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Abstract. Estimating representative surface fluxes using

eddy covariance leads invariably to questions concerning in-

clusion or exclusion of low-frequency flux contributions. For

studies where fluxes are linked to local physical parame-

ters and up-scaled through numerical modelling efforts, low-

frequency contributions interfere with our ability to isolate

local biogeochemical processes of interest, as represented

by turbulent fluxes. No method currently exists to disentan-

gle low-frequency contributions on flux estimates. Here, we

present a novel comprehensive numerical scheme to iden-

tify and separate out low-frequency contributions to verti-

cal turbulent surface fluxes. For high flux rates (|Sensible

heat flux|> 40 Wm−2, |latent heat flux|> 20 Wm−2 and |CO2

flux|> 100 mmol m−2 d−1) we found that the average relative

difference between fluxes estimated by ogive optimization

and the conventional method was low (5–20 %) suggesting

negligible low-frequency influence and that both methods

capture the turbulent fluxes equally well. For flux rates below

these thresholds, however, the average relative difference be-

tween flux estimates was found to be very high (23–98 %)

suggesting non-negligible low-frequency influence and that

the conventional method fails in separating low-frequency

influences from the turbulent fluxes. Hence, the ogive opti-

mization method is an appropriate method of flux analysis,

particularly in low-flux environments.

1 Introduction

The eddy covariance (EC) technique allows for direct, con-

tinuous and non-invasive tower-based ecosystem-scale esti-

mation of surface–atmosphere scalar fluxes by simultaneous

sampling of atmospheric fluctuations of wind and scalars

(e.g., Baldocchi, 2008). These characteristics, along with

ease of operation, have promoted the widespread application

of the technique in both short-term experiments and long-

term monitoring network operations (e.g., FLUXNET, Car-

boEurope, EuroFlux, and AmeriFlux).

Reliable flux estimation in a local environment is often

complicated by a number of issues relating to the large range

of fluctuation-scales which drive fluxes (Stull, 1988). Fluxes

driven by high-frequency fluctuations (turbulence) are inher-

ently local in nature, whereas fluxes driven by low-frequency

fluctuations are associated with e.g., topographical forcing

on the observed flow, or large-scale meteorological phenom-

ena, including gravity waves, deep convection and large roll

vortices (Lee et al., 2004). Traditionally the presence of a

spectral gap (Stull, 1988) is assumed to exist between these

contributions, allowing investigators to disentangle contri-

butions simply by separating continuous observations into

quasi-stationary intervals each yielding one flux estimate.

However, the existence of a distinct spectral gap is unclear

(Lee et al., 2004) and a growing body of work suggests that
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low-frequency contributions may often be non-negligible,

even for relatively flat sites. Furthermore studies have shown

that the low-frequency contributions are highly site-specific

and characterized by significant uncertainty (Aubinet et al.,

2010; Loescher et al., 2006; Yi et al., 2008). Hence, obser-

vations of atmospheric fluctuations are likely to reflect some

degree of convolution between signals of local turbulent con-

tributions and site/time-specific low-frequency contributions.

The importance of including vertical low-frequency con-

tributions in studies is debated. For instance, some studies

suggest that inclusion may improve closure in energy and

carbon-balance studies (Finnigan et al., 2003; Mahrt, 1998;

Sakai et al., 2001; von Randow et al., 2002), while other

studies suggest otherwise (Aubinet et al., 2010). Kanda et

al. (2004) demonstrated that, although the systematic bias

decreased when including low-frequency contributions, the

variance between flux estimates increases greatly. In other

words, any single flux estimate becomes vulnerable to ran-

dom low-frequency contributions, and thus increasingly dif-

ficult to interpret in terms of local surface fluxes. Moreover,

it has been commented that horizontal low-frequency contri-

butions, which are typically assumed negligible, may become

significant during conditions of low turbulence intensity and

gravitational flows (Yi et al., 2008) as well as during flow

disturbance associated with complex topography (Zeri et al.,

2010).

Accordingly, we can distinguish between two principal ap-

plications of the EC technique: (1) process-oriented studies

in which fluxes are being linked to local biogeochemical pro-

cesses for parametric insight into universal causal flux re-

lationships and up-scaled through numerical modelling, and

(2) long-term net ecosystem-exchange studies in which the

flux estimates are understood to be site-specific, applying

only for the unique conditions of a particular ecosystem. This

study will focus on the former, and we will refer to the tur-

bulence driven fluxes as locally meaningful fluxes, following

Lee et al. (2004).

For process-oriented studies, a number of typical ap-

proaches exist to estimate locally meaningful fluxes. These

include: (1) adjusting the flux averaging time to strike an

appropriate balance between adequate sampling of the tur-

bulent flux contribution while avoiding excessive inclusion

of low-frequency contributions (Sun et al., 2006); (2) en-

suring horizontal homogeneous conditions within the foot

print of the flux; (3) estimating vertical low-frequency con-

tribution by performing profile measurements of fluxes on

a single tower (Lee, 1998; Leuning et al., 2008) and filter-

ing out observations reflecting excessive low-frequency in-

fluence (Novick et al., 2014); (4) filtering observations based

on co-spectral similarity with theoretical co-spectra assumed

to represent local flux distributions for ideal site-conditions

(Hojstrup, 1981, 1982; Hunt et al., 1985; Kaimal, 1978;

Kaimal et al., 1972; Moore, 1986; Moraes, 1988; Moraes

and Epstein, 1987; Olesen et al., 1984); (5) estimating the

ideal turbulent contribution by matching the observed co-

spectral peak with that of a theoretical distribution (Sorensen

and Larsen, 2010).

While each method has its merits, none is universally ap-

plicable and without its caveats. In the absence of a distinct

spectral gap between contributions, separating flux contribu-

tions by adjusting the flux averaging time will inevitably fail.

Moreover, given the evolving nature of the natural flow, a

proposed spectral gap is likely to change in character over

time, indicating that setting a fixed averaging time for an en-

tire experiment inevitably causes some misrepresentation of

fluxes. In the limit of low absolute covariance (i.e., small

fluxes) a relative large variance of the co-spectra estimates

complicate the comparison between observed and theoretical

co-spectra. While such cases could be treated as reflecting

observations approaching the detection limit of the system,

and discarded accordingly, they are important for exchange

studies over low-flux surfaces such as sea ice, creating a de-

mand for a new approach here.

Ensuring co-spectral similarity requires a number of

site/system-specific empirical co-spectral corrections to ac-

count for high-frequency non-white noise/dampening pro-

duced by the presence of the EC system in the observed flow

as well as signal dampening in closed path systems, greatly

complicating the approach (Aubinet et al., 2000; De Ligne et

al., 2010; Kaimal, 1968; Massman and Ibrom, 2008; Mon-

crieff et al., 1997; Moore, 1986; Silverman, 1968). Match-

ing the co-spectral peak solves the issue of excessive scaling

offset mentioned above, but increases the risk of subjective

analysis.

Here, we present a novel method for estimating lo-

cally meaningful atmosphere–surface fluxes despite low-

frequency influences, using a single eddy covariance system

and a numerical modelling scheme for ogive optimization.

Accordingly we call this method ogive optimization. Ogive

optimization makes no assumptions regarding optimal flux

averaging time or the presence of a spectral gap and improves

the flux estimates by also considering contributions in the

very high/low frequency ranges. To evaluate the method, we

applied it on eddy covariance observations of sensible heat,

latent heat and CO2 flux at five sites covering different ranges

of fluxes, ecosystem types and topographical conditions. Re-

sults were compared with the conventional eddy covariance

method both in terms of flux estimate yield and flux differ-

ence relative to flux strength.

