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Abstract. This is the second part of a two-part paper con-

sidering a measurement network design based on a stochas-

tic Lagrangian particle dispersion model (LPDM) developed

by Marek Uliasz, in this case for South Africa. A sensitiv-

ity analysis was performed for different specifications of the

network design parameters which were applied to this South

African test case. The LPDM, which can be used to derive

the sensitivity matrix used in an atmospheric inversion, was

run for each candidate station for the months of July (rep-

resentative of the Southern Hemisphere winter) and January

(summer). The network optimisation procedure was carried

out under a standard set of conditions, similar to those ap-

plied to the Australian test case in Part 1, for both months

and for the combined 2 months, using the incremental opti-

misation (IO) routine. The optimal network design setup was

subtly changed, one parameter at a time, and the optimisa-

tion routine was re-run under each set of modified conditions

and compared to the original optimal network design. The as-

sessment of the similarity between network solutions showed

that changing the height of the surface grid cells, including

an uncertainty estimate for the ocean fluxes, or increasing the

night-time observation error uncertainty did not result in any

significant changes in the positioning of the stations relative

to the standard design. However, changing the prior flux error

covariance matrix, or increasing the spatial resolution, did.

Large aggregation errors were calculated for a number of

candidate measurement sites using the resolution of the stan-

dard network design. Spatial resolution of the prior fluxes

should be kept as close to the resolution of the transport

model as the computing system can manage, to mitigate the

exclusion of sites which could potentially be beneficial to the

network. Including a generic correlation structure in the prior

flux error covariance matrix led to pronounced changes in

the network solution. The genetic algorithm (GA) was able

to find a marginally better solution than the IO procedure, in-

creasing uncertainty reduction by 0.3 %, but still included the

most influential stations from the standard network design. In

addition, the computational cost of the GA compared to IO

was much higher. Overall the results suggest that a good im-

provement in knowledge of South African fluxes is available

from a feasible atmospheric network, and that the general

features of this network are invariable under several reason-

able choices in a network design study.

1 Introduction

Mitigating climate change is one of the great challenges of

our time. To further this end, it has become essential to ac-

curately estimate the emission and uptake of CO2 around

the globe. Greenhouse gases affect the absorption, scatter-

ing and emission of radiation within the atmosphere and at

the Earth’s surface (Enting, 2002; Denman et al., 2007). Of

these gases, CO2 contributes the greatest forcing on the cli-

mate (Canadell et al., 2007). Monitoring CO2 sources and

sinks is necessary for validating important components of

climate models and for determining the best course of ac-

tion to mitigate climate change. The method of inverse mod-
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elling can be used to estimate the magnitude of sources and

sinks of CO2 at different temporal and spatial scales (Ent-

ing and Mansbridge, 1989; Rayner et al., 1999; Rödenbeck

et al., 2003; Chevallier et al., 2010). This method relies on

precision measurements of atmospheric CO2 concentrations

to refine the prior estimates of the CO2 fluxes. Using the ma-

chinery of atmospheric inversion, an optimal network of new

sites to add to the existing infrastructure for measurement of

atmospheric CO2 concentrations can be derived from a list

of potential sites.

Previous optimal network studies run at the global scale

have highlighted southern Africa as a region associated

with large uncertainty in its terrestrial CO2 fluxes, requir-

ing further constraint by measurements (Patra and Maksyu-

tov, 2002). Measurements over Africa are much sparser com-

pared to other continents. Only the Cape Point Global At-

mospheric Watch (GAW) station has a long-term CO2 con-

centration record, measuring since 1992. This tower is lo-

cated at Cape Point (34.35◦ S, 18.49◦ E) predominantly to

record baseline measurements of well-mixed, clean air orig-

inating over the Southern Ocean. A study by Whittlestone

et al. (2009) demonstrated that it would be difficult to im-

prove estimates of terrestrial CO2 fluxes for southern Africa

using the Cape Point station alone. In 2012, an atmospheric

observatory was installed near the Gobabeb Training and

Research Centre, on the west coast of Namibia (22.55◦ S,

15.03◦ E), which continuously measures trace gases, includ-

ing CO2 (Morgan et al., 2012). To build on this rudimentary

network, and to improve estimates of CO2 fluxes at least for

South Africa, high-precision instruments for measuring at-

mospheric CO2 concentrations have been purchased, which

are to be installed at sites yet to be determined, across South

Africa. To maximise the impact of these stations on the es-

timation of CO2 fluxes across South Africa, an optimal net-

work design can be used to indicate the best placement of

new stations with the aim of reducing the uncertainty of the

terrestrial CO2 source and sink estimates. A reduction in the

uncertainty of the estimated fluxes is only one of many con-

siderations when determining the location of new measure-

ment sites, but an optimal network design with this goal will

provide a guide which can be included in the assessment of

these new locations.. Part 1 of this paper conducted an opti-

mal network design study for Australia aimed at augmenting

its current observation network, and introduced the method-

ology employed in this study (Ziehn et al., 2014).

An optimal network design requires the theory of atmo-

spheric inversions to generate the posterior error covariance

matrix of the CO2 fluxes which would be estimated from a

given network of stations. From this the reduction in uncer-

tainty can be determined. The second requirement is an op-

timisation routine which will select between a list of poten-

tial sites (Rayner et al., 1996; Patra and Maksyutov, 2002;

Rayner, 2004). Part 1 of this paper sought to reduce the un-

certainty of Australian terrestrial fluxes by 50 % and began

by considering the addition of new stations to the existing

base network (Ziehn et al., 2014). Similarly, the Cape Point

and Gobabeb stations make up a base network of CO2 moni-

toring stations for southern Africa. This optimal network de-

sign will add five new measurement stations to our base net-

work to best reduce the uncertainty in flux estimates across

the region, and under the assumption of continuous, hourly

measurements of CO2 concentrations.

