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Abstract. We investigate Arctic tropospheric composition

using ground-based Fourier transform infrared (FTIR) solar

absorption spectra, recorded at the Polar Environment At-

mospheric Research Laboratory (PEARL, Eureka, Nunavut,

Canada, 80◦05′ N, 86◦42′W) and at Thule (Greenland,

76◦53′ N,−68◦74′W) from 2008 to 2012. The target species,

carbon monoxide (CO), hydrogen cyanide (HCN), ethane

(C2H6), acetylene (C2H2), formic acid (HCOOH), and

formaldehyde (H2CO) are emitted by biomass burning and

can be transported from mid-latitudes to the Arctic.

By detecting simultaneous enhancements of three biomass

burning tracers (HCN, CO, and C2H6), ten and eight fire

events are identified at Eureka and Thule, respectively, within

the 5-year FTIR time series. Analyses of Hybrid Single Par-

ticle Lagrangian Integrated Trajectory (HYSPLIT) model

back-trajectories coupled with Moderate Resolution Imag-

ing Spectroradiometer (MODIS) fire hotspot data, Stochas-

tic Time-Inverted Lagrangian Transport (STILT) model foot-

prints, and Ozone Monitoring Instrument (OMI) UV aerosol

index maps, are used to attribute burning source regions and

travel time durations of the plumes. By taking into account

the effect of aging of the smoke plumes, measured FTIR en-

hancement ratios were corrected to obtain emission ratios

and equivalent emission factors. The means of emission fac-

tors for extratropical forest estimated with the two FTIR data

sets are 0.40± 0.21 g kg−1 for HCN, 1.24± 0.71 g kg−1 for

C2H6, 0.34± 0.21 g kg−1 for C2H2, and 2.92± 1.30 g kg−1

for HCOOH. The emission factor for CH3OH estimated at

Eureka is 3.44± 1.68 g kg−1.

To improve our knowledge concerning the dynamical and

chemical processes associated with Arctic pollution from

fires, the two sets of FTIR measurements were compared to

the Model for OZone And Related chemical Tracers, version

4 (MOZART-4). Seasonal cycles and day-to-day variabilities

were compared to assess the ability of the model to repro-

duce emissions from fires and their transport. Good agree-

ment in winter confirms that transport is well implemented

in the model. For C2H6, however, the lower wintertime con-

centration estimated by the model as compared to the FTIR

observations highlights an underestimation of its emission.

Results show that modeled and measured total columns are

correlated (linear correlation coefficient r>0.6 for all gases

except for H2CO at Eureka and HCOOH at Thule), but sug-

gest a general underestimation of the concentrations in the

model for all seven tropospheric species in the high Arctic.

1 Introduction

Fires release trace gases into the atmosphere, affecting

air quality (Colarco et al., 2004), climate, and the car-

bon cycle (IPCC, 2007). Those radiatively and photochem-
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ically active trace gases include carbon monoxide (CO),

hydrogen cyanide (HCN), and non-methane hydrocarbons

(NMHCs), including ethane (C2H6), acetylene (C2H2),

methanol (CH3OH), formic acid (HCOOH), and formalde-

hyde (H2CO) (Paton-Walsh et al., 2010; Akagi et al., 2011;

Vigouroux et al., 2012). Given their long atmospheric life-

times, CO, HCN, and C2H6 are considered to be tracers of

long-range pollution transport associated with biomass burn-

ing plumes. In the Arctic, these gases and the other shorter-

lived species (C2H2, CH3OH, HCOOH, and H2CO) affect

the tropospheric chemistry (Generoso et al., 2007, Stohl et

al., 2007, Tilmes et al., 2011), oxidizing power (Mao et al.,

2010; Olson et al., 2012), and radiative transfer (Wang et al.,

2011) of this sensitive polar region, which has been warm-

ing rapidly over the past century (Lesins et al., 2010). Since

fire frequency and intensity are sensitive to climate change

and variability, as well as land use practices (Kasischke et

al., 2006; Soja et al., 2007; IPCC, 2007; Amiro et al., 2009;

Flannigan et al., 2009; Oris et al., 2013; Kelly et al., 2013),

they constitute a large source of variability in Arctic tropo-

spheric composition.

Biomass burning plumes transported over the Arctic have

been observed by ground-based Fourier transform infrared

(FTIR) spectrometers (Yurganov et al., 2004, 2005; Viatte

et al., 2013), measurements on aircraft (Paris et al., 2009;

Warneke et al., 2009; Simpson et al., 2011; Hecobian et al.,

2011; Parrington et al., 2013; O’Shea et al., 2013; Le Breton

et al., 2013; Lewis et al., 2013), and satellites (Rinsland et

al., 2007; Coheur et al., 2009; Tereszchuk et al., 2011, 2013).

Model simulations and meteorological analyses also suggest

pollution transport pathways to the Arctic (Eckhardt et al.,

2003; Klonecki et al., 2003; Koch and Hansen, 2005; Stohl

et al., 2006; Shindell et al., 2008; Thomas et al., 2013; Bian

et al., 2013). However, our knowledge concerning transport,

degradation mechanisms of NMHCs (Stavrakou et al., 2009),

sources of Arctic pollution (Fisher et al., 2010), and emis-

sions from fires (Akagi et al., 2011), remains incomplete, re-

flecting the heterogeneous and stochastic nature of these pro-

cesses. Long-term and continuous measurements of Arctic

tropospheric composition are therefore important for quan-

tifying emissions from fire plumes transported from lower

latitudes and improving the prediction of trace gas concen-

trations and variability in chemical transport model simula-

tions. This would help in assessing the atmospheric impact

of biomass burning pollution on the Arctic climate system.

To simulate fire emissions in chemical transport models,

emission factors of various trace gases must be estimated

with accuracy. Emission factors are highly variable how-

ever, because they depend on the types of vegetation burned,

the combustion phase (smoldering and flaming), and atmo-

spheric conditions at the time of the fire events (Paton-Walsh

et al., 2005, 2008, 2010; Akagi et al., 2011; Hornbrook et al.,

2011; Vigouroux et al., 2012). Within the past decade, mea-

surements of emission factors of biomass burning species

have led to a wide range of values, which may be due to

Figure 1. Locations of the FTIR measurements at Eureka (E) and

Thule (T) (map provided by GOOGLE EARTH V 7.0.3.8542, US

Dept. of State Geographer, Google, 2012, Image Landsat, Data SIO,

NOAA, US, Navy, NGA, and GEBCO).

the natural variability of the emissions and/or the discrepan-

cies between sampling methods (laboratory, airborne, satel-

lite, and ground-based measurements) that overestimate or

underestimate the combustion phases (smoldering and flam-

ing). The need for more measurements of HCN and NMHC

emission factors has been stressed given the value of HCN

as a biomass burning tracer (Li et al., 2003) and significant

NMHC emissions from fires (Andreae and Merlet, 2001; Ak-

agi et al., 2011; Paulot et al., 2011; Wiedinmyer et al., 2011).

We investigate pollution from biomass burning events that

occurred in extratropical forests and were transported to

the high Arctic with two sets of FTIR measurements, lo-

cated at Eureka (Nunavut, Canada, 80◦05′ N, −86◦42′W)

and Thule (Greenland, 76◦53′ N, −68◦74′W). Seven tropo-

spheric species (CO, HCN, C2H6, C2H2, CH3OH, HCOOH,

and H2CO) released by biomass burning were monitored

from 2008 to 2012. Complete descriptions of the method-

ologies and characterizations of the retrievals are found in

Viatte et al. (2014). These species were selected because of

their differing anthropogenic, biogenic, fossil fuel burning

and biomass burning source fractions, as well as their widely

differing lifetimes, sinks, and secondary production rates.