2 Method and theory

2.1 Eddy covariance and spectral analysis

The theory of eddy covariance is well established (e.g., Bal-

docchi, 2008). Average surface fluxes of sensible heat, latent

heat and CO2 may be estimated over a large upwind area

(Kljun et al., 2004; Kormann and Meixner, 2001) using fast

response instruments by
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Figure 1. A number of typical observational situations shown in terms of co-spectra (top row) and ogives (bottom row). Shown are the

turbulent fluxes (red) and low-frequency/noise/dampening components (blue).

QSENS = cpρdw′θ ′v (1a)

QLAT = Lhcdsw′r ′q (1b)

FCO2
= cdsw′r ′c, (1c)

where QSENS is the sensible heat flux, cp is the specific heat

of dry air, ρd is the mass density of dry air, e.g., w = w+w′

is the Reynolds decomposition of vertical wind speed into

its average (w) and turbulent
(
w′
)

components, θv is po-

tential virtual temperature, QLAT is the latent heat flux, Lh

is the latent heat of vaporization, cds is the molar concen-

tration of dry air
[
moldry m−3

]
, FCO2

is the CO2 flux and

rq =molqmol−1
dry and rc =molcmol−1

dry are the dry mixing ra-

tio of humidity and CO2 concentration scalars, respectively.

The terms w′θ ′v, w′r ′q and w′r ′c are the covariance between

turbulent fluctuations of vertical wind and turbulent fluctua-

tions of potential virtual temperature and dry mixing ratio of

humidity and CO2 concentration, respectively. For Eq. (1)

to truly represent the vertical fluxes a number of assump-

tions should be met during field operation. Principal among

these are stationarity of the observation
(
∂ξ
∂t
= 0

)
, horizon-

tal homogeneity
(
∂ξ
∂x1
= 0 &

∂ξ
∂x2
= 0

)
, mass conservation(

w = 0 & ∂
ς j
∂xj = 0

)
, negligible density flux

(
ρ′

ρ
� 1

)
and a vertical constant flux layer (e.g.,

dFCO2

dz
= 0) (Foken and

Wichura, 1996). Here, ρ is the air density, xj represents the

three axes of observed flow, ς = {u,v,w} is the wind vec-

tors, s =
{
θv, rq, rc

}
is the scalars of interest and ξ = (ς,s) is

the latter two combined.

Flux estimates Eq. (1) may be decomposed into frequency-

dependent contributions, called co-spectra Cows (f ), be-

tween vertical wind-velocity w and the scalars of interest s,

for frequencies f . Deviations of observed co-spectra from

theoretical co-spectra (Kaimal et al., 1972; Moore, 1986) can

be linked to a number of issues including influence of the

eddy covariance system on the flow, oscillations of the tower

(or ship), topographical forcing on the flow, etc., and is of-

ten used to filter out observations characterized by excessive

non-turbulent influence (Novick et al., 2014).

Subsequently we may perform an ogive analysis (Des-

jardins et al., 1989; Foken et al., 2006; Lee et al., 2004).

The analysis requires the same basic assumptions and in-

volves the cumulative summation of co-spectral energy, start-

ing from the highest frequencies,

Ogws (f0)=

f0∫
∞

Cows (f )df. (2)

The principal use of ogives is to estimate the optimal flux

averaging time as the point of convergence of cumulative co-

spectral energy to an asymptote (Berger et al., 2001; Foken

et al., 2006). However, low-frequency influences may result

in ogives which instead either converge to an extremum or

diverge, depending on the direction of low-frequency fluxes.

Such conditions may arise in the absence of a distinct spec-

tral gap during significant overlap of high-frequency (turbu-

lent) and low-frequency flux contributions. Depending on the

severity of the deviation from asymptotic behaviour, an op-

timal averaging time can be impossible to determine. Such

cases are conventionally considered to be in-stationary and

no flux estimation is possible.

2.2 Why eddy covariance often fails to capture local

fluxes

Figure 1 illustrates a number of observational situations

showing examples of how low-frequency influence could af-

fect our ability to capture local fluxes. In the figure, situations

are shown using both co-spectral and ogive plots.

In the ideal case (Fig. 1a), turbulent and low-frequency

flux contributions are separated by a spectral gap, allowing
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investigators to isolate the former simply by choosing an ap-

propriate flux averaging time T1 and using fast response in-

struments recording at frequency T2. Accordingly, the cor-

responding ogive distribution is seen to converge to a stable

flux estimate within T1 (Fig. 1b). Both turbulent fluxes and

the low-frequency contribution, shown in Fig. 1b as a blue re-

gion of ogive divergence relative to asymptotic convergence,

may be positive or negative, though the former has been il-

lustrated as positive here.

Given the unclear existence of a spectral gap (Lee et al.,

2004), however, another more general situation is the case

(Fig. 1c) of overlapping contributions from low-frequency

motions, turbulence and site and instrument-specific non-

white noise/dampening. One way to strike a balance between

adequate inclusion of the turbulent contribution and exclu-

sion of excessive low-frequency influence is by adjusting T1.

Typically a fixed averaging time is set for an entire experi-

ment (here 30 min is shown) and the flux errors are assumed,

or tested (e.g., Novick et al., 2014), to be negligible. In

the high-frequency end of the spectrum, instrument response

limitations may prevent observation of the smallest scales of

turbulence contribution (Here 10 Hz is shown). Furthermore,

instrument-specific non-white noise and/or dampening may

at times be reduced by application of site-specific co-spectral

corrections, called transfer functions (Aubinet et al., 2000;

De Ligne et al., 2010; Massman and Ibrom, 2008; Kaimal,

1968; Moncrieff et al., 1997; Moore, 1986; Silverman, 1968).

Accordingly the ogive distribution indicates negligible influ-

ence on the flux estimates for a 30 min averaging time and

an instrument response time of 20 Hz (Fig. 1d). Note that the

influence of dampening and non-white noise on the ogive dis-

tribution occurs in the reverse (Fig. 1d) relative to co-spectral

space (Fig. 1c).

Observations reflecting excessive low-frequency influ-

ence, relative to the turbulent contribution, (Fig. 1e) are

typically discarded. This is because strong relative low-

frequency influence results in non-negligible flux contribu-

tion to the overall estimate and further obstructs any efforts

to separate contributions by adjusting the flux averaging time

(Fig. 1f). The use of the term relative in this context refers

to the fact that an identical problem can arise despite modest

low-frequency influence when estimating fluxes in a low-flux

environment. Flux estimation in such environments are often

further complicated by a high ratio of co-spectral variance to

actual turbulent flux contribution. This prohibits unambigu-

ous evaluation of similarity between observed co-spectra and

theoretical co-spectrum distributions, as well as proper esti-

mation of the co-spectral peak (Sorensen and Larsen, 2010).

2.3 Formation of averaging intervals

In order to fulfil the stationarity requirement described in

Sect. 2.1, continuous observations are typically subdivided

into averaging intervals. Averaging interval time T1 has con-

ventionally been assumed constant, based on the require-

ments that T1 should be long enough to reduce random er-

ror (Berger et al., 2001; Lenschow and Stankov, 1986) and

short enough to avoid low-frequency influence associated

with non-stationarity (Foken and Wichura, 1996; Vickers and

Mahrt, 1997). However, as noted, adjustment of T1 will not

generally allow for separation of turbulent and low-frequency

flux contributions. Here, we propose a method that makes no

assumption regarding the presence of a spectral gap. Instead

we require averaging time to be as long as necessary while

ensuring stationarity of the local processes, irrespective of

the temporal evolution of low-frequency contributions.