The posterior flux error covariance matrix used to derive

the uncertainty metric does not require any knowledge of the

measured concentrations or of the prior fluxes, only of the

prior error covariance matrix of the fluxes, the error covari-

ance matrix of the observations and the sensitivity matrix,

which are all determined separately. Basing the cost function

of the optimisation procedure on the result of the posterior

error covariance matrix of the fluxes under a given network

ensures the uncertainty in the estimated fluxes under the fi-

nal network solution is reduced. As in Part 1 (Ziehn et al.,

2014), the incremental optimisation (IO) procedure was used

for the standard optimal network design in this study. We

used a regular grid of potential stations for the South African

case study. The reason for doing is that, unlike Australia,

South Africa does not have the relatively dense network of

meteorological stations suitable for atmospheric monitoring.

Therefore, if we were to base the network on the existing

sparse network of stations, we could exclude important sites

which may provide better constraint. Therefore we have cho-

sen the regular grid, and the sites selected in the optimal net-

work can then be further investigated to determine if there

is infrastructure available – such as meteorological stations,

communication towers or other research facilities – which

could be amenable to atmospheric measurements.

As well as providing this first-time optimal network design

focusing on CO2 flux estimation over South Africa, the paper

presents a sensitivity analysis of several parameters needed

in the optimisation routine. For the standard case we used

parametrisations which were most commonly implemented

in the literature. We then considered alternatives and deter-

mined their impact on the network. This analysis is important

because, as shown by Rayner et al. (1996), certain changes to

the optimisation problem – such as changing the quantity to

be optimised, even if very similar in nature to the original –

can result in drastically different placement of stations. This

would ultimately impact on the implemented network design

used in deployment of the new stations. By having alternative

network solutions based on parametrisation changes, we can

assess how important certain stations are, since these should

remain constant from one network solution to the next de-

spite these changes, and it provides insight into which param-

eters are likely to be important for the estimation of fluxes

using the new network of measurement sites.

The inversion procedure requires a sensitivity matrix

which calculates the contribution of the different sources

to the CO2 concentration at a particular measurement site.

We used a stochastic Lagrangian particle dispersion model

(LPDM), driven by the global circulation model Conformal-
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Cubic Atmospheric Model (CCAM) run in stretched-grid re-

gional mode, to determine this matrix. One set of parameters

that we considered for the sensitivity analyses related to the

specified dimensions of the surface grid box in which the par-

ticles provided by the LPDM are counted. This is determined

by the spatial resolution of the problem. The next set of pa-

rameters we considered relates to the two error covariance

matrices which are needed for the calculation of the posterior

flux error covariance matrix. We changed how these matrices

were parametrised and assessed the consequences for the op-

timal network design. Finally we implemented an alternative

optimisation procedure to IO and considered the optimisa-

tion of a different metric of uncertainty in the fluxes. As the

alternative optimisation procedure, we used the genetic al-

gorithm (GA), as described by Rayner (2004), which uses a

very different optimisation philosophy to the IO method.

This paper proceeds by introducing the inversion method-

ology, followed by an explanation of the different sensitivity

tests. The results are then presented for the South African op-

timal network design under the standard conditions, followed

by a comparison of the sensitivity tests. The conclusions pro-

vide insight into the most influential locations identified and

discuss courses of action to address the optimal network de-

sign parameters highlighted in the study.

2 Methods and the South African test case

2.1 Surface flux inversion

The Bayesian synthesis inversion method, first proposed by

Tarantola (1987) and used for the network design in this

paper, is the most common method used for solving at-

mospheric inverse problems in the literature (Rayner et al.,

1996; Bousquet et al., 1999; Kaminski et al., 1999; Rayner

et al., 1999; Gurney et al., 2002; Peylin et al., 2002; Gurney

et al., 2003; Law et al., 2003; Baker et al., 2006; Ciais et al.,

2010; Enting, 2002). The regional inversion method we im-

plemented is explained in detail in Part 1 (Ziehn et al., 2014).

The observed concentration (c) at a measurement station at a

given time can be expressed as the sum of different contribu-

tions from the surface fluxes (cs), from the boundaries (cb)

and from the initial condition (ci). For the purposes of the

network design, the initial concentration is ignored since it

is assumed that this condition is constrained by the observa-

tions. Peylin et al. (2005) found for their European regional

inversion that the initial condition had an effect on the flux

estimates for only a few days. In a smaller domain, this ef-

fect will be even shorter, and therefore it is assumed that the

initial condition will contribute very little to the total flux un-

certainty.

The linear relationship used to model the relationship be-

tween c and the contribution from the sources (cs and cb) is

as follows:

cmod = Tf . (1)

The vector of the modelled concentrations cmod is a re-

sult of the contribution from the sources f , described by the

transport or sensitivity matrix T. The vector f can be com-

posed of surface fluxes and boundary concentrations (Lau-

vaux et al., 2012). The surface fluxes for which our inversion

setup would solve are the total CO2 fluxes within a pixel,

which we take to be the sum of the biospheric and fossil fuel

fluxes. We aim to solve for the total flux since there is not

enough information to disentangle these fluxes. In this type

of inversion setup, the surface fluxes can be separated into

biospheric and fossil fuel fluxes after the inversion run, using

additional information regarding either the fossil fuel or bio-

spheric fluxes (Chevallier et al., 2014). The contribution from

the boundaries was first assessed to determine if its influence

on the observation errors was negligible, in which case the

boundary conditions could be excluded from the network de-

sign process. We developed an algorithm for assessing the

contribution of the boundary concentrations on the observa-

tion error covariance matrix in Sect. 2.7.

As described in Part 1, for the network design approach

we are only interested in the posterior covariance matrix of

the fluxes, since our aim is to obtain a network that reduces

the CO2 flux uncertainties (Ziehn et al., 2014). The posterior

flux error covariance matrix, Cf , can be calculated as follows

(Tarantola, 1987):

Cf =
(

TTC−1
c T+C−1

f0

)−1

(2)

= Cf0
−Cf0

TT
(

TCf0
TT +Cc

)−1

TCf0
, (3)

where Cc is the covariance matrix of the observation er-

rors, and Cf0
is the prior error covariance matrix of the sur-

face fluxes. Cf is obtained without the vector of observed

concentrations c or the vector of prior fluxes f 0, which

means that it is possible to assess the contribution that a hy-

pothetical station can have on the reduction of the flux uncer-

tainty, without the need to generate synthetic data.

