for the initial January spin-up period,
during which the estimate slowly evolves from the initial guess.

S3 Uncertainties in atmospheric CO, transport

This section of the supplement provides more detailed plots of the CO5 transport uncertainties
shown in Fig. 2 of the main article. In particular, the plots in this section (Figs. S5 — S8)
visualize the transport uncertainties for different time slices of the day and show how COs
transport uncertainties differ between day and nighttime. The first two figures (Figs. S5 and
S6) display the mean 6 hourly CO4 transport uncertainties for February and July, 2009, a setup
analogous to Figs. 2a-b in the main manuscript. Conversely, Figs. S7 and S8 exhibit the
uncertainties in the month-long mean CO4 concentrations, analogous to Figs. 2c-d in the main
article.

In general, the 6 hourly uncertainties vary widely depending on the local time with higher
uncertainties at night (Figs. S5 and S6). Note that case study one in the main article (sec-
tions 2.4 and 3.3) only uses model output associated with local afternoon CO2 measurements.
In contrast to these 6 hourly uncertainties, the uncertainties in monthly-mean concentrations
do not vary as much by time of day (Figs. S7 and S8). For example, over North America
and northern Eurasia in February, the COg uncertainties are equally high during all times of
day. However, a diurnal cycle in the month-long uncertainties is apparent over some regions —
equatorial Africa, South America, and over Northern Hemisphere land regions in summer.

These transport uncertainties are in the range of the uncertainties estimated in a number
of previous studies. For example, the spatial patterns in the 6 hourly uncertainties are similar
to those modeled by Liu et al. (2011) using CAM-LETKF and temperature-scaled CO3 fluxes
from TRANSCOM 3. In addition, a number of previous studies focused on the effects of
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Figure S4: The square root of the nugget variance (0g) estimated within CAM-LETKF.



6-hourly uncertainties for February, 2009:
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Figure S5: This figure displays the average 6 hourly COs transport uncertainties in the model
surface layer for a) 0 UTC, b) 6 UTC, ¢) 12 UTC, and d) 18 UTC. This figure is similar to
Fig. 2a in the main manuscript except the uncertainties (95% confidence interval) shown here
are disaggregated by time of day.
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Figure S6: The COq transport uncertainties for July, 2009, analogous to Fig. S5 but for a
different time period.
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Figure S7: Uncertainties (95% confidence interval) in the monthly-averaged surface COgy con-
centrations for February, 2009. This figure is similar to Figs. 2c¢ in the main article except the
uncertainties are broken down by time of day for a) 0 UTC, b) 6 UTC, c¢) 12 UTC, and d) 18
UTC.

Uncertainty in month-long mean for July, 2009:

Figure S8: Uncertainties in the monthly-averaged surface COs concentrations for July, 2009.
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perturbing individual meteorological parameters at specific observation sites or for individual
aircraft campaigns (e.g., Gerbig et al., 2003, 2008; Lin and Gerbig, 2005; Kretschmer et al.,
2012). Our 6 hourly transport uncertainties, though very different in both scope and scale, are
comparable in magnitude to the individual parameter uncertainties estimated by Gerbig et al.
(2003), Gerbig et al. (2008), and Kretschmer et al. (2012) but are less than the uncertainties in
Lin and Gerbig (2005). Furthermore, our estimated 6 hourly transport uncertainties also appear
similar to or slightly smaller than the model-data mismatch errors estimated at individual
observation sites in several inversion studies (e.g., Peters et al., 2007; Schuh et al., 2010; Gourdji
et al., 2012). Model-data mismatch includes not only transport errors but also any model or
data errors unrelated to an imperfect initial flux estimate. This result may reflect the fact that
atmospheric transport often dominates model-data mismatch errors.

S4 CO, observation sites

This section lists the geographic locations of the measurement sites used for case study one
in the main article (Figs. 4-5). Note that this case study does not use actual data from
these observation sites, only model output generated for these locations. These observation
site locations are available from the GAWSIS Station Information System (MeteoSwiss Federal
Office of Meteorology and Climatology, 2014). The sites below are grouped by ecoregion, and
the regions used here are defined by Olson et al. (2001).