The following is an iterative scheme for developing av-

eraging intervals based on basic data quality requirements.

Data collected during a field-experiment is considered con-

tinuous with end points Tmin and Tmax, despite the presence

of gaps. A range of possible subsets are preliminarily deter-

mined based on a linear series of interval midpoints Tm (i)

within the range Tmin+
T1

2
to Tmax−

T1

2
in intervals of T1,

and data set lengths Tw (i) within the range 10 to 60 min in

5 min intervals. Here T1 is set according to desired tempo-

ral resolution of flux estimates. For this study we use site-

specific settings of T1 = 5min, T1 = 15min and the conven-

tional T1 = 30min to strike a balance between desired tem-

poral resolution and computational cost of running the ogive

optimization method. The minimum data set length is chosen

to be 10 min for the ogive function to yield statistically rep-

resentative estimates of the scales of turbulence-driven fluxes

and the maximum data set length is chosen to be 60 min

to ensure approximate stationarity of the local turbulence-

driven fluxes.

Using an iterative bisectional algorithm for enhanced com-

putational speed, combinations of Tm (i) and Tw (j) are eval-

uated with regard to a number of basic quality assessment

criteria to obtain the longest data set around Tw (j), which

passes the assessment criteria. These include absence of

instrument diagnostics errors, absence of long data gaps,

favourable mean wind direction and reasonably narrow range

of wind directions (≤ 60◦). Minor spiking (≤ 1%) is cor-

rected based on the median of surrounding data points, and

the data set is discarded otherwise (for spiking > 1%) ac-

cording to Vickers and Mahrt (1997). Other quality assess-

ment includes the requirement that momentum fluxes should

be negative. Evidence to the contrary would imply a discon-

nection between the upwind surface processes and the point

of observation on the tower, a condition typically associated

with low wind conditions. However, momentum fluxes may

also be affected by low-frequency contributions. As direc-

tion, but not strength, of the turbulent momentum flux is

relevant, we may simplify by calculating an ogive distribu-

tion OgwU based on the momentum flux co-spectrum CowU ,

whereU is the horizontal along-wind component, and simply

verify that OgwU < 0 at the mid-range natural frequency of

fm = 0.1Hz. The choice of fm reflects a spectral region least

impacted by instrument-specific non-white noise, dampen-

ing and low-frequency influences. Typically around four es-
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timates of Tw (j) are evaluated by the iterative bisectional

algorithm for each Tm (i) before the optimal Tw (j) is deter-

mined.

Finally, signals with very rapid evolutions such as tran-

sient signals in dynamic systems like eddy covariance ob-

servations may undergo abrupt changes associated with ob-

servational interference e.g., electrical interference or instru-

ment error. These are referred to as dropouts and discontinu-

ities in Vickers and Mahrt (1997). Global transforms, like the

Fourier transform, are usually not able to detect these events.

In contrast, Wavelet transforms such as the Haar transform,

permit a localized evolutionary spectral study of signals, thus

allowing for detection of subtle signal discontinuities leading

to semi-permanent changes (Lee et al., 2004; Mahrt, 1991;

Vickers and Mahrt, 1997). In this study we perform the Haar

analysis for the data set Tw (j), given by the bisectional algo-

rithm, and observations are sorted in three categories (good,

soft flag, hard flag) according to the presence and severity

of signal discontinuities (Vickers and Mahrt, 1997). Conven-

tionally these events are thought to preclude flux estimation

on the basis of stationarity violations. Accordingly we dis-

card such data sets (hard flags) when applying the conven-

tional eddy covariance method. However, as will be shown,

we find in this study that the ogive optimization method al-

lows for convincing flux estimation in many cases of soft

and hard flags. Therefore no flux estimates derived using the

ogive optimization are discarded, unless visually inspected.

2.4 The ogive optimization method

2.4.1 Mass ogive calculation

As noted, adjusting the flux averaging time will not generally

allow for separation of turbulent and low-frequency flux con-

tributions. Subtracting a running mean from observed sig-

nals, as opposed to the conventional linear detrending, al-

lows for enhanced filtering of low-frequency contributions

alone (Sakai et al., 2001; Mcmillen, 1988). Consequently

some combination of data-set length (averaging time) and

running mean window size might allow for filtering out of

low-frequency contributions while retaining turbulent con-

tributions. Note that both adjusting the flux averaging time

and subtracting a running mean from the observed signal

may, in many cases, provide sufficient separation of turbu-

lent fluxes and low-frequency contributions. Here we apply

both to arrive at a more generally applicable approach. We

visualize this concept by calculating co-spectra, and corre-

sponding ogives, for a very large number of data permuta-

tions and derive a map of the resulting ogive density pattern

(Fig. 2a). The figure illustrates the density of 10 000 individ-

ual sensible heat-flux ogives based on the following data per-

turbations: 50 linear increments on the averaging time axis

between 10 min and the maximum time available (60 min in

this example) and 200 linear increments for the running mean

window in the range of 1 min to half the length of the data

set in question (30 min in this example). The standard 30 min

linear detrended ogive is marked in red.

What is clear immediately in this particular example is the

strong consistency between individual ogive representations.

This suggests that the fluxes are very well defined for this

particular period with an actual flux around −55Wm−2 fol-

lowing the convergence to a horizontal asymptote. A clas-

sic ogive shape. The flux estimate for a regular 30 min linear

detrended data set (red) appears representative of the over-

all ogive pattern as well. The presence of haze on the graph

below −60Wm−2 suggests that a small part of the permuta-

tions states are affected by low-frequency motions. The pres-

ence of these large-scale motions is in part supported by the

Haar analysis, which has soft-flagged the temperature sig-

nal (Fig. 2b). Additionally, inspection of a running covari-

ance with a 5 min window (Fig. 2c) indicates the onset of

increased flux variability in the range 20–60 min.

2.4.2 The model and the optimization method

Unfortunately not all ogive density maps indicate as well de-

fined fluxes as shown in Fig. 2. In such cases, answering the

overall question of most likely flux requires the fitting, or op-

timization, of an ogive model to the ogive density map. With

the introduction of an optimization aspect the advantage of

performing the analysis for ogives, as opposed to co-spectra,

becomes clear. In the limit of low absolute covariance (i.e.,

small fluxes), co-spectra typically become increasingly char-

acterized by both positive and negative frequency-wise flux

contributions. The co-spectral model, however, can only ac-

count for fluxes in one direction. Observed and modelled

ogives, in contrast, are able to describe and account for this

bidirectionality.

The basic premise in our model solution is that a region

exists in the mid-to-high frequency range of the ogive rep-

resentation, which is least impacted by instrument-specific

non-white noise, dampening and low-frequency influences.