2.2 Lagrangian particle dispersion model (LPDM)

To determine which sources and how much of each of these

sources a measurement site sees at a given moment, the sensi-

tivity matrix T containing the influence functions is required.

For a regional inversion this matrix can be directly obtained

by running a Lagrangian particle dispersion model in back-

ward mode. The particles are released from the measurement

locations and travel to the surface and the boundaries (Lau-

vaux et al., 2008; Seibert and Frank, 2004). We used the
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LPDM developed by Uliasz (1994). In this mode the model

simulates the release of a large number of particles from ar-

bitrary emissions sources by tracking the motion of the par-

ticles backward in time (Uliasz, 1993, 1994). By running the

model in this receptor-orientated mode, the influence func-

tions for a given receptor are calculated, as described in Part

1 (Ziehn et al., 2014).

The LPDM is driven by the three-dimensional fields of

mean horizontal winds (u, v, w), potential temperature and

turbulent kinetic energy (TKE). In the case of the South

African network design, these variables are produced by

the CSIRO CCAM, a variable-resolution global circulation

model run in regional mode. We use the regional mode so

that we can resolve the atmospheric transport at a high tem-

poral resolution, which requires that the transport model

be run at a high spatial resolution as well (Sarrat et al.,

2009). CCAM uses a two time-level semi-implicit semi-

Lagrangian method to solve the hydrostatic primitive equa-

tions (McGregor and Dix, 2008; McGregor, 2005; McGre-

gor and Dix, 2001). Total-variation-diminishing vertical ad-

vection is applied to solve for the advective process in the

vertical. CCAM employs a comprehensive set of physical

parametrisations, including the Geophysical Fluid Dynam-

ics Laboratory (GFDL) parametrisation for long-wave and

shortwave radiation (Schwarzkopf and Fels, 1991) and the

liquid and ice-water scheme of Rotstayn (1997) for inter-

active cloud distributions. A canopy scheme is included, as

described by Kowalczyk et al. (1994), having six layers for

soil temperatures, six layers for soil moisture (solving the

Richards equation) and three layers for snow. The cumulus

convection scheme uses mass flux closure and includes both

downdrafts and detrainment (McGregor, 2003).

In the simulations performed here CCAM is applied in

stretched-grid mode by utilising the Schmidt (1997) trans-

formation. A multiple-nudging strategy was followed. First,

a modestly stretched grid providing 60 km resolution over

southern and tropical Africa was applied following En-

gelbrecht et al. (2009), with subsequent downscaling to

a strongly stretched grid providing 15 km resolution over

southern Africa. Away from the high-resolution region over

southern and tropical Africa, CCAM was provided with

synoptic-scale forcing of atmospheric circulation, from the

2.5
◦

(about 250 km) resolution National Centers for Envi-

ronmental Prediction (NCEP) reanalysis data set. This forc-

ing was provided at 6-hourly intervals for the period 1979–

2010 using a scale-selective Gaussian filter (Thatcher and

McGregor, 2009, 2010). CCAM was set up so that it pro-

duced output at an hourly time step and at a 0.15◦ spatial

resolution over South Africa. The domain extended far be-

yond the South African border, from 10 to 40◦ S and from

0◦W to 60◦ E. Meteorological inputs for the LPDM were ex-

tracted for 2 months in 2010: January for summer and July

for winter. For a 4-week period during each of these months,

the LPDM was run for each of the hypothetical measurement

sites.

During processing of the particle count data from the

LPDM, particles that were near the surface were allocated

to a surface grid cell and the total count within each of these

was obtained to determine the surface influence or sensitiv-

ity. These counts depended on the dimensions and position

of these surface grid boxes. The particle counts were used to

calculate the source–receptor (s–r) relationship, or influence

functions, which form the sensitivity matrix T. Here, we fol-

lowed Seibert and Frank (2004) to derive the elements of that

matrix. As described in Part 1 (Ziehn et al., 2014), we mod-

ified the approach of Seibert and Frank (2004) to account

for the particle counts which were produced by the LPDM

as opposed to the mass concentrations which were outputted

by the transport model in their study. The resulting s–r rela-

tionship between the measurement site and source i at time

interval n, which provide the elements of the matrix T, is

∂χ̄

∂q̇in

=
1T g

1P

(
Nin

Ntot

)
29

12
× 106, (4)

where χ̄ is a volume mixing ratio (receptor) expressed in

parts per million (ppm), q̇in is a mass flux density (source),

Nin the number of particles in the receptor surface grid from

source grid i released at time interval n, 1T is the length of

the time interval,1P is the pressure difference in the surface

layer, g is the gravity of Earth and Ntot the total number of

particles released during a given time interval.

For the network design we are interested in weekly fluxes

of carbon separated into day- and night-time contributions,

which means that we have to provide the particle count Nin

as the sum over 1 week (1T =1 week (day/night)). Therefore,

the mass flux density q̇in in Eq. 4 has units of grams of carbon

per square metre per week (gC m−2 week−1) for the day and

similarly for the night.

For the standard network design, the surface layer height

is set to 50 m, which corresponds to approximately 595 Pa

(1P ). If we assume well-mixed conditions, then the s–r re-

lationship should be independent of the thickness of the sur-

face layer, as long as the layer is not too deep, as the parti-

cle count will be adjusted proportional to the volume of the

grid box. Under stable conditions, this may not be the case

(Seibert and Frank, 2004). To test if changing the surface grid

box height affects the optimal network design, we have in-

cluded two cases in the sensitivity analysis where the height

has been adjusted to 60 m and 75 m. The optimisation routine

was run under each of these specifications, holding all other

choices as for the standard network design.

As for most inversion studies, a compromise needs to be

reached between the dimensions imposed on the source re-

gions and the computational resources available (Kaminski

et al., 2001; Lauvaux et al., 2012). To ensure that the com-

putational time of each of the optimisation runs was feasible,

the spatial resolution of the surface flux grid boxes was set

so that the domain was divided into 50 by 25 grid boxes (a

resolution of approximately 1.2◦×1.2◦) for the standard op-

timal network design. As a sensitivity test, the resolution of
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the surface grid boxes was adjusted so that there were 72

by 36 grid boxes (a resolution of 0.8◦× 0.8◦) in one case,

and 100 by 50 grid boxes (a resolution of approximately

0.6◦ × 0.6◦) in a second, much closer to the original resolu-

tion of the transport model. This change in resolution of the

surface grid boxes impacts on the sensitivity matrix, increas-

ing the number of elements in the matrix by a factor of 2 in

the medium-resolution case and by a factor of 4 in the high-

resolution case. It has further consequences for the prior flux

covariance matrix, which needs to accommodate this change

in source dimensions, increasing its element count by a fac-

tor of 4 for the medium-resolution case and a factor of 16

in the high-resolution case, requiring far more computational

resources than the standard case.