From this diversity, we gain insight into chemistry and trans-

port abilities of the Model for OZone And Related chemical

Tracers, version 4 (MOZART-4, Emmons et al., 2010) and

improve emission ratios. A significant number of observa-

tions inside fire plumes are identified in the data sets and used

to derive emission ratios (and hence infer emission factors) of

the target species. These measured emission ratios add new

values to the sparse data set reported in the literature. The

two sets of measurements are compared with MOZART-4 to

assess the ability of this model to reproduce Arctic tropo-

spheric chemical composition and its variability due to the

long-range pollution transport from fires.
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2 Observations and model data in the high Arctic

2.1 FTIR measurements at Eureka and Thule

We present measurements over 5 years of 7 tropospheric

species in the high Arctic, CO, HCN, C2H6, C2H2, CH3OH,

HCOOH, and H2CO, from 2008 to 2012. These time se-

ries are obtained from ground-based FTIR measurements

performed at Eureka (80◦05′ N, 86◦42′W, 0.61 km a.s.l.,

Eureka, Nunavut, Canada, Fogal et al., 2013) and Thule

(76◦53′ N, −68◦74′W, 0.23 km a.s.l., Greenland, Thule,

Hannigan et al., 2009). The locations of the measurement

sites are shown in Fig. 1. The high-resolution solar absorp-

tion spectrometers (a Bruker IFS 125HR at Eureka and a

Bruker IFS 120M at Thule, both operated at a spectral res-

olution of 0.0035 cm−1) are part of the international Net-

work for the Detection of Atmospheric Composition Change

(NDACC, http://www.ndsc.ncep.noaa.gov/, formerly NDSC,

Kurylo, 1991; Kurylo and Zander 2001). These spectrome-

ters measure spectra using two detectors (indium antimonide

– InSb – or mercury cadmium telluride – MCT), a potas-

sium bromide (KBr) beamsplitter, and a sequence of seven

and eight narrow-band interference filters covering the 600–

4300 cm−1 and 750–5000 cm−1 spectral ranges, at Eureka

and Thule, respectively. A reference low-pressure hydrogen

bromide (HBr) cell spectrum is recorded regularly with an in-

ternal globar source to characterize the instrument line shape

(ILS) and monitor alignment of both instruments (Coffey et

al. 1998). By using the LINEFIT software analysis (Hase et

al., 1999), modulation efficiency and phase error are retrieved

and can be included in the retrieval analysis (i.e., forward

model).

In order to retrieve concentrations of these species from

the recorded spectra, the optimal estimation method (OEM,

Rodgers, 2000) has been applied using the new SFIT4

retrieval code (https://wiki.ucar.edu/display/sfit4/Infrared+

Working+Group+Retrieval+Code,+SFIT). With the excep-

tion of the ILS and signal-to-noise ratio (SNR), which are

specific to each instrument, we use the same methodol-

ogy to analyze the Eureka and Thule measurements, i.e.,

homogenized micro-windows, the same spectroscopic pa-

rameters from the HITRAN 2008 database (Rothman et

al., 2009), and the same a priori covariance matrices. For

CO, HCN, and C2H6, retrieval parameters are based on the

NDACC-IRWG standard parameter definitions (NDACC In-

frared Working Group, http://www.acd.ucar.edu/irwg/). De-

tails of the retrievals of the seven tropospheric species at

Eureka are described in Viatte et al. (2014). A priori pro-

files of the target species are derived from the mean of

40 year runs from the Whole Atmosphere Community Cli-

mate Model, version 6 (WACCM, http://www2.cesm.ucar.

edu/working-groups, Garcia et al., 2007; Eyring et al., 2007),

for the two stations. Daily pressure and temperature pro-

files are from the National Center for Environment Prediction

(NCEP, http://www.ncep.noaa.gov/). Monthly a priori water

Figure 2. Time series of CO, HCN, and C2H6 total columns mea-

sured at Eureka (left panels) and Thule (right panels) from 2008 to

2012. The brown lines represent the polynomial fits to the data.

vapor profiles are taken from the WACCM output for each

location. Our profiles are retrieved on 48 level altitude grids

(from 0.61 to 120 km for Eureka, and from 0.23 to 120 km

for Thule), and total and partial columns are then derived by

vertically integrating these profiles.

Full error analysis has been performed for both data sets,

as described in Rodgers (2000) and Rodgers and Connors

(2003), and includes measurement noise error, smoothing

error (expressing the limited vertical resolution of the re-

trieval), and forward model parameter error. Details about

the seven tropospheric species error budget can be seen in

section 2.6 of Viatte et al. (2014). Time series are obtained

from February to October since the FTIR measurements re-

quire the sun as the light source. The seasonal cycles of CO,

HCN, C2H6, C2H2, CH3OH, HCOOH, and H2CO are rep-

resentative of their differing transport, emissions, lifetimes,

and oxidation rates, and have been discussed in detail in Vi-

atte et al. (2014) with reference to the Eureka data set.

The CO, HCN, and C2H6 total columns measured at Eu-

reka and Thule from 2008 to 2012 are shown in the left and

right panels, respectively, of Fig. 2. These species are consid-

ered to be biomass burning tracers, given their long lifetimes

in the atmosphere of 52 days (Daniel and Solomon, 1998),

5 months (Li et al., 2003), and 80 days (Xiao et al., 2008)

for CO, HCN, and C2H6, respectively. They exhibit strong

www.atmos-chem-phys.net/15/2227/2015/ Atmos. Chem. Phys., 15, 2227–2246, 2015

http://www.ndsc.ncep.noaa.gov/
https://wiki.ucar.edu/display/sfit4/Infrared+Working+Group+Retrieval+Code,+SFIT
https://wiki.ucar.edu/display/sfit4/Infrared+Working+Group+Retrieval+Code,+SFIT
http://www.acd.ucar.edu/irwg/
http://www2.cesm.ucar.edu/working-groups
http://www2.cesm.ucar.edu/working-groups
http://www.ncep.noaa.gov/


2230 C. Viatte et al.: Identifying fire plumes in the Arctic

seasonal cycles, reflecting the importance of chemistry and

transport processes in their Arctic budget. In addition to these

cycles, simultaneous enhancements of the CO, HCN, and

C2H6 total columns can be seen in the day-to-day variabil-

ities, in both Eureka and Thule observations, such as in April

and July 2008 (red circles, Fig. 2), and in August 2010 (green

squares, Fig. 2). Enhancements of CO, HCN, and C2H6 total

columns observed at Thule in June–July 2012 (olive trian-

gles, Fig. 2) are not seen in the Eureka data set because there

were no FTIR measurements at Eureka during this period.

Some of these enhancements have already been attributed

to biomass burning plumes transported to the Arctic. This

has been done with aircraft measurements for the April 2008

(Warneke et al., 2009) and July 2008 events (Simpson et al.,

2011) during the Arctic Research of the Composition of the

Troposphere from Aircrafts and Satellites (ARCTAS) cam-

paigns (Jacob et al., 2010; Hornbrook et al., 2011), and with

ground-based FTIR measurements for the extreme August

2010 event (Viatte et al., 2013), as well as with the com-

bination of numerous measurement platforms for the July

2011 event, during the Quantifying the impact of BOReal

forest fires on Tropospheric oxidants over the Atlantic using

Aircraft and Satellites (BORTAS) experiment (Palmer et al.,

2013).

Figure 3 shows time series of C2H2, CH3OH, HCOOH,

and H2CO total columns measured at Eureka (left panels)

and Thule (right panels) from 2008 to 2012. These species

have different lifetimes in the atmosphere, ranging from 2

weeks for C2H2 (Xiao et al., 2007) to less than 2 days for

H2CO (Coheur et al., 2007). Because of their possible chem-

ical destruction during long-range transport to the Arctic, en-

hancements due to fire events are less significant than for

the three main biomass burning tracers (Fig. 2), but are still

present in the time series, as shown in August 2010 for Eu-

reka (green squares, Fig. 3) and in August 2008 for Thule

(red circles, Fig. 3). These species have also been measured

by Atmospheric Chemistry Experiment-Fourier Transform

Spectrometer (ACE-FTS, Tereszchuk et al., 2013) and In-

frared Atmospheric Sounding Interferometer (IASI, Coheur

et al., 2009) as well as aircraft measurements (Parrington et

al., 2013; O’Shea et al., 2013) in boreal forest biomass burn-

ing plumes several days after their source emissions. Indeed,

a recent study suggests that the physical age of one boreal

plume in July 2011 is 1 to 5 days older than the photochemi-

cal age because of the presence of the pyrogenic aerosols that

slow down the plume photochemistry for several days after

the emission (Finch et al., 2014).