Table S1: A list of observation sites used for the analysis in
Figs. 4-5. All measurement sites are towers unless otherwise

noted.
Site Code Lat. (°N) Lon. (°) Alt. (m)
East Asian temperate broadleaf and mized forests
Anmyeon-do, Korea AMY 36.5 126.3 47
Gosan, Korea GSN 33.3 126.2 72
Kisai, Japan KIS 36.1 139.6 13
Mikawa-Ichinomiya, Japan MKW 34.9 137.4 50
Mount Dodaira, Japan DDR 36.0 139.2 840
Ryori, Japan RYO 39.0 141.8 260
FEuropean temperate broadleaf and mized forests
Bialystok, Poland BIK 53.1 23.0 183
Cesar, Netherlands CBW 52.0 4.9 -2
Diabla Gora, Poland DIG 54.2 22.1 157
Gif sur Yvette, France GIF 48.7 2.1 167
Hegyhatsal, Hungary HUN 47.0 16.7 248
Heidelberg, Germany HEI 49.4 8.7 116
Hohenpeissenberg, Germany HPB 47.8 11.02 985
Kollumerwaard, Netherlands KMW 53.3 6.3 0
Mace Head, Ireland MHD 53.3 -9.9 8
Moussala, Bulgaria BEO 42.2 23.6 2925
Neuglobsow, Germany NGL 53.2 13.0 65
Norunda, Sweden NOR 60.0 17.3 70
Ochsenkopf, Germany OXK 50.0 11.8 1185
Orleans, France TRN 48.0 2.1 131
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Puy de Dome, France
Schauinsland, Germany
Tall Tower Angus, United Kingdom

North American temperate broadleaf and mized forests
Argyle, Maine, US

Beech Island, South Carolina, US

Egbert, Ontario, Canada

Park Falls, Wisconsin, US (tower/aircraft)
Shenandoah National Park, Virginia

Worchester, Massachusetts, US (aircraft)

North American boreal forests / taiga

Candle Lake, Sask., Canada

Chibougmau, Quebec, Canada

East Trout Lake, Sask., Canada (tower/aircraft)
Fraserdale, Ontario, Canada

Poker Flats, Alaska, US (aircraft)

North American temperate grasslands, savannas and shrublands

Beaver Crossing, Nebraska (aircraft)

Bondville, Illinois, US (aircraft)

Boulder, Colorado, US

Briggsdale, Colorado (aircraft)

Dahlen, North Dakota (aircraft)

Lac La Biche, Alberta, Canada

Southern Great Plains, Oklahoma, US (tower/aircraft)
Moody, Texas, US

Walnut Grove, California, US

West Branch, Iowa, US (tower and aircraft)

PUY
SSL
TTA

AMT
SCT
EGB
LEF
SNP
NHA

CDL
CHM
ETL
FSD
PFA

BNE
AAO
BAO
CAR
DND
LLB

SGP
WKT
WGC
WBI

45.8
47.92
56.6

45.0
33.4
44.2
46.0
38.6
43.0

53.9
49.7
54.4
49.9
65.1

40.8
40.1
40.1
40.4
47.5
55.0
36.78
31.3
38.3
41.7

3.0
7.92
3.0

68.7
81.8
-79.8
90.3
78.4
-70.6

-104.7
74.3
-105.0
-81.6
-147.3

-97.3
-88.4
-105.0
-104.3
-99.2
-112.5
-97.5
97.3
121.5
91.4

1465
1205
400

20
115
253
472

1008

489
393
492
210
210

466
230
1584
1740
472
540
314
251

242

S5 CO; model-data comparisons

In this portion of the supplement, we show several COs model and data time series from
different types of observation sites (Figs. S9 —S14). These plots illustrate the capacity of CAM—
LETKF (paired with CarbonTracker fluxes) to reproduce hourly-averaged COgy observations.
Furthermore, the plots provide greater context on the COs2 ensemble spread. The top panel
of each figure illustrates the ensemble mean and ensemble spread. The bottom panel shows
the modeled CO2 boundary layer enhancement — modeled CO4 at the observation site minus
modeled concentrations at 600 hPa. This enhancement approximates the CO2 contribution rom
regional surface fluxes. This increment is used for case study one in the main paper (section
2.4). In general, the modeled contribution of regional fluxes is largest during summer where