2.3 Observation error covariance matrix

Observation errors result in the values of cmod differing from

the observed values in c. Sources of these errors include ran-

dom and systematic measurement errors, which are usually

negligible at an accredited measurement station; transport

model errors; and aggregation errors, which are discussed

in more detail at the end of this section (Ciais et al., 2010).

Baker (2000) estimated the observation error covariance ma-

trix by comparing the monthly observation means at Mauna

Loa to a smoothed line and determining the monthly standard

deviations. These values ranged between 0.34 and 0.16 ppm,

and so in their case a value of 1 ppm was applied for the stan-

dard deviation to each region for monthly averaged concen-

tration values, with the assumption that most places would

have a higher standard deviation than Mauna Loa. It was also

assumed that the measurement sites would be independent

of one another with no temporal correlation from month to

month, so the matrix was assumed to be diagonal. Wu et al.

(2013) fitted the standard deviation terms of the observation

error covariance matrix to available data for a mesoscale in-

version study and estimated values between 2.9 and 3.6 ppm

for hourly concentration measurements.

Since both studies were conducted for regions in the

Southern Hemisphere, where intra-station measurement vari-

ability is usually lower compared to the Northern Hemi-

sphere, we adopted the same observation errors as for the

standard case in Part 1 of 2 ppm for the hourly averaged

concentrations used in this study. This value falls within

the range of values reported in the literature. The dominant

source of observation error represented here is from the trans-

port model. In Part 1 (Ziehn et al., 2014), a sensitivity analy-

sis was conducted by adjusting the error estimate of the ob-

servations based on the location of the station. Since there

are far fewer existing stations in South Africa from which

we can extract data to assess the potential transport model

error, we used the same error for all stations. As part of the

sensitivity analysis we assessed the impact of increasing the

night-time observation error uncertainty to 4 ppm to account

for known errors in modelling night-time atmospheric trans-

port. In atmospheric inversions night-time observations are

sometimes not considered at all, achieved by drastically in-

creasing the night-time observation error uncertainties (Lau-

vaux et al., 2012).

The high-resolution test case discussed above allows the

opportunity to assess the aggregation error as well. This is

the error due to the degradation of the spatial resolution from

the original resolution of the transport model to a lower res-

olution that the inversion can accommodate. When there is

heterogeneity in the surface fluxes and inhomogeneous trans-

port, averaging the surface fluxes to a coarser resolution leads

to errors occurring in the modelled concentrations due to the

measurement not representing the larger pixels over which

the transport is modelled (Kaminski et al., 2001; Ciais et al.,

2010). The aggregation errors need to be added to the ob-

servation errors, as shown by Kaminski et al. (2001) and

Tarantola (2005), and must be adjusted if the resolution of

the problem is changed. To determine the aggregation error

in a feasible manner for each of the potential measurement

sites, the 0.6◦ × 0.6◦ test case was substituted as the high-

resolution case in this calculation, where the grid cells of

this case fit exactly into the grid cells of the standard low-

resolution case. This allowed us to follow the method out-

lined in Kaminski et al. (2001), who determined that the ag-

gregation error Cc,m can be calculated as

Cc,m = TP−Cf0
PT−TT , (5)

where P− = I−P+ and P+ is the projection matrix which,

if multiplied with the prior flux estimates f0 of the high-

resolution case, produces the low-resolution prior flux es-

timates in place of the corresponding high-resolution esti-

mates. The solution of Cc,m was obtained for each measure-

ment site, and as a conservative approach the maximum value

of the diagonal was assigned as the aggregation error for that

measurement site for the standard-resolution case. For the

medium- and high-resolution test cases, since aggregation er-

ror would certainly exist but presumably get smaller as the

resolution approached that of the transport model (Wu et al.,

2011), the aggregation error was reduced according to the in-

crease in number of grid cells. Therefore it was reduced by

half for the medium-resolution test case, and to a quarter for

the high-resolution test case.

2.4 Prior flux error covariance matrix

The elements of the prior flux error covariance matrix need to

be constructed from the best available knowledge of sources

and sinks at the surface and at the boundaries. Lauvaux et al.

(2008) carried out a mesoscale inversion on synthetic data,

where their inversion setup included the contributions from

the boundaries as part of the sources they wished to solve for.

Their approach for obtaining the boundary elements of the

prior flux error covariance matrix was to use modelled values

of CO2 and adjust them for biases based on observed aircraft

and tower data that were available for the 4-day period un-
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der assessment. For the prior error covariance matrix of the

fluxes, the error was set at 2 gC m−2 day−1 for the surface

fluxes and 4 ppm for the boundary contributions, and they

assumed uncorrelated flux errors on the domain (no spatial

correlation). This was further developed by Wu et al. (2013),

who used available data to fit hyperparameters, which were

the variance and correlation lengths of the prior flux and ob-

servation error covariance matrices.