For various reasons, the number of days of observations

out of the approximate 8-month sunlit portion of the year at

these remote Arctic sites will vary year to year from as few

as 15 to as many as 110. Often, days will have multiple ob-

servations. For the 5-year period (2008–2012), the average

number of measurements per gas shown in Fig. 3 is 2149

for Eureka and 868 for Thule. Despite the difference in the

number of FTIR measurements throughout the years between

Figure 3. Time series of C2H2, CH3OH, HCOOH and H2CO total

columns measured at Eureka (left panels) and Thule (right panels)

from 2008 to 2012. The brown lines represent the polynomial fits to

the data.

the Eureka and Thule data sets, the time series of the seven

tropospheric species recorded at both stations exhibit simi-

lar seasonal cycles in terms of absolute values and temporal

variabilities. We can exploit the accuracy of these FTIR re-

trievals, and the robustness of the multi-year observations,

in the quantification of Arctic tropospheric composition and

its variability. Super-imposed onto these seasonal cycles, the

time series reveal short-term enhancements due to fire events

that highlight the importance of the biomass burning long-

range transport in the Arctic budget of NMHCs, which can

affect air quality and climate in this region.

2.2 MOZART-4 description

MOZART-4 (Model for OZone And Related chemical Trac-

ers, version 4), is a chemical transport model (CTM) devel-

oped jointly by the (US) National Center for Atmospheric

Atmos. Chem. Phys., 15, 2227–2246, 2015 www.atmos-chem-phys.net/15/2227/2015/
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Research (NCAR), the Geophysical Fluid Dynamics Labo-

ratory (GFDL), and the Max Planck Institute for Meteorol-

ogy (MPI-Met) to simulate atmospheric chemical and trans-

port processes. To assess the ability of MOZART-4 to repro-

duce the different seasonal cycles of the seven tropospheric

species, as well as the day-to-day variabilities due to fire sig-

natures, we used daily mean outputs for all of 2008 and a

temporal resolution of 6 h within four time periods between

2008 and 2012 (Emmons et al., 2010) for comparison with

the FTIR data sets. Those periods are (1) March to August

2008 to assess the model’s seasonal cycles, (2) August to

October 2010 to evaluate biomass burning emissions of the

model for the most extreme fire event, as well as (3) May to

July 2011 and (4) June to July 2012 to focus the analyses on

other fire events during summer periods.

For that specific model run, a comprehensive tropo-

spheric chemistry, including 100 species, 160 kinetic, and

40 photolysis reactions, has been used. The simulations

are driven by offline meteorological data from the God-

dard Earth Observing System Model, version 5 (GEOS-5)

and the Modern Era Retrospective analysis for Research

and Applications (MERRA) at 0.5◦× 0.6◦ and 1.9◦× 2.5◦

resolutions with 56 vertical levels. Emissions are taken

from the anthropogenic inventory created for the ARCTAS

campaign by David Streets (Argonne National Lab, http:

//bio.cgrer.uiowa.edu/arctas/emission.html), which is based

on several inventories, including the INTEX-B Asia inven-

tory, the US Environmental Protection Agency (EPA) Na-

tional Emission Inventory (NEI), the European Monitor-

ing and Evaluation Programme (EMEP) inventory, as well

as the Emissions Database for Global Atmospheric Re-

search (EDGAR). For biomass burning emissions, we use

the Fire INventory from NCAR (FINN, Wiedinmyer et

al., 2011). FINN is based on MODIS thermal anomalies

and is available daily (https://www2.acd.ucar.edu/modeling/

finn-fire-inventory-ncar); thus, MOZART-4 simulations do

use daily fire emissions. Finally, biogenic emissions are

calculated online for isoprene and terpenes, and offline

for methanol, from the Model of Emissions of Gases and

Aerosols from Nature (MEGAN) inventory (Guenther et al.,

2012). At the time the simulations were performed, the sig-

nificance of biogenic emissions of formic acid was not ap-

preciated, and so were not included. In total, the model has

a HCOOH emission of 3.7 Tg yr−1, for which 1.1 Tg yr−1

are for anthropogenic sources and 3.3 Tg yr−1 for biomass

burning. The estimate of biogenic HCOOH emissions in

MEGAN-v2.1 is 3.7 Tg yr−1 (Guenther et al., 2012), so in-

clusion of them would double the current MOZART-4 emis-

sions.

3 Methods and results

3.1 Detection of biomass burning events with FTIR

observations in the Arctic

We identify fire events in the FTIR time series by selecting all

days that have simultaneous enhancements of the three main

biomass burning tracers (CO, HCN, and C2H6). All measure-

ments that lie beyond 3 standard deviations of the monthly

mean total columns are considered as biomass burning indi-

cators. This methodology was used in Viatte et al. (2013) and

relies on the assumption that a smoke plume detected in the

high Arctic has come from a relatively large fire and would

have large emissions for several consecutive days.

With this methodology, ten biomass burning events have

been identified as reaching Eureka (Table 1), and eight for

Thule (Table 2), from 2008 to 2012. At least five fire events

reached both sites almost simultaneously in March 2008,

July–August 2008, July–August 2010, June–July 2011, and

July 2012.

The number of events detected in the high Arctic appears

correlated with the boreal forest temperature (Barrett et al.,

2013). In summer 2009, only one event in June 2009 was

detected over Eureka (Table 1). Low temperatures over the

boreal forest (http://earthobservatory.nasa.gov/GlobalMaps/

view.php?d1=MOD14A1_M_FIRE) are consistent with a

smaller number of fire events detected at our sites. A recent

study of FINN also confirms the smaller number of boreal

fires in 2009 (Wiedinmyer et al., 2011, their Table 7).

In order to match the biomass burning candidate events

identified in the time series with actual plumes, it is neces-

sary to find the source fires and show that the plumes gen-

erated there are capable of travelling to the Arctic stations

where they were observed. This is done by using various in-

dependent data sets.

1. The Air Resources Laboratory (ARL, http://ready.

arl.noaa.gov/hysplit-bin/) Hybrid Single Particle La-

grangian Integrated Trajectory (HYSPLIT) model,

which generates mean-wind back-trajectories for air

parcels at designated elevations using Global Data As-

similation System (GDAS) meteorological fields (https:

//ready.arl.noaa.gov/gdas1.php).

2. The source region information in the form of “foot-

prints”, from a time-reversed Lagrangian particle

dispersion model, the Stochastic Time-Inverted La-

grangian Transport (STILT, Lin et al., 2003; Gerbig et

al., 2003) model, also driven by GDAS meteorologi-

cal fields. Trajectories were initialized at 0, 6, 12, and

18:00 UTC on 23 above-ground-height levels (ranging

from 0.2 to 14.5 km). Each trajectory used 500 parti-

cles. Footprints from the different levels were combined

as a weighted mean to create a single footprint that is

representative of a column measurement. Weights were

derived as the product of the pressure at the receptor
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Table 1. Fire events detected over Eureka with the date, days of measurements, vegetation type burned, fire source location, and travel time

to the day of peak enhancement (represented in bold in the third column) used to calculate emission ratios.

Year Month Days of Fire source Travel time

measurement Vegetation type Location used to

calculate ER

2008 Mar 20, 21, 23, 24, 25, 27, Boreal Russia 7 days

28, 29, 30, 31

2008 Apr 12, 14, 15, 16, 17, 19 Temperate coniferous Central USA 5 days

and grassland

2008 Jul 10, 12, 21, 22, 23, 29 Boreal Russia 5 days

2009 Jun 2, 3, 5, 6, 8, 9, 10 Boreal Russia 6 days

2010 May 14, 16, 17, 21, 22 Temperate coniferous Central USA 7 days

and grassland

2010 Jul 3, 5, 6, 9 Boreal Central Canada 6 days

and Alaska

2010 Aug 9, 10, 12, 13, 14, 16, Boreal Fire in Russia in 9 days

18, 19, 20, 22, 23, 24, Moscow area

25, 28, 29

2011 Jun 6, 7, 8, 9, 10, 11, 13 Boreal and temperate Central USA, 8 days

coniferous and Canada

grassland

2011 Jun/Jul 27, 28, 29, 30, 1, 2, Boreal Canada 6 days

4, 5

2012 Jul 1, 2, 3, 4 Boreal and temperate Canada, 5 days

coniferous and central USA

grassland

Table 2. Same as Table 1 but for Thule.