This was illustrated in Fig. 1b, d, f. While such a region is

clearly evident in Fig. 2a for f> 5× 10−2 the example also

illustrates the real advantage of performing a large number of

data perturbations and deriving a density map of possible so-

lutions: the most likely ogive distribution of the observation

in question stands out as a very well defined pattern, which

for this particular observation allows us to extend our under-

standing of the ongoing fluxes all the way to the lower obser-

vational bound (f = 2.5× 10−4, or 60 min). While the co-

spectral peak method (Sorensen and Larsen, 2010) bases its

flux estimation on one point within this representation (i.e.,

the peak) we base our flux estimate on the entire range to

enhance the certainty.

www.atmos-chem-phys.net/15/2081/2015/ Atmos. Chem. Phys., 15, 2081–2103, 2015
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Figure 2. (a) Density pattern of 10 000 individual ogive flux distributions following data perturbation of flux averaging time and running

mean detrending for a 60 min observation from Abisko on the 2nd of July 2012 at 7:45 p.m. LT. The standard 30 min linear detrending is

shown in red and atmospheric stability, mean wind speed and wind origin (clockwise) are given in the bottom right. Also shown are (b) a

smoothed raw atmospheric temperature signal (red line) and (c) a running covariance (5 min window, linear detrending) between w′ and θv
′.

To describe the most likely flux resulting from a given

ogive density pattern, we apply the generalized co-spectral

distribution model (Lee et al., 2004)

fCo(f )= A0

(
f
fx

)
[

1+m
(
f
fx

)2µ
] 1

2µ

(
m+1
m

) , (3)

where a number of parameters are tuned to change the ap-

pearance of the co-spectral distribution: A0 is a normaliza-

tion parameter, µ is a broadness parameter controlling the

shape of the spectrum, f is the natural frequency, fx is a

horizontal offset of the distribution, and m= 3/4 is a con-

stant describing co-spectra characterized by a 4/3 power law

in the inertial subrange. Subsequently an ogive distribution

is calculated using Eq. (2). We set A0 = 1 and instead scale

Atmos. Chem. Phys., 15, 2081–2103, 2015 www.atmos-chem-phys.net/15/2081/2015/
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Figure 3. Theoretical cospectra (red line) and equivalent ogives (black line) are shown for two cases: (a) instrument limitations (10 Hz as

opposed to 20 Hz observation frequency) and insufficient flux averaging time (20 min as opposed to 30 min), both marked in blue/red dashed

lines, may result in underestimation of the outer parts of the flux spectrum. The missing cospectral area and ogive range (FLF1 and FHF1) is

marked in orange and in blue respectively. The corrected ogive is shown as a dashed black line. (b) Equivalently, if assuming the model is valid

beyond 30 min and an observational frequency of 20 Hz respectively, the flux is likely somewhat underestimated using conventional methods,

giving rise to additional ogive correction terms (FLF2 and FHF2). Although illustrated similarly, generally FLF1 6= FLF2 and FHF1 6= FHF2.

the low-frequency end-point f1 (equivalent to the averaging

time T1) of the ogive distribution to a variable parameter F0

to allow for more direct flux control. This is particularly con-

venient when formulating reasonable limits on fluxes for the

optimization algorithm described below.

One important aspect considered is the concept of local

fluxes that cannot be observed directly. The problem may

arise in the low-frequency range as over/under estimation

of covariance due to inclusion of low-frequency contribu-

tions or the use of inadequate averaging times. Similarly,

in the high-frequency range the problem may arise in the

form of under-estimation of covariance due to inadequate

sensor frequency, attenuation and distortion by both the spa-

tial averaging of the sensors, and the sampling and filtering

of the sensor electronics. This is illustrated in Fig. 3a. Ac-

tual flux, represented by an ideal theoretical co-spectrum (red

line) is shown alongside a corresponding ogive (black line).

In the case of insufficient observation time (here 20 min)

and observational frequency (here fnyquist = 5hz) the miss-

ing range of observed fluxes can be illustrated as an orange

area below the co-spectrum and as equivalent blue ranges in

the negative and positive ogive axes, respectively. The cor-

rected flux is shown as a dashed black line and is derived

as Fcor = F +FLF1−FHF1, where F is the uncorrected flux.

Note that FHF1 is subtracted as it is of opposite sign relative

to F . Secondly, because theoretical models are empirical rep-

resentations, verified only within a certain frequency range,

it becomes tempting to investigate how much, if any, of the

fluxes are being left out by such a restriction in observational

range, assuming that the model is valid outside this frequency

range. The consequent extrapolation of model results beyond

actual observed frequencies is illustrated in Fig. 3b and the

corrected flux (dashed black line) may similarly be derived

as Fcor = F +FLF2−FHF2.

Combined the corrections amount to FO2
=

F + (FLF1+FLF2)− (FHF1+FHF2) where O2 is adopted

as shorthand mathematical notation for ogive optimization.

In practice the corrections are accounted for by combining

F and all low-frequency contributions into one parameter:

F0 = F +FLF1+FLF2, which controls the shape of the

ogive model, and by adding a high-frequency vertical offset

FHF =−(FHF1+FHF2). In total we are thus left with four

tunable parameters: F0, FHF, µ and fx , for which the final

model-estimated flux is

FO2

= F0+FHF. (4)

Our goal is to tune the parameters of the ogive model to

achieve an optimal fit to the density map. That is, to find

the parameter combination, for which the model ogive fol-

lows optimally the strongest densities in the density map

(Fig. 2a). A number of local and global optimization tech-

niques were investigated in terms of accuracy and speed. The

final steps taken in optimizing the model with respect to the

ogive density map include optimization of a random param-

eter guess within reasonable parameter bounds using a fast

local optimization algorithm and a slower, but robust, Dar-

winian evolution-style global optimization algorithm called

Differential Evolution (Storn and Price, 1997). The optimiza-

tion is performed for a number of frequency intervals and

the final solution is chosen by subjective visual inspection.

An in-depth explanation of these steps can be found in Ap-

pendix A.

One intriguing consequence of including a modelling and

optimization aspect is that the inevitable occurrence of over-

lapping data intervals does not relate linearly to interdepen-

dency of successive flux estimates, suggesting that the ogive

optimization approach allows for very high temporal resolu-

tion of flux evolution at less expense in terms of flux inde-

pendence.
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Figure 4. Illustration of site locations and conditions.

2.5 Field sites

To evaluate the ogive optimization method, five sites reflect-

ing different environments in terms of ecosystem, topogra-

phy and flux strengths (QSENS, QLAT and FCO2
) are investi-

gated (Fig. 4).

2.5.1 High-flux environment

The Abisko field-site (Fig. 4a) is located in Stordalen

(68◦21.248′ N, 19◦3.02′ E), a mixed mire 10 km east of

Abisko in subarctic Sweden, the site of a number of past and

ongoing studies on mire carbon fluxes (e.g., Christensen et

al., 2012; Jackowicz-Korczynski et al., 2010). The measur-

ing mast is situated on the coastal edge of a minerotrophic fen

dominated by sedges and a lake environment. Wind patterns

consistently alternate between the upwind fen-environment

signal towards the west and the upwind lake-environment

signal towards the east. Hence we treat the observations sep-

arately as fen and lake sites, respectively. Continuous eddy

covariance observations were conducted from 2 July to 1 Au-

gust 2012. Site instruments include an R3 sonic anemometer

(Gill Instruments®, Lymington UK) mounted on top of the

mast at 2.9 m height and an LI-7500 open path gas analyzer

(LI-COR®, Lincoln, NE, USA) on a boom extending towards

the southwest at 2.5 m height, with a 0.43 m horizontal off-

set along the boom and a slight tilt of the instrument rela-

tive to the vertical plane to allow water dripping. Data were

logged at 10 Hz. Observations reflecting wind origins along

the boom axis were filtered out to limit flow distortion. Flux

estimates were evaluated in intervals of T ABI
1 = 30min.

