

Supplement of

Receptor modelling of fine particles in southern England using CMB including comparison with AMS-PMF factors

J. Yin et al.

Correspondence to: R. M. Harrison (r.m.harrison@bham.ac.uk)

Table S1.	Listof all	organic	markers	analysed
= **** *** ***				J

n-Alkanes	Abbreviation	Hopanes	Abbreviation	PAHs	Abbreviation
<i>n</i> -Tetracosane	C24	17α(H)-22,29,30-Trisnorhopane	17aTNohop	Benzo[k]fluoranthene	B[k]F
<i>n</i> -Pentacosane	C25	$17\alpha(H),21\beta(H)$ -Hopane	17αβΗορ	Benzo[b]fluoranthene	B[b]F
<i>n</i> -Hexacosane	C26	$17\beta(H),21\alpha(H)-30$ -norhopane	17βαNohop	Benzo[e]pyrene	B[e]P
<i>n</i> -Heptacosane	C27	22S-17 α (H),21 β (H)-30-Homohopane	22SαβΗΗ	Benzo[a]pyrene	B[a]P
<i>n</i> -Octacosane	C28	22R-17α(H),21β(H)-30-Homohopane	22RαβΗΗ	Perylene	PER
<i>n</i> -Nonacosane	C29	22S-17 α (H),21 β (H)-30-Bishomohopane	22SαβBHH	Indeno[1,2,3-cd]pyrene	IP
<i>n</i> -Triacontane	C30	$22R-17\alpha(H), 21\beta(H)-30$ -Bishomohopane	22RαβBHH	Dibenz[a,h]anthracene	D[ah]A
<i>n</i> -Hentriacontane	C31	22S-17α(H),21β(H)-30,31,32-trishomohopane	22SαβTHH	Benzo[ghi]perylene	B[ghi]PER
<i>n</i> -Dotriacontane	C32	22R-17α(H),21β(H)-30,31,32-trishomohopane	22RαβTHH	Coronene	COR
<i>n</i> -Tritriacontane	C33	Fatty acids		Picene	PIC
<i>n</i> -Tetratriacontane	C34	Tetradecanoic acid/Myristic acid (C14)	MyrA	Secondary markers	
<i>n</i> -Pentatriacontane	C35	Pentadecanoic acid/Pentadecylic acid (C15)	PentA	Pinonic acid	PinoA
Sterols		Hexadecanoic acid/Palmitic acid (C16)	PalmA	Pinic acid	PinicA
Levoglucosan	Levo	Octadecanoic acid/Stearic acid (C18)	SteaA	2-methylthreitol	MethT
Cholesterol	Chol	9-octadecenoic acid/Oleic acid (C18:1)	OleiA	2-methylerythritol	MethE
		9,12-octadecadienoic acid/Linoleic acid (C18:2)	LinoA		

n-Alkanes	Precision	MDL	Hopanes	Precision	MDL	PAHs	Precision	MDL
C24	5.1	0.027	17aTNohop	4.7	0.010	B[b]F	6.2	0.015
C25	4.4	0.041	17abNohop	5.1	0.011	B[k]F	4.3	0.017
C26	7.1	0.055	17baNohop	3.4	0.017	B[e]P	5.3	0.019
C27	5.7	0.026	17abHop	5.5	0.014	B[a]P	4.9	0.014
C28	10.8	0.019	22SabHH	4.3	0.015	PER	5.8	0.010
C29	13.4	0.048	22RabHH	4.4	0.018	IP	8.9	0.008
C30	10.7	0.066	22SabBHH	5.1	0.016	D[ah]A	6.6	0.011
C31	8.1	0.034	22RabBHH	5.7	0.047	PIC	15.0	0.025
C32	8.8	0.044	22SabTHH	5.2	0.014	B[ghi]PER	7.5	0.017
C33	15.9	0.034	22RabTHH	6.3	0.035	COR	3.2	0.016
C34	3.3	0.015	Fatty acids					
C35	7.5	0.054	MA	11.9	0.57			
Sterols			PentA	8.8	0.23	Secondary		
						Markers		
Levo	15.4	0.23	PA	20.4	2.1	PinoA	15.7	0.37
Chol	5.6	0.024	LOA	6.8	0.097	PinicA	8.1	0.19
			OA	9.2	0.31	MethT	5.9	0.035
			SA	19.2	1.3	MethE	7.4	0.10

Table S2. Precision (%) and method detection limit (MDL)(ng m^{-3}) for the target compounds

Factor	OOA	SFOA1	SFOA2	COA	HOA
	Mean mass				
fPeak value					
-0.6	0.897374	0.757835	0.882626	1.02376	0.68164
0	0.933063	0.747544	0.857564	0.875335	0.829156
1	0.940803	0.696752	0.776001	0.682512	1.14724