Year Month Days of Fire source Travel time

measurement Vegetation type Location used to

calculate ER

2008 Mar 24, 25, 26, 27, 29, Boreal Russia 7 days

30, 31

2008 Aug 2, 4, 5, 6, 7, 9 Boreal Central Canada 5 days

2010 Jul 30, 31, 3 Boreal Canada 5 days

2010 Aug 23, 24, 25, 26, 27, Boreal Fire in Russia in 9 days

28, 29, 2 Moscow area

2011 Jun 21, 22, 25, 26, 27, Boreal Canada 6 days

28, 29

2011 Jul 20, 21, 23, 24, 26, 27 Boreal Canada 6 days

2012 Apr/May 27, 28, 29, 8, 9, 10, Boreal, Russia 7 days

11, 12, 13, 14 temperate

coniferous and

grassland

2012 Jul 15, 16, 18, 19, 20, Boreal Canada, 5 days

22, 29, 30, 31, 1 central USA
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Figure 4. Example of attribution of fire source region and transport

time for event number 3, detected at Eureka on 10 July 2008. (a)

STILT footprints for that day, (b) MODIS fire hotspots, (c) HYS-

PLIT back-trajectories ending that day, and (d) OMI UV aerosol

index for that day.

multiplied by the instrument kernel density (which was

linearly interpolated to the receptor height). The trajec-

tories were run 30 days back in time.

3. The Moderate Resolution Imaging Spectroradiometer

(MODIS, http://lance-modis.eosdis.nasa.gov/cgi-bin/

imagery/firemaps.cgi), which captures global fire maps.

4. Satellite images from Ozone Monitoring Instrument

(OMI, http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.

cgi?instance_id=omi), which measures the UV aerosol

index.

In addition, we use AERONET aerosol optical depth

(AOD) data measured at Eureka (O’Neill et al., 2008; Saha

et al., 2010; http://aeronet.gsfc.nasa.gov/), when available, to

detect simultaneous increases in fine-mode AOD and trace

gas total columns, which is an additional fire event indica-

tor. If these data all agree on a common origin for a plume,

and the back-trajectories intersect that region during the same

time, then the source of a biomass burning event has been

successfully detected. Consistent results from these multiple

data sets provide confidence in the attribution of trace gas

enhancements to specific fire events.

Figure 4 shows an example of the source attribution and

the travel duration of a plume that reached Eureka on 10 July

2008. We first note a simultaneous enhancement of the three

main biomass burning tracer concentrations detected on 10

July 2008 at Eureka (see Fig. 5). As a priori information,

STILT footprints are generated to show the source region in-

fluencing the atmospheric measurement at Eureka, which for

that day is located in eastern Russia (light blue region inside

the red box, Fig. 4a). Then, the FIRMS (Fire Information

Figure 5. Time series of CO, HCN, C2H6, C2H2, CH3OH, and

H2CO total columns measured by the FTIRs at Eureka (blue) and

Thule (green) and calculated by MOZART-4 at Eureka (black) and

Thule (red) for 2008.

for Resource Management System, which provides MODIS

hotspot data) map is used to verify that a significant fire event

occurs in that specific region within a 10 day period (red dots

in Fig. 4b). To assess the travel duration of that plume from

the fire region to Eureka, an ensemble of HYSPLIT back-

trajectories is generated, for several travel times, end times

of the calculated trajectories, and air-parcel altitudes; e.g.,

for each biomass burning event detected at a specific time,

we ran ten HYSPLIT back-trajectories for different altitudes

ranging from 3 to 12 km, and modified the end time of these

back-trajectories within 2 h of the observed enhancements.

In Fig. 4c, air masses ending at Eureka at 5, 7, and 9 km (red,

blue, and green lines, respectively) on 10 July come from the

fire region (red box). And finally, the OMI aerosol index map

is used to confirm the presence of a significant fire event in

that region, as shown in Fig. 4d (colored area within the red

box). A similar example of a fire source region and a travel

time attribution can be seen in Viatte et al. (2013, Fig. 2) for

the August 2010 event.

Using this methodology, four fire plumes were attributed

to forest fires in Asia travelling for 7 to 9 days, and six from

North America travelling between 5 and 8 days, for Eureka

(Table 1). For Thule, three biomass burning plumes come
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from Russia after 7 to 9 days of travel and five are from North

America, travelling between 5 and 6 days (Table 2).

In addition, because fire emission composition depends

upon, among other parameters, the type of biomass burned

(Andreae and Merlet, 2001; Akagi et al., 2011), we assigned

the vegetation type burned (boreal, temperate coniferous and

grassland; Olson et al., 2001) for the different fire events

based on the fire source region. This ensured the appropri-

ate selection of the emission factor (EF) of CO needed to

calculate the emission factors of the other species from the

FTIR measurements of emission ratios (Sect. 3.2.2).

3.2 Evaluation of MOZART-4 in the Arctic

To assess the capacity of a model to estimate columns

and variabilities of tropospheric species in the high Arctic,

MOZART-4 was compared to the FTIR data sets. First, the

general agreement between MOZART-4 and the measure-

ments from 2008 to 2012 is discussed. Then, we focus on

2008 to analyze the model’s ability to reproduce the differ-

ent seasonal cycles of the seven target species in the tropo-

sphere. Finally, we focus on the most extreme fire event de-

tected in our measurements in August–October 2010, to dis-

cuss biomass burning emissions used in the model.

3.2.1 General comparisons between MOZART-4 and

the FTIR data sets

For comparisons with the FTIR data sets, all MOZART-4

data within the closest grid box to both measurement sites,

and within 3 h of each FTIR measurement, are selected. The

FTIR and the MOZART-4 trace gas profiles are estimated

over different altitude ranges, and with different vertical reso-

lutions. For each molecule, the MOZART-4 profiles are com-

bined with FTIR a priori profiles between 1.9 hPa (∼ 31 km)

and 120 km. After extrapolating these model profiles onto

the FTIR pressure grid, the model profiles are smoothed by

convolution with the FTIR averaging kernels functions (cor-

responding to those specific measurements) following the

equation (Rodgers and Connors, 2003)

xs = A(x− xa)+ xa, (1)

where xs is the smoothed MOZART-4 profile, A is the FTIR

averaging kernel matrix and xa is the FTIR a priori pro-

file. Then, total and tropospheric partial columns (between

0 and 10.25 km) are recalculated from the smoothed model

profiles. Typical FTIR averaging kernels of the seven tropo-

spheric can be seen in Viatte et al. (2014).

The FTIR retrievals have different vertical sensitivities for

each species, characterized by the degrees of freedom for sig-

nal (DOFS), ranging on average over 4454 and 1747 mea-

surements from 2.6 to 0.9 for CO and H2CO at Eureka,

respectively. For comparisons with the model, total or par-

tial columns may be considered, given the DOFS for that

species. For CO, HCN, and C2H6, DOFS can be used to

separate tropospheric columns from stratospheric columns;

therefore, tropospheric partial columns are considered in the

comparison with the MOZART-4 data. For the others (C2H2,

CH3OH, HCOOH, and H2CO), the average DOFS are on or-

der unity; therefore, only total columns are considered. How-

ever, these FTIR total columns that are the integrated abun-

dance from the surface to 120 km are representative of the

partial columns (0–30 km) because the FTIR retrievals of

these troposphere species have almost no sensitivity above

30 km, and the tropospheric columns represent more than

90 % of the total columns (Viatte et al., 2014).

The results of comparing the MOZART-4 model and FTIR

measurements over selected periods from 2008 to 2012 are

shown in Tables 3 and 4, for Eureka and Thule, respec-

tively. N is the number of measurements included in the

comparison with MOZART-4. The coefficient of linear cor-

relation (r) ranges from 0.35 to 0.93, where only two are

less than 0.5 and the mean is 0.73. This shows strong cor-

relations between the model and the measurements despite

the larger size of the MOZART-4 box (1.9◦× 2.5◦) com-

pared to our column measurements. Excellent correlations

are found for CO, C2H6, and C2H2, for which r>0.74 at

both sites, confirming that the model explains at least 54 % of

the atmospheric variability of these species in the Arctic. For

HCN, the correlation is better at Eureka (r = 0.92) than at

Thule (r = 0.55); however, the relative differences between

the model and the measurements are small (6.7± 19.3 % for

Eureka and 2.2± 19.5 % for Thule), highlighting the very

good agreements between these data sets. Also, strong corre-

lations are found for CH3OH (r = 0.77 for Eureka and 0.62

for Thule). For HCOOH and H2CO, the correlations of 0.60

and 0.50, and 0.35 and 0.75, for Eureka and Thule, respec-

tively, confirm the difficulty in modeling the concentrations

of these short-lived species in the high Arctic, and highlight

the relatively poor understanding of the sources and sinks of

these two molecules.