2.5.2 Intermediate-flux environment

The RIMI (Risø Integrated Environmental Project) site

(Fig. 4b) is an active FLUXNET site (e.g., Groenendijk et al.,

2011; Stoy et al., 2013; Yi et al., 2010) located in a large, flat,

homogeneous grassland area (55◦41.658′ N, 12◦07.027′ E)

east of the research campus Risø in Eastern Denmark. The

data set presented here consists of continuous eddy covari-

ance observations from the period 16 March to 3 May 2009.

Site conditions suggest intermediate fluxes with limited im-

pact from topographical flow distortion. Site instruments in-

clude an R2 sonic anemometer (Gill Instruments®, Lyming-

ton UK) and an LI-7500 open path gas analyzer (LI-COR®,

Lincoln, NE, USA) mounted on the same boom at heights

of 2.2 and 2.1 m respectively extending from the side of

a 10 m mast, with a horizontal offset along the boom of

0.40 m. Raw data were logged at 20 Hz. Observations reflect-

ing wind origins along the boom axis were filtered out to

Atmos. Chem. Phys., 15, 2081–2103, 2015 www.atmos-chem-phys.net/15/2081/2015/



J. Sievers et al.: Ogive optimization 2089

limit flow distortion. Flux estimates were evaluated in inter-

vals of T RIMI
1 = 30 min.

2.5.3 Low-flux environment

Young Sound (Fig. 4c) is the entrance of a 7 km wide fjord

in NE Greenland characterized by thick fast sea ice within

the fjord and an ice-free polynya at the mouth of the fjord

(Rysgaard et al., 2003). Continuous eddy covariance obser-

vations were conducted at three sites within the fjord system

in the period 20 March to 27 April 2012. Two separate field-

stations, one static and one mobile, were used at three differ-

ent locations (ICEI, POLYI and DNB). ICEI (74◦18.576′ N,

20◦18.275′W) was located 2 km from the coastline from 20

to 27 March and DNB (74◦18.566′ N, 20◦13.998′W) was lo-

cated approximately 200 m from the coastline from 30 March

to 27 April. POLYI (74◦13.883′ N, 20◦07.758′W) was lo-

cated at the mouth of the sound close to the ice-free polynya

region from 24 to 27 March. For the mobile tower (POLYI

and DNB) a METEK USA-1 sonic anemometer (METEK®,

Elmshorn, Germany) was mounted at a height of 3.1 m and

an LI-7500A open path gas analyzer (LI-COR®, Lincoln,

NE, USA) was mounted at an angle of 70◦ relative to the

horizontal plane at a height of 2.7 m relative to the snow sur-

face. Raw data were logged at 20 Hz. The sonic anemome-

ter and gas analyzer were displaced horizontally by 0.4 m

in orthogonal alignment to the prevailing wind direction,

so as to limit the instrument flow distortion and temporal

offset between simultaneous signals. In addition to filter-

ing for tower based flow distortion, observations from the

shore-adjacent DNB site reflecting wind-directions associ-

ated with the shoreline were likewise filtered out due to an-

thropogenic interference. For the static tower a Gill Wind-

master pro sonic anemometer (Gill Instruments®, Lymington

UK) was mounted at a height of 3.7 m relative to the snow

surface and an enclosed LI-7200 gas analyzer (LI-COR®,

Lincoln, NE, USA) was mounted with a 65 cm inlet tube

terminating directly under the sonic anemometer. Raw data

were logged at 10 Hz. Sea-ice and snow-cover thickness was

approximately 110 and 75 cm for the ICEI and DNB sites,

respectively, and approximately 25 and 20 cm for the POLYI

site. Average air temperature increased from −35 to −15◦C

during the period. As such, all sites were expected to be char-

acterized by significantly smaller turbulent fluxes relative to

the Abisko and the RIMI sites while simultaneously being

subjected to varying degrees of low-frequency motions due

to their locations in a fjord surrounded by mountains. Flux

estimates were evaluated at the three sites for the following

intervals: T POLYI
1 = T ICEI

1 = 5min and T DNB
1 = 15min. The

higher resolutions of flux estimates, relative to the Abisko

and RIMI sites, were chosen for the purpose of another study

concerning CO2 fluxes on sea ice.

2.6 Instrument corrections and post-processing

During post-processing, a number of instrument-specific cor-

rections are needed to adjust for instrument-bias. For the

sonic anemometers (Gill R2, Gill R3, Gill Windmaster Pro

and METEK USA-1) these include the following: an em-

pirical angle of attack correction (Nakai and Shimoyama,

2012), and humidity and crosswind corrections (Liu et al.,

2001; Schotanus et al., 1983). We convert all observations to

mixing ratios (Burba et al., 2012) using the Webb–Pearman–

Leuning correction when necessary (Sahlee et al., 2008;

Webb et al., 1980) as recommended by Ibrom et al. (2007).

The need for instrument heating corrections (Burba et al.,

2008) associated with operation of the open path LI-7500

in a cold environment (Daneborg, POLYI and ICEI) is al-

leviated by using the newer LI-7500A with a “cold” setting

correcting observations down to −25◦ (Burba et al., 2011).

Sites featuring the LI-7500 (Abisko and RIMI) never reached

sufficiently cold temperatures to warrant instrument heating

corrections during this experiment. Coordinate rotation, lin-

ear de-trending and iterative de-spiking of raw data is per-

formed according to Vickers and Mahrt (1997). Temporal

offset between sensor signals is typically corrected based on

a maximum cross-covariance analysis (Berger et al., 2001;

Fan et al., 1990). In the limit of low absolute covariance,

however, actual temporal offset may be obscured by sec-

ondary cross-covariance optima. Here, we locate the optimal

cross-correlation automatically based on the incident hori-

zontal wind flow and the specific geometry of each covari-

ance system.

3 Results and discussion

3.1 Examples of ogive optimization performance

In the following, we describe several typical cases observed

and the associated performance of the ogive optimization

method.

1. Near-absence of low-frequency influence is observed

leading to a strong similarity between the ogive den-

sity pattern, the 30 min linear detrended ogive and the

modelled ogive. This is illustrated in Fig. 5a for a

case of sensible heat flux at the Abisko site. Disre-

garding the high-frequency component associated with

extrapolation of model results, seen here to contribute

FHF ≈−5Wm−2 to the overall modelled sensible heat

flux (Eq. 4), the standard 30 min linear detrending ap-

proach will suffice to provide the turbulent flux esti-

mate. The observational period in question was char-

acterized by neutral atmospheric stability, high wind

speed U = 8.25ms−1 and winds originating from the

fen area (Fig. 5a), along with fairly constant tempera-

ture 8.2± 0.4◦ (Fig. 5b) and a slight gradual increase in

uptake (Fig. 5c).
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Figure 5. 60 min observation of sensible heat flux recorded at Abisko on 2 July 2012 at 9:15 p.m. LT. Shown are (a) the ogive density

pattern (gray shading), modelled ogive (blue line), the standard 30 min linear detrended ogive (red line) and the equivalent co-spectra of the

modelled ogive and standard 30 min observation (Inner figure, top right). Atmospheric stability, mean wind speed and clockwise wind-origin

are given in the bottom right box; (b) smoothed raw atmospheric temperature signal (red line); (c) running covariance (5 min window, linear

detrend) between w′ and θv
′.