biosphere uptake is strongest (e.g., LEF and AMT).
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Argyle, Maine (AMT)
a) Model-measurement comparison — Observations
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Figure S9: Panel (a) displays the hourly-averaged CO2 measurements at Argyle tower, Maine,
and the modeled COg time series using CAM-LETKF and CarbonTracker fluxes. Panel (b)
shows the estimated contribution of regional CO4 fluxes at the observation site. Here, we define
this contribution as modeled CO3 at the surface minus modeled COy at 600 hPa.
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Argyle, Maine (AMT)

a) Model-measurement comparison — Observations
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Figure S10: This figure is analogous to Fig. S9 but the Argyle tower in July 2009. Note that

the top panel of each time-series plot (Figs. S9a— S14a) has a different y-axis, but the bottom
panels (Figs. S9b— S14b) all have the same y—axis.
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Barrow, Alaska (BRW)
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Figure S11: This figure is analogous to Fig. S9 but the Barrow, Alaska, in February 2009.
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Figure S12: This figure is analogous to Fig. S9 but the Barrow, Alaska, in July 20009.
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Park Falls, Wisconsin (LEF)

a) Model-measurement comparison
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Figure S13: This figure is analogous to Fig. S9 but for Park Falls, Wisconsin, in July 2009.
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Moody, Texas (WKT)
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Figure S14: This figure is analogous to Fig. S9 but for Moody, Texas, in February 2009.
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S6 Plots of meteorological variables and uncertainties

This section describes, in greater detail, the monthly-averaged meteorological parameters con-
sidered in the synthetic tracer experiment (case study two, sections 2.5 and 3.4). Table S2 lists
all of the meteorological parameters that we compare against the synthetic tracer CV. We com-
pare the synthetic tracer against the monthly-averaged meteorological parameters, the standard
deviation in the monthly mean parameters, and the CV of each meteorological parameter — 60
parameters in total.

Figures S15-S17 display a number of monthly-averaged meteorological parameters estimated
by CAM-LETKF — both those listed in section 3.4 and several additional variables for refer-
ence. For example, these figures display monthly mean zonal and meridional winds, and the
uncertainties (standard deviation) (Fig. S17). These uncertainties exhibit a number of pat-
terns consistent with well-known meso- and synoptic-scale circulation patterns. For example,
the uncertainty in zonal winds is generally higher in many coastal regions including the west
coast of North and South America. These patterns may reflect uncertainties in modeled sea
breezes. Uncertainties in the zonal surface winds are also higher over many mountainous re-
gions, including the US Rocky Mountains and Himalayas. These uncertainties may reflect the
challenges of modeling winds over complex terrain. In addition, uncertainties in both zonal and
meridional surface winds are higher along the Intertropical Convergence Zone (ITCZ).
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Figure S15: Maps of monthly-averaged meteorological parameters as estimated by CAM-
LETKF.
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Figure S16: Maps of monthly-averaged meteorological parameters as estimated by CAM-
LETKF.
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Figure S17: Maps of monthly-averaged meteorological parameters and uncertainties (standard
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Table S2: Candidate meteorological variables

Meteorological variable

Abbreviation Units

Vertical velocity Q Pa s !
Vertical velocity at 510hPa Qs10 Pa st
Net longwave flux at the surface FLNS W m~2
Downwelling solar flux at surface FSDS W m—?2
Net solar flux at surface FSNS W m—2
Solar flux reflected from surface FSRS W m—?2
Liquid cloud water LCWAT kg kg~!
Surface latent heat flux LHFLX W m—2
Planetary boundary layer height PBLH m
Large-scale, stable precipitation rate PRECL m s~ !
Convective precipitation rate PRECC m s
Specific humidity Q kg kg™!
Relative humidity RELHUM %
Surface sensible heat flux SHFLX W m—2
Net radiative flux at surface SRFRAD W m—2
Temperature T K
Zonal wind U m s
Meridional wind A\ m s !
Vertical diffusion diffusivity VDD m? s
Total wind velocity wind m s
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