The approach of Chevallier et al. (2010) to obtain the el-

ements of the prior flux error covariance matrix was to set

the standard deviations of the fluxes proportional to the het-

erotrophic respiration flux of the Organizing Carbon and Hy-

drology In Dynamic Ecosystems (ORCHIDEE) land-surface

model. This is the approach adopted in the case of the South

African optimal network design, where we were interested in

the sensitivity of weekly fluxes, separated by day and night,

on hourly concentration values. We used a recent carbon

assessment study by Scholes et al. (2013) which produced

monthly maps of gross primary productivity (GPP), net pri-

mary productivity (NPP), heterotrophic respiration (Rh), au-

totrophic respiration (Ra) and net ecosystem productivity

(NEP) for South Africa. Of these products, most confidence

lay in the NPP product. Since NEP= NPP−Rh and in a bal-

anced system NEP should be a small flux (Lambers et al.,

2008), NPP was used rather than Rh. The biosphere flux un-

certainties for a particular month were estimated using the

following simple relationship:

σNEP =


min(28gC/m2/week, NPP)

if South Africa

min(28gC/m2/week,nearest(NPP))

if not South Africa,

(6)

where nearest(NPP) represents the NPP estimated for the

nearest South African grid cell. As a realistic estimate, ar-

eas outside of South Africa, which had no estimates available

for NPP from the carbon assessment product, were assigned

the NPP estimate from the closest South Africa grid cell

for a particular month. In this way, pixels to the east of the

continent in the Mozambican region had similar flux uncer-

tainties prescribed to those for the northern savannah pixels

within South Africa, and those on the west of the continent in

Namibia had uncertainties prescribed similar to those for the

semi-desert pixels in the Northern Cape Province of South

Africa. This type of interpolation was carried out to avoid

adding unnecessary aggregation errors at the South African

terrestrial borders, which would occur if a blanket estimate

for NPP outside of South Africa were used. A blanket esti-

mate would lead to artificially large changes in the flux un-

certainties between neighbouring pixels, exaggerating aggre-

gation errors for stations near these borders and conversely

null changes in uncertainty between non-South African ter-

restrial pixels. Since Ra and GPP were also available, and

NPP= GPP−Ra, daytime NPP and night-time Ra were ob-

tained by assuming that all the GPP took place during the

day, and half of the Ra took place during the day and half at

night. This meant that the daytime NPP values tended to be

larger in magnitude than the night-time Ra values, which is

what we would expect for the South African systems. Using

this assumption, the monthly estimates for NPP were con-

verted into weekly values, separately for day and night, to

give the final uncertainty values used to construct the prior

flux error covariance matrix. The daytime NPP and night-

time Ra values used as proxies for the NEP uncertainties are

plotted for July and January (Fig. 1). In South African sys-

tems much more biological activity occurs during the sum-

mer months compared to the winter months, with the con-

sequence that the uncertainty during the summer months is

considerably larger.

Since the domain of the network design includes the fos-

sil fuel sources of South Africa, fossil fuel flux uncertainties

needed to be derived as well. Previous regional inversions,

where the total flux of a source pixel was solved for, had de-

tailed inventory data available for the fossil fuel emissions,

and they assumed these were perfectly known (Schuh et al.,

2013). Since this information was not available for South

Africa, we had to consider errors in the fossil fuel fluxes.

As for Part 1 (Ziehn et al., 2014), these uncertainties were

derived from the Fossil Fuel Data Assimilation System (FF-

DAS) (Rayner et al., 2010; Asefi-Najafabady et al., 2014).

Ten realisations for the year 2010 were obtained from the

FFDAS product at the original resolution of 0.1◦×0.1◦. The

fluxes were aggregated to our network design resolution of

1.2◦× 1.2◦, and then the variance was calculated for each

grid cell. Since the emissions from fossil fuels are usually lo-

calised, such as those at power plant locations, the variability

in the fossil fuel emissions between grid cells is quite large.

But, as shown by Ziehn et al. (2014), the effect of aggregating

the data smooths the fossil fuel emissions over the network

design domain, and this leads to a reduction in the variabil-

ity between the different realisations of the FFDAS. It also

leads to the aggregation errors discussed in Sect. 2.2. Figure

2 shows that the uncertainties for the 10 realisations based

on the original 0.1 ◦× 0.1◦ resolution have much larger max-

imums for individual grid cells than the uncertainties calcu-

lated for the aggregated fluxes (Fig. 2). The effect of using

a higher spatial resolution for the surface grids, closer to the

resolution of the transport model, is considered in the sen-

sitivity analyses as discussed above in Sect. 2.2. The fossil

fuel uncertainty and NPP surfaces for these higher-resolution

cases are provided in Fig. 8.

For the standard network design, the prior flux error co-

variance matrix is estimated as a diagonal matrix, where the

diagonal elements are the sum of the variances of the bio-

spheric fluxes and the fossil fuel fluxes for that grid cell. The

biospheric flux uncertainties were multiplied by the fraction

of the grid cell covered by land, separately for day and night.

By multiplying with the land fractions, we guarantee that the

prior uncertainties for coastal grid cells are scaled accord-

ingly and ocean only grid cells are set to 0, since the NEP
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Figure 1. The daytime net primary productivity (NPP) and night-time autotrophic respiration (Ra) data used as standard deviations of net

ecosystem productivity (NEP) at the resolution of 1.2◦ expressed in gC m−2 week−1 for July (left) and January (right). Values for the

standard deviation are capped at 28 gC m−2 week−1. The value of the nearest South African pixel (separately for day and night) is assigned

to non-South Africa land surface pixels.

Figure 2. The standard deviations of 10 realisations (top) of the

Fossil Fuel Data Assimilations System (FFADS) at the original 0.1◦

resolution in gC m−2 week−1. The standard deviations of the aggre-

gated fluxes (bottom) (1.2◦ resolution) showing significant smooth-

ing of the fossil fuel fluxes over the lower resolution.

and fossil fuel products only apply to the land surface. We

assumed no correlation in the prior error covariance matrix

of the fluxes. This is a necessary assumption since we have

no data from which to determine the best correlation lengths.

In reality, grid cells with similar biota and under similar cli-

mate will have correlated fluxes. Similarly, fluxes from the

same source which occur close in time will also be corre-

lated (Chevallier et al., 2010; Wu et al., 2013). Correlation

lengths in space and time are difficult to assess but have a

large impact on the estimated fluxes (Lauvaux et al., 2012).

Independence is assumed, which is a more conservative ap-

proach for the optimal network design. Eventual data from

the implemented network will then help to resolve the flux

correlation estimates during the inversion procedure. To de-

termine what impact assuming positive correlation lengths

in the prior flux error covariance matrix could have on the

optimal network design, we used the results from Cheval-

lier et al. (2012) and put together a simple correlation struc-

ture where it was assumed that temporal correlations for the

same grid cell 1 week apart had a correlation of 0.5 (inde-

pendent for day and night), decaying to 0.3 at 2 weeks apart

and 0.1 at 3 weeks apart. Grid cells adjacent to each other

had a correlation of 0.3. The interactions between time and

space correlations were determined by the Kronecker prod-

uct of the spatial and temporal correlation matrices (e.g. two

grid cells adjacent to each other but 1 week apart would have
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a correlation of 0.3×0.5). Therefore correlation lengths were

relatively short.