2. Cases where non-negligible low-frequency influence on

the flux estimate is observed for CO2 flux (Fig. 6). The

low-frequency contribution is seen to be positive just

like the turbulent flux (Fig. 6a). The ogive optimiza-

tion method is seen to separate the turbulent and the

low-frequency contributions completely, yielding only

the locally meaningful turbulent flux. The observational

period in question was characterized by a slightly un-

stable atmospheric stability zL−1
=−0.19, moderate

wind speed U = 3.65ms−1 and wind originating from

the lake area (Fig. 6a), along with a slightly increasing

atmospheric temperature and a varying CO2 concentra-

tion (Fig. 6b). A consequent marked increase in flux co-

variance around 35–45 min is evident in Fig. 6c.

3. An example of ambivalence caused by bimodality in the

ogive density pattern is illustrated in Fig. 7, for a case

of sensible heat flux at the Abisko site. Such cases in-

dicate that fluxes are changing within the sampling pe-

riod. The ogive optimization method is seen to capture
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Figure 6. 60 min observation of CO2 flux recorded at Abisko on the 10th of July 2012 at 10 a.m. LT. The illustration is similar to Fig. 5,

except for the addition of a smoothed raw signals of atmospheric CO2 (black line) seen in (B).

the turbulent flux contribution with the strongest data

density. Had both modes been of equal ogive density,

the choice of mode during subjective evaluation would

be based on the quality of the model ogive optimiza-

tion, and the length of the time-series responsible for

the modes. If both ogive models were equally good, the

choice would fall on the mode produced by the ogives

which consist of shorter time-series as they represent a

more instantaneous flux estimate relative to the mode

produced by longer time-series. The sampling period in

question was characterized by a slightly stable atmo-

sphere zL−1
= 0.12, low wind speed U = 2ms−1 and

wind originating from the fen area (Fig. 7a), along with

a steady decline in atmospheric temperature (Fig. 7b)

and a strong variation in flux covariance (Fig. 7c).

4. The inadequacy of applying a fixed averaging interval

for flux estimation becomes apparent in Fig. 8, for a

case of sensible heat flux at the Daneborg site. Here,

the ogive density pattern is seen to reflect a gradual

evolution in the ogive flux pattern with increasing av-

eraging time. The standard 30 min averaging time is
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Figure 7. 60 min observation of sensible heat flux recorded at Abisko on 10 July 2012 at 8:50 p.m. LT. The illustration is similar to Fig. 5.

seen to be too long and also to increasingly reflect

low-frequency interference (Fig. 8a). This is consis-

tent with an abrupt increase in atmospheric temperature

(Fig. 8b) and decrease in covariance (Fig. 8c) around

30–40 min. The ogive optimization method identifies

the appropriate flux estimate (Fig. 8a), whereas the stan-

dard 30 min linear detrending method fails on account

of in-stationarity. In addition, the case is a perfect ex-

ample of how co-spectral evaluation of frequency-wise

contributions can be misleading (Fig. 8a, inner plot).

The observational period in question was characterized

by a stable atmosphere zL−1
= 0.29, low wind speed

U = 2.6ms−1 and wind originating from the fen area

(Fig. 8a).

5. The inadequacy of applying a fixed averaging interval

for flux estimation becomes apparent in Fig. 8, for a

case of sensible heat flux at the Daneborg site. Here,

the ogive density pattern is seen to reflect a gradual

evolution in the ogive flux pattern with increasing av-

eraging time. The standard 30 min averaging time is

seen to be too long and also to increasingly reflect

low-frequency interference (Fig. 8a). This is consis-

tent with an abrupt increase in atmospheric temperature

(Fig. 8b) and decrease in covariance (Fig. 8c) around

30–40 min. The ogive optimization method identifies

the appropriate flux estimate (Fig. 8a), whereas the stan-

dard 30 min linear detrending method fails on account

of in-stationarity. In addition, the case is a perfect ex-
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Figure 8. 40 min observation of sensible heat flux recorded at Daneborg on 13 April 2012 at 3:30 p.m. LT. The illustration is similar to Fig. 5.

ample of how co-spectral evaluation of frequency-wise

contributions can be misleading (Fig. 8a, inner plot).

The observational period in question was characterized

by a stable atmosphere zL−1
= 0.29, low wind speed

U = 2.6ms−1 and wind originating from the fen area

(Fig. 8a).

6. Signals may be degraded for a number of reasons such

as instrument failure, electronic interference etc. Such

a case is illustrated in Fig. 9, for a case of CO2 flux

at the Abisko site. Here a brief drop in atmospheric

CO2 concentration, hard flagged by the Haar analysis

(Fig. 9b), gives rise to an intermittent 3-fold increase in

flux covariance (Fig. 9c), ultimately resulting in the low-

frequency influences illustrated in Fig. 9a. Nonetheless,

the ogive optimization method is seen to identify the

actual prevalent flux during this period. The observa-

tional period in question was characterized by near-

neutral atmospheric stability zL−1
=−0.07, moderate

wind speeds U = 5ms−1 and wind originating from the

lake area (Fig. 9a), along with a near-constant air tem-

perature Tair = 6.9◦ (Fig. 9b).

7. During conditions of strong high-frequency dampen-

ing caused by the use of a closed path instrument,

the ogive optimization method automatically shifts the
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Figure 9. 60 min observation of CO2 flux recorded at Abisko on 10 July 2012 at 3:20 a.m. LT. The illustration is similar to Fig. 5, except for

the addition of a smoothed raw signals of atmospheric CO2 (black line) seen in (b).

high-frequency bound on optimization towards lower

frequencies to avoid influence of the dampened frequen-

cies during optimization. This is illustrated in Fig. 10 for

a case of latent heat flux at the ICEI site. Here the upper

optimization bound is shifted back to 1Hz thus allowing

for an accurate description of the high-frequency fluxes

as well (Fig. 10a, inner plot). The observational pe-

riod in question was characterized by a slightly unstable

atmosphere zL−1
=−0.08 and moderate wind speeds

U = 5ms−1 (Fig. 10a), along with gradual increases in

both atmospheric H2O content and atmospheric temper-

ature (Fig. 10b) and a gradual increase in flux covari-

ance (Fig. 10c).

3.2 Comparison of ogive optimization and the

conventional method

The difference in flux estimates of the standard 30 min lin-

ear detrending approach and the ogive optimization method

is associated with both the inclusion/exclusion of low-

frequency contributions, the inadequacy of the fixed averag-

ing interval and the extrapolation of modelled ogives into un-

observable high/low frequencies. The relative flux difference
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Figure 10. 60 min observation of latent heat flux recorded at ICEI on 27 March 2012 at 1:30 a.m. LT. The illustration is similar to Fig. 5,

except for the addition of a smoothed raw signals of atmospheric H2O (black line) seen in (b).

δ is evaluated within i = 10 intervals of absolute flux esti-

mates
[∣∣F 30 min

∣∣]
i

as the standard deviation of difference in

flux estimate relative to the mean absolute ogive optimization

flux estimate within respective intervals:

δ (i)=
std
([
F 30 min

]
i
−

[
FO2

]
i

)
[∣∣F 30 min

∣∣]
i

× 100%, (5)

where square brackets [ ]i signify flux estimates native to

interval i of the equivalent absolute flux estimates by the

standard eddy covariance method
[∣∣F 30 min

∣∣]
i
. Estimates of

relative flux difference δ are shown logarithmically in Fig. 11

for all three scalar flux types, at all five observation sites and

for all 10 intervals of the respective ogive optimization flux

ranges. Outliers have been excluded from the flux ranges

shown in the bottom of the figure to ensure a minimum of

three flux estimates within the largest absolute flux-estimate

bin and resolution of the resulting δ estimates have been dou-

bled by spline interpolation. The median relative difference

is shown (red line) along with standard deviation (light gray

area) and 25–75 % percentile range (dark gray area).