The mean relative differences ((model-FTIR)/model) be-

tween MOZART-4 and CO and HCN partial columns

are −2.9± 7.5 % and 6.7± 19.3 % for Eureka, and

−2.5± 11.4 % and 2.2± 19.4 % for Thule, respectively. The

1-sigma standard deviations are larger than the means, con-

firming the agreement between the model data and the FTIR

observations. For C2H6 partial columns, the mean relative

differences of −50.3± 22.7 % and −54.1± 29.7 % for Eu-

reka and Thule, respectively, are higher than the standard de-

viations. We infer that there is a significant underestimation

of the C2H6 concentrations calculated by the model com-

pared to the FTIR measurements. Our results confirm the

underestimation of the model already highlighted with air-

craft measurements during the ARCTAS campaign (Tilmes

et al., 2011; Emmons et al., 2014). The CH3OH mean rel-

ative differences of −23.3± 23.4 % and 1.9± 40.8 % for

Eureka and Thule, respectively, show good agreement be-

tween MOZART-4 and the CH3OH FTIR total columns, es-

pecially when considering the error bars of the measurements
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Table 3. Results of the 2008–2012 comparisons between MOZART-4 and the FTIR columns measured at Eureka for the seven species

listed in the first column. The comparisons are made for the tropospheric columns (0.6–10.25 km) for CO, HCN and C2H6 and for the total

columns (for the other gases). N is the number of points included in the comparisons and r is the coefficient of linear correlation. The relative

differences (in percentage) are calculated as (model-FTIR)/model, and SD is the 1-sigma standard deviation around the mean difference. The

last four columns are the slopes of the linear regression lines between MOZART-4 and FTIR along with their errors, the error bars in the

FTIR total columns (in percentage), and the atmospheric lifetimes of the target species.

Gas Columns N r Relative SD (%) Slope Error on slope Error Lifetime

difference (MOZART-4 bar in of gas

(%) (model- vs. FTIR) FTIR (days)

FTIR)/model total

column

(%)

CO Tropo 1001 0.879 2.888 7.532 0.667 0.011 3.1 30

HCN Tropo 423 0.921 −6.714 19.320 0.468 0.010 10.5 30–180

C2H6 Tropo 452 0.849 50.282 22.680 0.506 0.015 14.3 45

C2H2 Tot 289 0.927 137.047 329.439 1.548 0.037 22.5 15

CH3OH Tot 315 0.769 23.296 23.434 0.586 0.028 12.3 5–10

HCOOH Tot 270 0.605 1504.406 894.834 0.049 0.004 17 3–4

H2CO Tot 445 0.494 82.057 141.583 0.357 0.030 27.5 < 2

Table 4. Same as Table 3 but for Thule.

Gas Columns N r Relative SD (%) Slope Error

difference (MOZART-4 on

(%) (model- vs. FTIR) slope

FTIR)/model

CO Tropo 145 0.736 −2.48 11.37 0.529 0.041

HCN Tropo 111 0.555 2.24 19.45 0.222 0.027

C2H6 Tropo 277 0.829 −54.14 29.73 0.431 0.018

C2H2 Tot 139 0.908 −102.14 159.10 1.145 0.045

CH3OH Tot 118 0.620 1.93 40.79 0.390 0.046

HCOOH Tot 138 0.349 −1538.70 831.12 0.010 0.002

H2CO Tot 137 0.753 −152.81 129.67 0.426 0.032

(∼ 12 %). For C2H2 and H2CO total columns, the agreements

are poor, with large standard deviations, and for HCOOH, the

model did not include biogenic emissions, explaining the ex-

treme differences.

Finally, the slopes (model vs. FTIR) are all less than 1,

except for C2H2. This indicates that the model underesti-

mates the columns relative to the FTIR data, suggesting that

the model underestimates either emissions or transport of the

seven tropospheric species in the high Arctic. It could also

suggest that the model overestimates their chemical destruc-

tions in smoke plumes because of reduced photochemical ac-

tivity due to aerosol scattering.

3.2.2 Comparisons of the FTIR and MOZART-4

seasonal cycles in 2008

The 2008 time series of daily mean CO, HCN, C2H6, C2H2,

CH3OH, and H2CO total columns measured by the FTIRs at

Eureka and Thule (Fig. 5, blue and green dots, respectively),

and calculated by MOZART-4 at these two sites (Fig. 5,

black and red dashed lines, respectively) are used to compare

their seasonal cycles. This year was chosen because the April

and July biomass burning events have been studied during

the ARCTAS campaign (Jacob et al., 2010, and references

therein). There are no CH3OH measurements at Thule for

2008, because the optical filter used to measure this gas was

installed in 2010. HCOOH time series are excluded here, be-

cause the MOZART-4 runs did not include online biogenic

emissions, which have been shown to be a large source of

HCOOH from the boreal forest (Stavrakou et al., 2012), and

therefore the model does not capture HCOOH concentrations

and variabilities, by at least an order of magnitude.

In winter, CO and C2H2 total columns estimated by

MOZART-4 agree very well with the FTIR measurements,

suggesting that transport is well represented in the model,

since it is the major process controlling the Arctic budget of

these long-lived gases in winter. However, for C2H6, which

is also a long-lived tracer, the underestimation of its con-

centrations by MOZART-4 in winter confirms an underes-
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Figure 6. Time series of CO, HCN, C2H6, C2H2, CH3OH, and

H2CO total columns measured by the FTIRs at Eureka (blue) and

Thule (green) and calculated by MOZART-4 at Eureka (black) and

Thule (red) for the August 2010 fire event.

timation in anthropogenic emissions in the model. For HCN,

the good agreement in winter also confirms that transport is

well reproduced in the model, since HCN is the longest lived

species of those studied here (5 months in the troposphere, Li

et al., 2003). In spring and summer, however, the overestima-

tion of the model concentrations suggests that loss processes

for HCN are missing, confirming that its sinks are not well

quantified (Zeng et al., 2012). The CH3OH seasonal cycle

estimated by MOZART-4 exhibits the best agreement with

the observational data sets at Eureka.

Focusing on the July 2008 biomass burning event, the

CH3OH enhanced concentrations are captured well by the

model, suggesting that its fire emissions are correct. For CO

and H2CO, enhancements estimated by the model are too low

compared to the measurements. This might indicate that their

fire emissions are too low in the model. In contrast, the mod-

eled and measured HCN enhancements are similar, so fire

emissions of HCN in the model seem appropriate. For C2H6

and C2H2, the modeled enhancements are extremely low

compared to the measurements, indicating missing sources.

3.2.3 Comparisons of MOZART-4 and FTIR during

the August 2010 fire events

To further assess the estimation of fire emissions in the

model, we focus on the most extreme event in our data sets

in August 2010. Details about the origin and transport of the

plume from Russia through the Arctic are described in Viatte

et al. (2013). Figure 6 shows the time series of CO, HCN,

C2H6, C2H2, CH3OH, and H2CO total columns measured

by the FTIR at Eureka (blue dots) and Thule (green dots)

and calculated by MOZART-4 at Eureka (black dashed line)

and Thule (red dashed line) for the August 2010 fire event.

Except for C2H6 and C2H2, total columns measured by

the FTIR and calculated by the model are generally in agree-

ment during this fire event. In addition, enhancements due

to the fire plume recorded at both stations around 23 August

are captured in the model. However, the amplitudes of these

enhancements in MOZART-4, which reflect fire emissions in

the model, seem too low for all the gases, except for CH3OH

and H2CO. For CO, fire emissions in MOZART-4 are too

low, as seen previously (Sect. 3.2.2). For C2H6 and C2H2,

concentrations calculated by the model are biased low, indi-

cating missing sources. For CH3OH, fire emissions estimated

in the model seem appropriate.