Table S3. Dependence of mean mass of PMF factors upon value of fpeak=0

Table S4: Source contribution estimates (SCE) ($\mu g m^{-3}$) and standard deviation (S.D.) for fine particulate OC and PM_{2.5}at NK and HAR from the CMB model (averaged from daily CMB outputs)

			OC			PM _{2.5}		OC/PM _{2.5} or
Source Name		NK ^a	$\mathbf{NK}^{\mathbf{b}}$	HAR ^a	NK ^a	NK ^b	HAR ^a	OC/OM CF ^c
Vegetation	SCE	0.069	0.069	0.11	0.21	0.21	0.35	0.324
	S.D.	0.010	0.010	0.015	0.030	0.030	0.048	-
Woodsmoke	SCE	0.53	0.53	0.64	0.64	0.64	0.77	0.836
	S.D.	0.11	0.11	0.14	0.14	0.14	0.16	-
Natural Gas	SCE	0.046	0.046	0.042	0.054	0.054	0.050	0.849
	S.D.	0.009	0.009	0.007	0.011	0.011	0.008	-
Dust/Soil	SCE	0.049	0.049	0.018	0.38	0.38	0.14	0.131
	S.D.	0.037	0.037	0.015	0.29	0.29	0.11	0.0133
Coal	SCE	0.075	0.075	0.041	0.17	0.17	0.094	0.432
	S.D.	0.020	0.020	0.009	0.046	0.046	0.021	0.0834
Food Cooking	SCE	0.32	0.32	0.070	0.56	0.56	0.12	0.566
	S.D.	0.055	0.055	0.013	0.10	0.10	0.023	0.030
Total Traffic	SCE	0.81	0.81	0.35	1.40	1.40	0.59	0.579
	S.D.	0.39	0.39	0.16	0.88	0.88	0.29	0.051
Biogenic Secondary	SCE	-	0.90	-	-	1.63	-	0.556
	S.D.	-	0.17	-	-	0.31	-	-
Other OC/OM	SCE	1.62	0.72	1.03	2.92	1.29	1.85	0.556
	S.D.	-	-	-	-	-	-	-
Sea Salt	SCE	-	-	-	1.1	1.1	0.82	-
	S.D.	-	-	-	0.020	0.020	0.020	-
Ammonium	SCE	-	-	-	2.2	2.2	2.1	-
Sulphate	S.D.	-	-	-	0.028	0.028	0.028	-
Ammonium Nitrate	SCE	-	-	-	5.8	5.8	4.1	-
	S.D.	-	-	-	0.072	0.072	0.072	-
Measured OC/PM _{2.5}	Mass	3.5	3.5	2.3	15.7	15.7	11.0	-

Note: Figures in bold were not statistically different from zero; a - Modelled without biogenic secondary source profile; b – Modelled with biogenic secondary source profile; c – Conversion factor

Figure S1: Mean OC source contribution estimates with (b) and without (a) secondary biogenic component at NK

NOAA HYSPLIT MODEL Backward trajectory ending at 1800 UTC 13 Jan 12 GDAS Meteorological Data

NOAA HYSPLIT MODEL Backward trajectory ending at 0600 UTC 14 Jan 12 GDAS Meteorological Data

NOAA HYSPLIT MODEL Backward trajectory ending at 0000 UTC 18 Jan 12 GDAS Meteorological Data

NOAA HYSPLIT MODEL Backward trajectory ending at 1200 UTC 18 Jan 12 GDAS Meteorological Data

NOAA HYSPLIT MODEL Backward trajectory ending at 1800 UTC 30 Jan 12 GDAS Meteorological Data

NOAA HYSPLIT MODEL Backward trajectory ending at 0600 UTC 31 Jan 12 GDAS Meteorological Data

NOAA HYSPLIT MODEL Backward trajectory ending at 0600 UTC 01 Feb 12 GDAS Meteorological Data

NOAA HYSPLIT MODEL Backward trajectory ending at 1200 UTC 03 Feb 12 GDAS Meteorological Data

NOAA HYSPLIT MODEL Backward trajectory ending at 0000 UTC 04 Feb 12 GDAS Meteorological Data

NOAA HYSPLIT MODEL Backward trajectory ending at 1200 UTC 04 Feb 12 GDAS Meteorological Data

NOAA HYSPLIT MODEL Backward trajectory ending at 0000 UTC 05 Feb 12 GDAS Meteorological Data

Figure S2. Air mass back trajectories at NK for starting dates of January 13th, 17th, 30th, 31st and February 3rd, 4th.