In the network design under the standard case, we kept the

uncertainties of the ocean-only grid cells set to 0, since our

focus is on reducing the flux uncertainty over land. We are

not seriously assuming that we know the ocean fluxes per-

fectly, but for the purposes of this optimal network design

we would prefer if the terrestrial measurements focused on

solving for the terrestrial fluxes. Of course, to run a full in-

version, knowledge is needed about the ocean fluxes, and this

would be obtained through ocean-based measurements. The

contributions from the ocean can be divided into the “near

field” and “far field”. The far-field contributions are con-

tained within the boundary contributions. The near-field con-

tributions are those within our domain. A sensitivity test was

conducted whereby 10 % of the maximum land NEP stan-

dard deviation was allocated to the ocean grid cells. This un-

certainty represents the uncertainty in the ocean productiv-

ity models which would be used to obtain prior estimates of

ocean fluxes during an inversion, which are similar to the val-

ues allocated by Chevallier et al. (2010). A second case was

considered where 10 % of the nearest land NEP uncertainty

was allocated to each ocean grid cell, so that the uncertainties

of the ocean grid cells would increase as the uncertainties of

nearby land fluxes increased. The purpose of this test case

was only to demonstrate the effect of implementing a vari-

able ocean uncertainty scheme.

2.5 Optimisation

Three optimisation routines have been used for optimal net-

work design in the literature, namely IO (Patra and Maksyu-

tov, 2002), GA (Rayner, 2004) and simulated annealing

(Rayner et al., 1996). We used the IO routine, as used for

Part 1 (Ziehn et al., 2014), for the standard network design.

This method was previously compared to simulated anneal-

ing by Patra and Maksyutov (2002) and found to perform as

well or better, with significantly less computational cost.

During the IO procedure we added one station at a time

from the candidate list to our base network of two stations

and calculated Cf. We chose the station that resulted in the

smallest uncertainty metric and added it to the network, si-

multaneously removing it from the candidate list. We then

repeated the process until we reached our target of five sta-

tions. The IO procedure provides us with a stepwise progres-

sion of the optimal network.

The overall uncertainty in fluxes can be expressed by two

different metrics (Rayner et al., 1996): either through obtain-

ing the trace of Cf (JCt) or by summing over all the elements

of Cf (JCe):

JCt =

√√√√ n∑
i=1

Cfii , (7)

JCe =

√√√√ n∑
i=1

n∑
j=1

Cfij , (8)

where n is the number of elements in the diagonal of Cf.

The use of Eq. (7) results in the minimisation of the average

variability between surface pixels. Equation (8) is the more

accepted metric to calculate uncertainty for network designs,

and it results in the minimisation of the uncertainty of the

total flux over the full domain. As for Part 1 (Ziehn et al.,

2014) and as used by Rayner et al. (1996), we use JCe as

the uncertainty metric for the standard design. In our case,

because the domain of the transport model contains terrestrial

regions outside of South Africa, we only include the elements

of Cf which are within South Africa in the calculation of the

uncertainty metric.

As a sensitivity test, the JCt uncertainty metric replaced

JCe. Minimising either of these metrics should result in an

optimal network with reduced overall uncertainty in flux es-

timates across South Africa, but the results could potentially

be quite different, particularly if there are large correlations

in the posterior flux error covariance matrix.

We evaluated the different networks in terms of their un-

certainty reduction:

UR = 1−
ĴCe

JCe base

, (9)

where ĴCe is the optimised uncertainty metric value and

JCe base the value of the uncertainty metric calculated from

the posterior error covariance matrix of the fluxes if only the

base stations are included.

Although IO is expected to be more computationally effi-

cient, optimisation through the GA would also be well suited

for this kind of problem, considering that this network de-

sign for South Africa is starting with so few existing stations.

The GA begins with each of the solutions in the population

containing five stations. Therefore all five stations are op-

timised simultaneously, rather than sequentially. Thus, this

method may be more suited to the case where there are mul-

tiple deployments, as we have. It is possible under these cir-

cumstances that the best solution for a five-station network

in terms of reducing the overall uncertainty for South Africa

may not include the one station which on its own reduces the

uncertainty the most. The GA is highly parallel, and so we

can take advantage of high performance computing, but the

running time of the GA is still higher in comparison to IO.

The approach used to run the GA during the sensitivity

analyses is adopted from Rayner (2004). GA procedures are

a class of stochastic optimisation procedures for any numeri-

cal algorithm which calculates a score based on a function of

inputs. In this case the algorithm calculates a score based on

the posterior flux error covariance matrix, given a set of sta-

tions. A GA does not optimise based on a single solution, but
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rather by improving a population of solutions, from which

a final solution is selected. New members are added to the

population through a process of loss of members which are

not sufficiently fit (culling), pairwise combination of previ-

ous members (crossover) and random changes to members

(mutation). This represents “survival of the fittest” and pair-

wise reproduction and mutation in biological populations.

In this implementation of the GA, elitism is maintained

by keeping the best solution from the previous population,

without making any changes through crossover or mutation

on this member. The algorithm converges once a given num-

ber of iterations is reached, or once a convergence criterion

is met. The solution with the best fitness criterion is then se-

lected from this population, where the fitness F is calculated

as

F = 1−
r − 0.5

N
, (10)

where r is the ordinal ranking of the member and N is the

population size, which for our South African case study was

taken to be 100 members. A pseudorandom number x is gen-

erated and members are then deleted, or culled, if the value of

F is less than x. The culling process will remove about 50 %

of the population members. These need to be regenerated to

get the population back to the required size. Members are se-

lected at random from the remaining population, and, based

on new pseudorandom numbers, members are duplicated if

their fitness score is above this random number. Sampling

is with replacement, so the members with the highest fitness

have a good chance of being duplicated more than once. This

continues until all the culled members have been replaced

and the population size is back to N .