3.3 Estimation of emissions from fires with FTIR

measurements

3.3.1 Correlation between CO and the other trace

gases

In order to estimate emissions from fires, all fire-affected

measurements identified in the biomass burning events

reaching the two Arctic sites (Tables 5 and 6) from 2008

to 2012 are used. Concentrations within smoke plumes vary

rapidly with time, so emission factors are derived by measur-

ing the emission ratio of the target chemical species relative

to a reference species, which is often CO2 or CO (Hurst et al.,

1994). We use CO as the reference because these measure-

ments are most sensitive to plume enhancements. Because

the emission ratio is not measured at the source of the fire,

the downstream measurements here more accurately yield an

“enhancement ratio” (EnhR). These ratios are derived from

the regression slopes of a given trace gas total column versus

that of CO, for each fire event. Since the spectral acquisitions

require the use of optical filters, and spectra are taken se-

quentially, we selected all CO measurements made within a

20 min interval of the target gas measurement in order to cal-

culate enhancement ratios. Uncertainties in this tracer/tracer

enhancement ratio method are small if both tracers have long

atmospheric lifetimes relative to plume travel durations be-

tween the fire source and the measurements. In addition, er-

rors in transport and plume altitude are also minimized, since

all tracers are expected to be mixed and transported in the

same air masses. These assumptions constitute the main lim-

itation of this approach (Yokelson et al., 2013).

Figures 7 and 8 show the correlation plots of the total

columns of the target species relative to CO, for all fire

events (represented by different colors) detected at Eureka

and Thule, respectively. For Eureka (and Thule), the en-
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Figure 7. Scatterplots of the total columns of the target species

(HCN, C2H6, C2H2, CH3OH, HCOOH, and H2CO) relative to CO

for the ten fire events detected at Eureka (2008–2012).

hancement ratios are estimated from each biomass burning

event, with 313 (136), 321 (274), 205 (137), 228 (-), 202

(120), and 298 (149) pairs of CO columns with HCN, C2H6,

C2H2, CH3OH, HCOOH, and H2CO columns, respectively.

Given the small number of CH3OH FTIR observations at

Thule, we did not estimate its enhancement ratio here (see

below).

The correlations of HCN, CH3OH, HCOOH, and H2CO

total columns with CO using all of the fire data sets (all

colors combined, Figs. 7 and 8) are not linear, since these

species have different atmospheric lifetimes from CO (Viatte

et al., 2014). In contrast, CO, C2H6, and C2H2 have common

sinks and sources, so their columns are expected to be cor-

related throughout the year. Except for H2CO, correlations

of the fire species with CO in the individual fire plumes (in-

dividual colors, Figs. 7 and 8) exhibit linear patterns. This

confirms that the target gases are transported in the same air

masses from the emitted fire sources. For H2CO, the correla-

tions with CO are not clearly linear inside fire plumes. How-

ever, the measured total columns are significantly enhanced

(up to 4.5× 1015 molecules cm−2) in August 2008 at Thule,

in August and July 2010 at Eureka and Thule, respectively,

in June 2011 and July 2011 at both sites, as well as in July

2012 at Thule. Given the back-trajectory analyses, these en-

hanced H2CO columns recorded in the high Arctic are cor-

Figure 8. Scatterplots of the total columns of the target species

(HCN, C2H6, C2H2, HCOOH, and H2CO) relative to CO for the

eight fire events detected at Thule (2008–2012).

related with extreme fire events in the boreal forest during

summer.

For each event, the slopes of the regression lines are taken

as the enhancement ratios of the species emitted by fires.

The correlations are obtained by linear regression using the

method of York et al. (2004), which takes into account un-

certainties in both ordinate and abscissa variables. The total

uncertainty for the regression slopes is calculated by quadra-

ture addition of the fit uncertainties and the measurement un-

certainties. Those values are summarized in Tables 5 and 6

for Eureka and Thule, respectively. N is the number of pairs

(between the target species vs. CO) used to estimate the en-

hancement ratios, r is the correlation coefficient of the lin-

ear regression, and EnhR is the enhancement ratio given by

the slope of the regression line for each fire event. To assess

changes due to photochemistry during plume aging (Akagi et

al., 2012), the enhancement ratio corrected by the travel time

of the plume (ER) has been included in Tables 5 and 6. If less

than six pairs are measured in a fire plume, the enhancement

ratios are not estimated from this event, i.e., C2H2 measure-

ments at Eureka in July 2010. No error weighting was per-

formed according to the number of points.

The correlation coefficients between HCN and CO total

columns are on average 0.84 and 0.79 for the Eureka and

Thule data sets, respectively (last columns in Tables 5 and
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Table 5. Correlation between each trace gas and CO inside the smoke plumes detected over Eureka. N is the number of points, r is the

coefficient of linear correlation and EnhR is the enhancement ratio, which is the slope derived from the correlation. For all gases except

H2CO, ER represents the corrected enhancement ratios from travel time calculated only if the linear correlation coefficient (r>0.6) and the

number of points (N>= 6). ∗ Values excluded from the mean calculations.

Gas Year 2008 2008 2008 2009 2010 2010 2010 2011 2011 2012 Mean±SD

Month Mar Apr Jul Jun May Jul Aug Jun Jun/Jul Jul

HCN N 20 20 16 48 32 12 66 44 38 17

r 0.85 0.94 0.97 0.76 0.70 0.88 0.82 0.85 0.92 0.67 0.84 ± 0.10

EnhR× 10−3 2.28 3.75 3.52 3.05 2.89 3.95 6.07 2.97 2.55 2.62 3.37 ± 1.08

ER 2.23 3.64 3.42 3.17 3.03 3.77 5.63 2.93 2.40 3.25 3.34 ± 0.94

C2H6 N 30 22 16 49 32 12 64 41 38 17

r 0.62 0.87 0.97 0.68 0.9 0.72 0.9 0.68 0.86 0.86 0.81 ± 0.12

EnhR× 10−3 5.15 10.30 7.34 14.25 10.65 4.27 9.69 13.04 9.98 5.23 8.99 ± 3.40

ER 5.36 10.60 7.55 14.74 11.08 4.42 10.19 13.63 10.32 7.77 9.56 ± 3.19

C2H2 N 20 21 13 48 31 30 14 20 8

r 0.76 0.93 0.92 0.87 0.78 0.63 0.61 0.93 0.55 0.78 ± 0.15

EnhR× 10−3 2.36 4.16 2.24 5.71 2.93 1.36 3.80 2.45 0.98 2.89 ± 1.47

ER 3.11 5.16 2.78 7.32 3.87 1.89 5.15 3.14 4.05 ± 1.74

CH3OH N 6 16 48 11 10 45 18 39 35

r 0.76 0.86 0.3 0.12 0.86 0.9 0.74 0.88 0.42 0.64 ± 0.29

EnhR× 10−3 10.69 10.70 42.45 500.79∗ 24.57 16.89 70.22 28.23 19.62 25.85 ± 20.63

ER 15.70 15.71 37.64 28.37 114.91∗ 43.24 28.13 ± 12.52

HCOOH N 28 21 10 44 27 6 38 9 19

r 0.87 0.75 0.93 0.74 0.53 0.97 0.67 0.78 0.83 0.79 ± 0.13

EnhR× 10−3 6.30 10.42 2.69 7.48 8.34 8.10 3.14 22.14 4.13 8.08 ± 5.87

ER 11.37 17.60 11.13 13.12 14.21 5.90 40.86 8.30 15.31 ± 4.03

H2CO N 16 18 16 38 28 12 64 43 45 18

r 0.08 0.58 0.64 0.15 −0.09 0.51 0.16 0.42 0.74 0.9 0.41 ± 0.32

EnhR× 10−3 159.2∗ 4.13 1.38 8.16 7.17 2.92 3.41 12.13 4.28 7.4 5.37 ± 3.86

6). Good correlations between C2H6 and CO total columns

(r = 0.81 on average for both data sets) also confirm that the

selected measurements, listed in Tables 1 and 2, were made

inside fire plumes. The means of the correlation coefficients

between C2H2 and CO total columns inside plumes are 0.78

and 0.80, for Eureka and Thule, respectively. For CH3OH,

the average of the coefficients of correlation is 0.65 at Eu-

reka. The HCOOH total columns are also well correlated

with CO inside the plumes, given the average values of r

of 0.79 and 0.58 at Eureka and Thule, respectively. However,

the July 2010 event has a negative correlation coefficient be-

tween HCOOH and CO at Thule, but the small numbers of

points (N = 6 and 8, for Eureka and Thule, respectively) are

too low to draw significant conclusions. The mean correla-

tion coefficients between the H2CO and CO total columns

are similar: r = 0.41 and 0.40 at Eureka and Thule, respec-

tively. Given the short atmospheric lifetime of this molecule

and the fact that the measurements are not performed at the

source of the fires, H2CO could have been destroyed in the at-

mosphere while being transported through the Arctic. How-

ever, the wide ranges of the r values, from 0.08 to 0.90 at

Eureka in March 2008 and July 2012, and from 0.34 to 0.93

in August 2008 and June 2011 at Thule, suggest a possible

secondary production of H2CO in some atmospheric smoke

plumes, where r is high. Young and Paton-Walsh (2011) also

show that concentrations of H2CO within Australian smoke

plumes increase during the first day of travel before declining

2 days after they were emitted.