As hypothesized in Sect. 2.2, the average relative

flux difference is seen to be very high for small ab-

solute flux estimates, peaking at δSENS = 80%, δLAT =
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Figure 11. Relative difference in percent (see Eq. 5) is shown logarithmically as a function of absolute flux estimate for all investigated sites.

Also shown are the median (red line), standard deviation (light gray area) and 25–75 % percentile (dark gray area) of the relative differences.

In the bottom of the figure, histograms of absolute ogive optimization flux estimate ranges are shown for each site. Numbers indicated to the

left of the histograms are the respective maximum values.

23% and δCO2
= 98% for the lowest absolute flux es-

timates. The variation in δ is quite high for low abso-

lute flux estimates, with the 13.6 and 86.4 percentiles

of δ reaching as much as δSENS = 40− 208%, δLAT =

10− 98% and δCO2
= 52− 538%. For larger absolute

flux estimates (|QSENS|> 40Wm−2, |QLAT|> 20Wm−2 and∣∣FCO2

∣∣> 100mmol m−2d−1) the relative difference is seen

for all three flux types to drop and level off to a near-stable

range of δ = 5–20 %. These absolute flux thresholds thus

mark clear shifts between non-negligible low-frequency con-

tributions on one side and plausibly negligible low-frequency

contributions on the other.

Depending on perspective and the character of observed

fluxes at a particular site the described thresholds may ei-

ther serve as an indicator of a lower limit to local-scale flux

resolvability by the standard 30 min linear detrending ap-

proach, or as an argument for the application of enhanced

flux estimation techniques such as the presented method. For

the presented observations the consequences are illustrated

by the histograms of the different sites (Fig. 11). Although

the location of the flux threshold is a bit unclear for latent

heat flux, estimation of locally meaningful fluxes at the three

sea-ice sites Daneborg, POLYI and ICEI is essentially im-

possible without accounting for low-frequency contributions.

The same applies for sensible heat flux at the Abisko lake

site, latent heat flux at the grassland site RIMI and CO2 flux

at both the Abisko lake site and the RIMI site. Note that only

the Abisko Fen environment showed a dynamic range in ex-

cess of
∣∣FCO2

∣∣= 400mmolm−2d−1 and that most flux esti-

mates from RIMI are from the morning or late evening/night,

which explains the range of relatively small fluxes.
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Figure 12. As Fig. 11, but here the relative difference is shown as a function of atmospheric stability zL−1 for all investigated sites.

The relative flux difference was furthermore investigated

in terms of atmospheric stability (Fig. 12). Though varia-

tion in δ is significant for all flux types, average δ appears

to be lowest between slightly unstable zL−1
≈−0.2 and

neutral conditions (δ ≈ 10–20 %). In contrast δ is signifi-

cantly larger for
∣∣zL−1

∣∣> 0.2 (20< δ < 1000%). This is

consistent with the current consensus on turbulence spectra

(Kaimal et al., 1972; Olesen et al., 1984): for strongly unsta-

ble conditions
(
zL−1 <−0.2

)
all spectra have increased low

frequency components (Hojstrup, 1982), which would have

been filtered out using the ogive optimization method. For

strongly stable conditions
(
zL−1> 0.2

)
the turbulence spec-

tral intensity is often small relative to low frequency variation

associated with meso-scale variability (Larsen et al., 1980;

Vickers and Mahrt, 2003). Exactly for neutral and slightly

unstable conditions boundary layer turbulence structure is at

its simplest being dominated by shear produced turbulence

that is best described by the standard spectral expressions,

being the background for the standard eddy-correlation flux

determination methods (Kaimal et al., 1972; Olesen et al.,

1984).

For many flux estimates the vertical wind speed signal or

the scalar signal are non-stationary to the point of prohibit-

ing a flux estimation using traditional methodology. Hence

the ogive optimization method may also provide a greater

number of flux estimates. This is shown in Table 1 to gener-

ally be true for the Abisko and Daneborg sites, both of which

characterized by degraded signal quality at times. Sites RIMI

and POLYI are inconclusive in this respect and the conven-

tional method appears superior in the case of ICEI. The lat-

ter may be related to the very low fluxes observed for this

site (Fig. 11) suggesting the presence of a detection limit

for the ogive optimization method when using the particu-

lar instrument setup at ICEI (LI-7200 enclosed gas analyzer)

within the respective ranges |QSENS|< 25Wm−2, |QLAT|<

3Wm−2 and
∣∣FCO2

∣∣< 10mmolm−2d−1. No similar charac-

teristics indicate the presence of a detection limit of the ogive

optimization method at any of the other sites (open path gas
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Table 1. Number of flux estimates from the conventional method

(N30 min), the ogive optimization method (NO2) and the number of

combined pairs of estimates (NBoth) used to determine the relative

flux-estimate differences illustrated in Fig. 10.

Site Flux N30 min NO2 NBoth

Abisko

(fen)

QSENS

QLAT

FCO2

391

344

310

418

422

385

373

342

297

Abisko

(Lake)

QSENS

QLAT

FCO2

270

199

146

247

260

195

233

197

128

RIMI QSENS

QLAT

FCO2

325

270

264

369

232

156

294

194

132

Daneborg QSENS

QLAT

FCO2

328

291

324

388

402

411

289

265

310

POLYI QSENS

QLAT

FCO2

313

301

321

306

297

261

282

263

246

ICEI QSENS

QLAT

FCO2

459

464

469

335

257

238

316

254

230

analyzers), suggesting superiority of open path instruments

in very low flux environments when using the ogive opti-

mization method.

Low-frequency shifts in flux direction were found to be

common in this study. To our knowledge such occurrences

are not described by any existing theoretical framework, in-

dicating a puzzling caveat to current theory. The occurrences

challenge the notion that fluxes should be of same sign re-

gardless of incident eddy scales. One explanation might be

that vertical low-frequency contributions represent only one

part of a net low-frequency contribution and hence is bal-

anced by a horizontal component. Indeed the horizontal low-

frequency component has been shown to be significant dur-

ing certain conditions (Yi et al., 2008; Zeri et al., 2010), de-

spite typically being assumed negligible. The finding indi-

cates that further investigation of the interplay between low-

frequency contributions, and their influence on turbulent flux

estimates, is necessary.

4 Conclusions

The presented ogive optimization method has been shown to

successfully separate local from non-local flux contributions.

In addition, it enhances flux estimation by both investiga-

tion of a large range of averaging times and running mean

detrending, and extrapolation of optimized ogive model re-

sults. The method makes no assumptions concerning ap-

propriate averaging time or the presence of a spectral gap,

does not require the application of transfer functions and

allows for very high temporal resolution of flux evolution.

For high flux rates (|QSENS|> 40Wm−2, |QLAT|> 20Wm−2

and
∣∣FCO2

∣∣> 100mmolm−2d−1) we found that the average

relative difference between fluxes estimated by ogive op-

timization and the conventional method was low (5–20 %)

suggesting negligible low-frequency influence and that both

methods capture the turbulent fluxes equally well. For flux

rates below these thresholds, however, the average relative

difference between flux estimates was found to be very high

(23–98 %) suggesting non-negligible low-frequency influ-

ence and that the conventional method fails in separating

low-frequency influences from the turbulent fluxes. The av-

erage relative flux difference was found to be lowest (10-

20 %) for slightly unstable and neutral atmospheric stabil-

ities zL−1
=−0.2 to zL−1

= 0. In contrast δ was signif-

icantly larger (20–1000 %) for
∣∣zL−1

∣∣> 0.2. This is con-

sistent with current consensus on turbulence spectra. Fur-

thermore, the ogive optimization model has been shown to

allow for flux estimation despite signal disruption. Fewer

flux estimates could be derived relative to the conventional

method for an LI-7200 enclosed gas analyzer in very low

flux conditions, suggesting the possible presence of a detec-

tion limit in the |QSENS|< 25Wm−2, |QLAT|< 3Wm−2 and∣∣FCO2

∣∣< 10mmolm−2d−1 ranges with this particular instru-

ment setup, as well as a superiority of open path instruments

in low-flux environments.