The GA requires a trade-off between the diversity in the

solutions, ensuring that the algorithm does not get stuck in

local extrema, and strong selection to ensure that the popu-

lation moves towards the optimum solution. This is achieved

by adjusting the mutation rate – high enough to produce di-

versity in the solutions but low enough to ensure that mem-

bers with high fitness persist and so ensure a tendency to-

wards the optimum solution. From previous work (Rayner,

2004) a good mutation rate for network design was found to

be 0.01.

The population size and number of iterations affect the

computation time of the algorithm. A large population size

is favourable because this ensures diversity in the solutions.

The more iterations that take place, the more solutions the

algorithm can assess and the better the chance of finding the

global minimum. High values for both of these parameters

result in long computation times. In this study the number

of iterations was set at 100 for a single-month optimisation,

and to 150 for a combined month optimisation. These values

were determined from GA trials carried out on the data prior

to deriving the results for this study.

2.6 Measurement sites

Hypothetical stations were selected from a regular grid

over South Africa, resulting in 36 equally spaced locations

(Fig. 3), from which five stations need to be selected. Ulti-

mately, the exact location of the stations will be determined

by practical considerations, for example the presence of ex-

isting infrastructure, such as communication towers and me-

teorological stations; available manpower; the relative safety

of the instruments; and the accessibility of the sites. The opti-

mal network will be used as a guide as to which locations are

ideal. Once the final station sites have been selected, the pos-

terior flux error covariance matrix can be calculated based on

these exact tower locations, in order to determine how close

to the idealised uncertainty reduction the implemented net-

work will achieve.

2.7 Influence from outside the modelled domain

Since the surface sources are expressed as fluxes in carbon,

the contribution to the concentration at the measurement site

is expressed in the amount of carbon seen at the measure-

ment site from a particular source. In the case of the boundary

sources (or contributions from outside of the domain) which

are given as concentrations, their contributions to the con-

centration at the measurement site are expressed as a propor-

tion of their concentration, dependent on their influence at

the receptor site. Part 1 (Ziehn et al., 2014) showed that the

boundary contribution can then be written as

cb,mod =MBcB, (11)

where MB is the submatrix of T for the boundary concen-

trations, cB. If the elements of MB are large enough, it may

be necessary to include the boundary concentrations in the

network design.

For the network design, four boundaries (north, south,

east and west) were used, and we calculated the sensitiv-

ity of hourly observed concentrations to weekly boundary

concentrations. To determine if the influence of the bound-

ary concentrations on the observation errors should be in-

cluded in the network design, we needed to know whether

the uncertainties contributed by the boundary concentrations

were significant compared to other contributions. To see this

we calculated MB for each station. Assuming uncertainties

of 1 ppm in the boundary concentrations (reasonable for the

Southern Hemisphere), this yielded

Cb =MBCIM
T
B, (12)

where CI is the prior error covariance matrix of boundary

concentrations. The diagonal elements of the error covari-

ance matrix of the boundary concentrations, Cb, provided us

with the uncertainty contribution of the boundary concentra-

tions to the observations. If they are much smaller than the

observation error uncertainty, we can neglect boundary influ-

ences in the network design. As the boundary concentrations
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Figure 3. The 36 potential locations of the new stations in the op-

timal network design. The locations were spaced on a regular grid

over the surface of South Africa. The existing Cape Point and the

Gobabeb GAW stations are marked by the triangles.

should be highly correlated, we also considered CI to have

correlation between boundary concentrations, where correla-

tions of 0.5 were allocated between boundary concentrations

during the same week, and values of 0.25 between boundary

concentrations separated by a week or more.

2.8 Comparison of network solutions

To compare the utility of the optimal networks from each al-

gorithm run, the uncertainty reduction was assessed for each

of these networks. The similarity of the networks in terms of

the station locations was assessed using a test statistic from

the chi-squared complete spatial randomness test, measuring

the degree of clustering, where the expected value is based

on the null hypothesis that the stations are located randomly

over the domain. The intention here was not to perform a sta-

tistical test based on the chi-squared distribution, since the

network did not constitute a sample nor were there enough

stations, but to calculate an indicator that would assess the

degree of clustering of the measurements stations for a par-

ticular network solution, referred to as the clustering index,

which was also used to compare between two networks.

Clustering Index=
∑
i

∑
j

(Oij −Eij )
2

Eij
, (13)

where i and j are the indicators for the latitude and longi-

tude categories respectively, Oij is the observed number of

stations in quadrat ij , and Eij the expected number of sta-

tions assuming the stations are scattered randomly. The do-

main was divided into quadrats, in this case 16 equally sized

quadrats covering the entire domain.

A dissimilarity index (DI) was calculated as the sum of the

distance to the nearest neighbour in the compared network,

over all the members in the pair of assessed networks.

DI=

5∑
i=1

min

√
1x2

ij+1y2
ij+

5∑
j=1

min

√
1x2

ij+1y2
ij, (14)

where i and j ∈ [1,2,3,4,5], and1x2
ij and1y2

ij are the squared

differences between the Cartesian coordinates of the ith sta-

tion in network 1 and the jth station in network 2. In cases

where the two networks compared were the same, the in-

dex results in a value of 0. The index increases as the net-

works become more dissimilar in space. This provides a one-

number measure of network similarity that can consistently

be used for the network comparisons provided each solution

consists of the same number of stations. The index provides a

measure in kilometres of how different two network solutions

are. This allows for an objective assessment of how different

the positioning of sites are between two network solutions

which may not be obvious to the eye.

3 Results and discussion

3.1 Influence from the boundaries

The particle counts generated during the LPDM runs for each

station were summed over the month in order to obtain a foot-

print of each station. To illustrate this, plots of the influence

footprint in January (Fig. 4) are provided, using a logarith-

mic scale, for Cape Point and three other candidate stations:

28 (near Potchefstroom), 18 (near Mthatha) and 4 (near Port

Elizabeth). For both January and July, the influence foot-

prints shows that the three candidate stations have more con-

tributions from terrestrial South African sources than Cape

Point has. The plots show that the majority of influence for a

site is from the sources in the surrounding pixels.