The enhancement ratios are expected to vary with the

travel time of the plumes from their source to the measure-

ment site (see the last columns in Tables 1 and 2), especially

for short-lived species, because of their faster atmospheric

destruction (via photochemistry, oxidation, as well as dry and

wet depositions) compared to CO. However, the mean en-

hancement ratios of the target gases over all fire events are

comparable for the two sites. For instance, the Eureka and

Thule mean enhancement ratios of HCN, over all biomass

burning events, are 0.00334± 0.00094 (1-sigma standard de-

viation) and 0.00429± 0.00245, respectively (last columns

in Tables 5 and 6). In addition, the enhancement ratios of

HCN, C2H6, and C2H2 estimated from the extreme fire

event of August 2010 are very similar: 0.00563 and 0.00650

for HCN, 0.01019 and 0.01235 for C2H6, and 0.00189 and

0.00191 for C2H2, for Eureka and Thule, respectively.
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Table 6. Correlation between each trace gas and CO inside the smoke plumes detected over Thule. N is the number of points, r is the

coefficient of linear correlation and EnhR are the enhancement ratios, which are the slopes derived from the correlation. For all gases except

H2CO, ER represents the corrected enhancement ratios from travel time (calculated only if the linear correlation coefficient (r>0.6)) and the

number of points (N>= 6).

Gas Year 2008 2008 2010 2010 2011 2011 2012 2012 Mean±SD

Month Mar Aug Jul Aug Jun Jul Apr/May Jul

HCN N 17 20 9 34 12 17 9 18

r 0.42 0.79 0.96 0.79 0.8 0.87 0.8 0.85 0.79 ± 0.16

EnhR× 10−3 4.20 6.09 8.24 7.16 1.60 3.06 1.93 2.95 4.40 ± 2.48

ER 5.78 7.83 6.50 1.50 2.87 1.79 3.75 4.29 ± 2.45

C2H6 N 33 44 16 64 23 35 25 34

r 0.85 0.14 0.93 0.89 0.92 0.89 0.95 0.9 0.81 ± 0.27

EnhR× 10−3 17.27 −0.02 17.98 11.75 10.10 6.33 11.56 6.73 10.21 ± 5.93

ER 17.96 18.50 12.35 10.45 6.55 12.02 6.92 12.11 ± 4.76

C2H2 N 17 21 9 34 12 17 9 18

r 0.58 0.63 0.85 0.76 0.88 0.91 0.88 0.91 0.80 ± 0.13

EnhR× 10−3 2.58 1.88 3.56 1.37 1.88 2.22 2.52 1.92 2.24 ± 0.66

ER 2.33 4.42 1.91 2.41 2.84 3.33 2.38 2.80 ± 0.84

CH3OH N

r

EnhR× 10−3

HCOOH N 13 19 8 30 9 14 11 16

r 0.55 0.87 −0.71 0.76 0.84 0.65 0.88 0.77 0.58 ± 0.53

EnhR× 10−3 3.80 13.78 −4.47 10.77 12.12 1.57 15.93 6.58 7.51 ± 6.92

ER 23.27 20.22 21.26 2.75 28.76 11.11 17.90 ± 9.37

H2CO N 30 23 6 30 11 18 15 16

r 0.64 0.34 −0.55 0.57 0.93 0.38 0.56 0.3 0.40 ± 0.43

EnhR× 10−3 6.02 3.85 −1.76 3.70 11.79 2.21 3.58 2.52 3.99 ± 3.85

3.3.2 Calculation of emission ratios (ERs) and emission

factors (EFs)

In models, fire emissions are often specified by using emis-

sion ratios relative to a reference species, typically CO,

which correspond to measured ratios at the source of the

biomass burning event. Those emission ratios are equal to

the enhancement ratios corrected for the travel duration of

the plume. By considering the different lifetimes of the

molecules (Table 3, last column) as well as the plume travel

times to reach Eureka and Thule (last columns of Tables 1

and 2), we calculated the decay rates of each species to obtain

the percentage of their initial values remaining when they

were measured. This allows the measured enhancement ra-

tios to be corrected to the equivalent emission ratios (Paton-

Walsh et al., 2005; Akagi et al., 2011; Hornbrook et al.,

2011). More details regarding this correction are found in

Viatte el al. (2013). Since the uncertainty in the correction is

small compared to other uncertainties, our equivalent emis-

sion ratios can be compared to other emission ratios found

in the literature. For comparison with previous studies, our

equivalent emission ratios have been converted into equiva-

lent emission factors using Andreae and Merlet (2001):

EFx = ER(x/CO)× (MWx/MWCO)×EFCO, (2)

where EFx is the emission factor for trace gas X in g of gas

per kg of dry biomass burnt; ER(x/CO) is the molar emission

ratio of trace gas X with respect to CO; MWx is the molecular

weight of trace gas X; MWCO is the molecular weight of CO;

and EFCO is the emission factor of CO.

In this study, values of EFCO of 127± 45 g kg−1 and

107± 37 g kg−1 for dry matter based on Akagi et al. (2011)

and Andreae and Merlet (2001), respectively, are taken as the

emission factors for CO for boreal and extratropical forests,

since this is the fuel type of the relevant source fires (vege-

tation type columns in Tables 1 and 2). Uncertainties in the

measured EF are calculated by taking into account the large

uncertainty in the CO emission factor (more than 35 %) and

the uncertainty in the mean calculated regression slope (33.6,

54.0, 49.5, 32.2 and 22.8 % for HCN, C2H6, C2H2, CH3OH,

and HCOOH at Eureka, respectively, and 43.5, 33.1, 52.5,

and 16.3 % for HCN, C2H6, C2H2, and HCOOH, respec-

tively, at Thule), as well as the total uncertainties in the re-

trievals (3.1, 10.5, 14.3, 22.5, 12.3, and 17.0 % for CO, HCN,

www.atmos-chem-phys.net/15/2227/2015/ Atmos. Chem. Phys., 15, 2227–2246, 2015



2240 C. Viatte et al.: Identifying fire plumes in the Arctic

Figure 9. Emission factors calculated from the FTIR measurements

performed at Eureka (cyan) and Thule (green), using EFCO of An-

dreae and Merlet (2001) for extratropical forest. Error bars corre-

spond to the uncertainty in the CO emission factor and the uncer-

tainty in the calculated regression slope, as well as the total uncer-

tainties in the retrievals, all combined in quadrature.

C2H2, C2H6, CH3OH, and HCOOH, respectively; Viatte et

al., 2014, their Table 3), all combined in quadrature (Paton-

Walsh et al., 2005). Total uncertainties in EFs are 49.2, 67.3,

61.8, 48.7, and 42.3 % for HCN, C2H6, C2H2, CH3OH, and

HCOOH, at Eureka, respectively, and 57.5, 48.7, 63.8, and

46.5 % for HCN, C2H6, C2H2, and HCOOH, at Thule, re-

spectively. Because the uncertainties in the FTIR H2CO re-

trievals are high (∼ 27 %) and the transport times of the

plumes to the Arctic exceed its atmospheric lifetime (which

is less than 2 days), emission ratios of H2CO have not been

estimated in this study.

Our corrected enhancement ratios (i.e., equivalent emis-

sion ratios, “ER” in Tables 5 and 6) have been converted into

equivalent emission factors using Eq. (2). Only enhancement

ratios calculated from more than six pairs (N>6), and satis-

fying a coefficient of correlation of more than 0.6 (r>0.6),

are taken into account to estimate emission factors. The

means of equivalent emission ratios and emission factors

(calculated using EFCO for the extratropical forest) estimated

from FTIR measurements performed at Eureka and Thule are

summarized in Table 7.