The study suggests favourable application of the ogive op-

timization method in most environments, particularly in en-

vironments characterized by small fluxes such as over sea

ice. Overall, the notion of a dynamic and generally non-

negligible overlap of low-frequency and turbulent flux con-

tributions is confirmed.

Finally, low-frequency shifts in flux direction were found

to be common in this study. To our knowledge such occur-

rences are not described by any existing theoretical frame-

work. Based on studies indicating non-negligible horizon-

tal low-frequency contributions during certain conditions (Yi

et al., 2008; Zeri et al., 2010) we hypothesize a more in-

tricate balancing interplay between vertical and horizontal

low-frequency flux contributions which, if confirmed, sug-

gests the need for more sophisticated eddy covariance sys-

tem arrays if low-frequency contributions are to be accu-

rately included (i.e., for site-specific studies). If exclusion

of low-frequency contributions is desired (i.e., for universal-

process-oriented studies), the presented method should be

unaffected by these questions.
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5 Appendix A: ogive optimization steps

As described in Sect. 2.4.2 our goal is to tune the four final

model parameters F0, FHF, µ and fx to achieve the optimal

fit between a modelled ogive and the ogive density map (e.g.,

Fig. 2). The process is called optimization and involves the

following steps:

1. A random guess of parameters is made within a set

of reasonable bounds. The speed and accuracy of any

optimization method involving pre-set bounds depend

greatly on the reasonable choice of these bounds. Here

we set 0.05< µ< 1 and−2< log(fx) < 1. The bounds

for F0 and FHF are a bit more complicated. If > 80 %

of the summed density map is located on, say, the posi-

tive side (suggesting F0> 0), bounds on F0 and FHF are

set as 0< F0 < |2R+| and −|R+|< FHF < 0, where

R+ is the 95th percentile range of the positive side of

the density map. Reverse bounds are applied if > 80 %

of the summed density map is located on the negative

side (−|2R−| < F0 < 0 and 0< FHF < |R−|), and op-

timization is performed twice, using the two different

sets of bounds, if neither side contains > 80 % of the

summed density map.

2. Think of optimizing a model ogive to an ogive density

map as choosing a path between two points in the Pyre-

nees for which you travel at the highest possible average

altitude, all the while being constrained to a certain type

of path (the ogive form and the associated parameters).

In more technical terms optimizing the four parameters

of the model ogive may be thought of as locating the

point in a parameter-wise four-dimensional probability

space, for which the net ogive density reached along the

path is the highest. In this context we seek a global, as

opposed to local, solution within the probability space

formed by the four parameters. Based on the initial ran-

dom guess, a local solution is determined using the

MATLAB function fminsearchbnd (available through

the Mathworks® file exchange) which is a Nelder–Mead

polytope direct search optimization algorithm. The al-

gorithm is fast for problems of low dimensionality such

as ours, but not certain to converge to a global solution.

The goal is to perform a rough, but fast, improvement of

the random guess to limit processing time for the next

step, which is far more computationally expensive.

3. Based on the local optimization of parameters produced

by fminsearchbnd, a global solution is determined using

the Differential Evolution (DE) algorithm (Storn and

Price, 1997). Differential evolution is a simple and re-

liable evolutionary population-based search technique,

which has been successfully applied on a wide range

of problems in a variety of scientific fields (Mallipeddi

et al., 2011). Inspired by Darwinian evolutionary the-

ory it optimizes a problem by iteratively improving a

population of NP candidate solutions (agents) based on

random candidate mutation (motion) and survivability

within the probability space of a multivariate problem.

Mutations are governed by predefined mathematical re-

lations, called strategies, which depend on crossover

probability CR= [0,1] and differential weight F ∈

[0,2], and survivability relates to the change in proba-

bility (i.e., the sum of ogive density below a given ogive

model solution) between two generations. The perfor-

mance of the optimization algorithm varies with each

problem and depends greatly on the choice of strategy

and algorithm parameters. For the purpose of optimiz-

ing the algorithm performance a number of observa-

tional cases were investigated using various strategies

and a large number of parameter variations resulting in

the application of the strategy called DE/best/1/exp and

parameters NP= 40, CR= 1 and F = 0.8 for a maxi-

mum of 100 iterations. If enough agents (NP) are ini-

tiated and allowed to evolve throughout the probability

space sufficiently long (iterations) the DE algorithm is

certain to locate a global solution (optimal ogive param-

eters).

4. Often optimizing a smaller subset of the problem is an

advantage, particularly during low-frequency interfer-

ence which persists despite data perturbation in the mass

ogive phase. One such case is shown in Fig. 13. Opti-

mizing in subsets is achieved by subdividing the prob-

lem into 18 frequency interval weights in the range 0

to 1, signifying 0 to 100 % influence of a given part of

the density map on the optimization output (Fig. 13a,

black lines). Corresponding solutions for the 18 fre-

quency interval weights are shown in Fig. 13b (green

lines). All solutions based on frequency intervals with

lower bound before or after the ogive density peak(
f ≈ 7× 10−4

)
are seen to underestimate the actual

undisturbed turbulent flux. Accordingly an appropri-

ate solution (blue line) may be estimated within the

subset solution for which the frequency interval fea-

tures the ogive density peak as its lower bound. Es-

sentially, the optimization problem, as posed to the op-

timization algorithm, lacks an element mirroring our

basic sense of intuition. Different schemes to address

this issue were investigated, though none proved ro-

bust enough at this time to compete with basic subjec-

tive evaluation during visual inspection. Further devel-

opment of this aspect is of continued interest as sub-

jective visual inspection, aside from being a very time

consuming process, may result in personal bias on fi-

nal flux estimates. Note the gradual decrease in op-

timization weighting of high-frequency ogive density

(Fig. 13a), which has been added to limit any influ-

ence of high-frequency instrument-specific non-white

noise and dampening during the optimization. The high-

frequency limit of the fitting interval is furthermore al-
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lowed to move to lower frequencies for closed-path in-

struments to account for excessive dampening of the

high-frequency end of the spectrum often observed with

this type of instrument. The latter is illustrated in the re-

sults and discussion section of this study.

Figure 13. 60 min observation of latent heat flux recorded at Abisko on 12 July 2012 at 8:50 p.m. LT. (a) The 18 frequency interval op-

timization weights (black lines) and the final optimization weight (blue line) are shown alongside (b) the corresponding optimized ogive

solutions (green lines), the final ogive solution (blue line) and the optimization bounds of the final ogive solution (vertical blue lines).

Otherwise, the illustration is similar to Fig. 5.
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Code availability

The executable code of our procedure, ogive optimization,

will be made available and can be acquired by e-mailing the

corresponding author (jasi@envs.au.dk or lls@bios.au.dk).

The program is coded in MATLAB and is optimized for use

with the parallel computing toolbox.
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