Figure 9 shows the emission factors calculated from

FTIR measurements performed at Eureka (cyan) and Thule

(green), using the same EFCO of Andreae and Mer-

let (2001) for the extratropical forest. All emission fac-

tors estimated from both FTIR data sets agree well

within combined error bars. The means of the emis-

sion factors estimated from the Eureka and Thule FTIR

data sets are 0.36± 0.17 g kg−1 and 0.44± 0.25 g kg−1 for

HCN, 1.09± 0.74 g kg−1 and 1.39± 0.68 g kg−1 for C2H6,

0.40± 0.25 g kg−1 and 0.28± 0.18 g kg−1 for C2H2, and

2.69± 1.14 g kg−1 and 3.15± 1.46 g kg−1 for HCOOH, re-

spectively. For CH3OH, we estimated a mean emission factor

of 3.44± 1.68 g kg−1 at Eureka (Table 7). The emission fac-

Figure 10. Emission factors for boreal and extratropical EFCO

calculated from FTIR measurements (blue and cyan), along with

the emission factors found in the compilation studies of Akagi et

al. (2011) (red) and Andreae and Merlet (2001) (pink).

tors derived from the Thule data set are slightly higher than

those for Eureka, except for C2H2, but these differences are

not significant given the error bars. However, the EFHCOOH

is notably higher at Thule than at Eureka. A possible expla-

nation is that our Thule measurements of HCOOH from fire

events are contaminated by local biogenic emissions.

In order to compare our results with others, emission fac-

tors from two compilations of data (Andreae and Merlet,

2001; Akagi et al., 2011) for extratropical and boreal forests

have been selected. These studies contain a comprehensive

set of emission factors from the burning of numerous veg-

etation types derived from various measurement platforms.

Figure 10 shows the emission factors calculated from the

FTIR measurements (in blue and cyan), along with the emis-

sion factors found in the compilation studies of Akagi et

al. (2011) (red) and Andreae and Merlet (2001) (pink). The

blue color corresponds to the emission factors calculated us-

ing the EFCO for the boreal forest from Akagi et al. (2011),

whereas the cyan color corresponds to the values of EFx cal-

culated using the EFCO for the extratropical forest from An-

dreae and Merlet (2001).

Our EFHCN are lower than the two mean values reported

in the literature. The sources and sinks of HCN are not well

known. Our EFC2H6
agree well, within combined error, with

the mean value reported by Akagi et al. (2011) and are higher

than the mean value reported in the earlier study of Andreae

and Merlet (2001). The emission factors of C2H2 estimated

from the FTIR measurements are in excellent agreement with

the mean values reported in both compilation studies. Our

EFCH3OH are in agreement with the mean value from Akagi

et al. (2011) and are higher than the mean value reported by

Andreae and Merlet (2001), suggesting that CH3OH emis-

sions from fires are higher than previously thought. Finally,

our EFHCOOH are significantly higher than the values re-

ported in the more recent compilation study of Akagi et
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Table 7. Means and 1-sigma standard deviations of equivalent emission ratios and emission factors (using EFco for the extratropical forest)

calculated from FTIR measurements performed at Eureka and Thule for HCN, C2H6, C2H2, CH3OH, and HCOOH. Standard deviations are

smaller than in Tables 5 and 6 because filters (using threshold values on the linear correlation coefficient (r > 0.6) and the number of points

(N ≥ 6)).

Eureka Thule

Mean ER±SD Mean EF±SD Mean ER±SD Mean EF±SD

HCN 0.00343 ± 0.00094 0.36 ± 0.17 0.00429 ± 0.00245 0.44 ± 0.25

C2H6 0.00956 ± 0.00319 1.09 ± 0.74 0.01211 ± 0.00476 1.39 ± 0.68

C2H2 0.00405 ± 0.00174 0.40 ± 0.25 0.00280 ± 0.00084 0.28 ± 0.18

CH3OH 0.02813 ± 0.01252 3.44 ± 1.68

HCOOH 0.01531 ± 0.00403 2.69 ± 1.14 0.01790 ± 0.00937 3.15 ± 1.46

al. (2011), but agree well with the mean value reported in

2001 (Andreae and Merlet, 2001). This may suggest that fires

from the extratropical forest emit relatively large amounts of

HCOOH, or it may reflect a local biogenic component in our

measurements.

4 Summary and conclusions

The frequency and intensity of biomass burning are strongly

linked to climate change, and constitute a large source of the

variability in Arctic tropospheric composition. We performed

FTIR measurements of seven important biomass burning

species (CO, HCN, C2H6, C2H2, CH3OH, HCOOH, and

H2CO) at two high Arctic sites, Eureka and Thule, from

2008 to 2012. We focused on these species for several rea-

sons. (1) There remain numerous gaps in the available tropo-

spheric observational data sets, especially at high latitudes.

(2) Since these species exhibit different source fractions (an-

thropogenic, biogenic, fossil fuel burning, and biomass burn-

ing), as well as different lifetimes, the comparison of our

new data sets with chemical transport model simulations can

help identify issues in the model that can be addressed to im-

prove their estimations of trace gas concentrations and tem-

poral variations, as well as transport processes in the high

Arctic. (3) All these biomass burning products are measured

almost simultaneously using the FTIR technique, so we de-

rived emission factors to add new values to the relatively

sparse data sets in the literature.

Those new data sets of tropospheric species recorded at

both stations exhibit similar seasonal cycles, in terms of ab-

solute values and temporal variabilities. In addition, ten and

eight fire events were identified at Eureka and Thule, respec-

tively. These highlight the importance of the biomass burning

long-range transport in the Arctic budget of NMHC, which

can affect air quality and climate in this region. This may

have a continued and increasing effect in a warming climate

and sensitive Arctic ecosystem.

The two sets of measurements were compared with

MOZART-4 to assess (1) the general agreement (2008–

2012), (2) the model simulations of the different seasonal cy-

cles (with the 2008 year), and (3) fire emissions in the model.

Correlations between MOZART-4 and FTIR total columns

are strong (r ranges from 0.35 to 0.93). The mean relative

differences between MOZART-4 and the CO and HCN mea-

surements confirm the good agreement between the model

data and the FTIR observations. In winter, CO and C2H2 to-

tal columns estimated by MOZART-4 agree well with the

FTIR measurements, suggesting that transport is well repre-

sented in the model, since it is the major process controlling

the Arctic budget of these long tropospheric lifetime gases.

However, for C2H6, the low columns estimated in winter by

MOZART-4 confirm an underestimation in its emissions in

the model. For HCN, the good agreement in winter also con-

firms that transport is well reproduced. In spring and summer,

however, the overestimation of the model columns suggests

that loss processes for HCN are missing. Finally, the CH3OH

total columns show good agreement between MOZART-4

and the FTIR data set at Eureka.

In order to estimate emissions from fires, all fire-affected

spectra recorded inside smoke plumes were used to calculate

the enhancement ratios relative to CO. Very good correla-

tions with CO are found inside smoke plumes in the Arctic,

confirming the common fire origins and transport pathways.

CO and H2CO total columns are well correlated (r>0.9) in-

side fire plumes transported in June 2011 to Thule and in July

2012 to Eureka, suggesting a possible secondary production

of H2CO in atmospheric smoke plumes. The enhancement

ratios were used to derive equivalent emission ratios from

which emission factors were calculated using an assumed

emission factor for CO. The means of emission factors es-

timated with the two FTIR data sets are 0.40± 0.21 g kg−1

for HCN, 1.24± 0.71 g kg−1 for C2H6, 0.34± 0.21 g kg−1

for C2H2, and 2.92± 1.30 g kg−1 for HCOOH. The emission

factor for CH3OH estimated at Eureka is 3.44± 1.68 g kg−1.

These measurements add new observations to the sparse data

set of emission factors that have been reported and compiled

in the literature.

An extension of this work would be to compare the FTIR

measurements to the CAM-chem model (Lamarque et al.,

2010), which has online MEGAN biogenic emissions for
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many species, such as methanol and formic acid, to assess

how this improves the comparison compared to MOZART-4.
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