Using the influence functions now available for each sta-

tion, the test of the influence from the boundaries on to the

observation errors was conducted. Given the large domain

over which the LPDM was run, it was not surprising that the

boundaries had minimal influence. Overall, the square root

of the maximum diagonal element of Cb for all stations was

only 0.012 ppm. The mean of the maximum diagonal ele-

ments over all measurement sites was 0.006 ppm with a stan-

dard deviation of 0.002 ppm. Even when correlation between

the boundary concentrations was included in the covariance

matrix of the boundary concentrations, the maximum diago-

nal element only reached 0.012 ppm, and the maximum diag-

onal element for a particular station was no more than 40 %

higher than for the independent case. We note that the influ-

ence of the boundary conditions may be highly correlated,

i.e. that a given boundary condition may influence many ob-

servations in a similar way. However the covariances in Cb
are bounded by its variances. These variances are so much

smaller than the values of the error covariance matrix that

the impact of the accompanying covariances is guaranteed
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to be small. We note also that the assumption of boundary

conditions changing on the scale of a week is conservative;

using more, somewhat independent boundary concentrations

would reduce the impact on Cb yet further.

3.2 Aggregation error

Aggregation errors were found to be a significant contributor

to the overall observation error covariance matrix. Aggre-

gation errors of as high as 17.10 ppm were found for mea-

surement sites in the north-eastern interior, and as low as

0.01 ppm for stations in the south-western interior (Fig. 5).

The average aggregation error across sites was 4.70 ppm with

a standard deviation of 5.10 ppm. The sites with the largest

aggregation errors were generally those closest to large fos-

sil fuel sources. These large values are due to the significant

amount of smoothing of the relatively localised fossil fuel

fluxes during the lower-resolution case. This results in large

heterogeneity between the high-resolution fossil fuel fluxes

which contribute to the average fossil fuel flux estimate of

the low-resolution case, which are exactly the circumstances

that lead to the generation of aggregation error. Sites near

the terrestrial or coastal borders also tended to have large ag-

gregation errors. Site-specific aggregation errors were deter-

mined, and these errors were added to the diagonal elements

of the observation error covariance matrix separately for each

site.

When running the LPDM to generate the sensitivity ma-

trix, it is imperative to specify a sufficient number of parti-

cles per release, as well as to run the model for at least as

long as required, with additional time at the beginning of the

run. This is to avoid transport errors, and to avoid exaggerat-

ing the aggregations errors. Therefore, the aggregation errors

were calculated using the last week of the 4-week sensitivity

matrix.

The next sections present the results of the optimal net-

work design, first under the basic parametrisations as used in

Part 1 (Ziehn et al., 2014) and then under the sensitivity tests.

3.3 Basic network design

The network solution for July was able to achieve a re-

duction in uncertainty in the total South African flux

from 6.42 gC m−2 week−1 under the base network to

3.66 gC m−2 week−1 under the optimal network. The results

under the standard conditions used in the basic network de-

sign for the month of July reveal that the best set of stations

to add to the current network would include two stations near

the western coast of the country, stations 0 and 6, including

one just north of the city of Cape Town (station 0) (Fig. 6).

These stations are located near the areas of highest NEP un-

certainties during the winter months. These areas in the West-

ern Cape fall into the fynbos biome, which is under a win-

ter rainfall regime. Therefore productivity during the winter

months is expected to be higher in this area (Fig. 1a). In con-

Table 1. Ranking of the new stations added to the base network for

two seasons (winter and summer) represented by July and January,

as well as the integrated 2 months. The cumulative reduction of un-

certainty relative to the base uncertainty is provided in brackets.

Rank July January July + January

1 24 (12.8 %) 12 (40.0 %) 18 (53.3 %)

2 0 (23.3 %) 29 (58.0 %) 29 (77.7 %)

3 21 (33.0 %) 11 (68.0 %) 11 (80.9 %)

4 18 (38.1 %) 21 (74.5 %) 22 (82.6 %)

5 6 (42.9 %) 24 (78.3 %) 27 (84.6 %)

trast, activity over much of South Africa during the winter

months, when water availability is reduced, is expected to be

low to almost entirely dormant. Due to the increased uncer-

tainty in NEP in the fynbos regions during this time, as well

as the proximity to the city of Cape Town, the optimal net-

work would need a station in this area to reduce the overall

uncertainty of South Africa. Two stations are located in the

eastern interior of the country (stations 18 and 24), includ-

ing one on the border of Lesotho and a station in the central

interior of the country (station 21), not far from the Zimbab-

wean border. These stations are located near to areas with

high fossil fuel flux uncertainties. The base network on its

own reduced the posterior flux uncertainty by 17.0 %. Dur-

ing the month of July, the best station to add to this network

would be station 24, located in the eastern interior of South

Africa, just north of Lesotho, which reduced the uncertainty

relative to the base network by 12.8 % (Table 1). The second-

best station to add is station 0, near the south-east coast of

South Africa. This station reduced the uncertainty by an ad-

ditional 10.5 %. Since the optimal network included a station

near Cape Point during July, it supports the conclusions by

Whittlestone et al. (2009) that measurements at Cape Point

are not sufficient to estimate fluxes for the Western Cape re-

gion. The reduction in uncertainty by the addition of the three

remaining stations to the network was an additional 19.3 %.

During the winter months, the biospheric fluxes are small,

with small uncertainties, whereas the fossil fuel flux uncer-

tainties remain high. Due to the penalty imposed by the ag-

gregation error for measurement sites located near fossil fuel

sources, the return on uncertainty reduction during the winter

months is low, at only 42.9 %.

In January the total flux uncertainty was much

higher compared to July, with a total flux uncer-

tainty of 128 gC m−2 week−1, which was reduced to

27.93 gC m−2 week−1 under the optimal network. The

placement of stations changes with respect to July, with

the stations all located towards the eastern interior of the

country, and no stations positioned on the western side

of South Africa (Fig. 6). The stations were located near

regions of high summertime NEP uncertainty and in the

region where most of the fossil fuel activities in the country
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Figure 4. The footprint of Cape Point, station 28 (top right), station 18 (bottom left) and station 4 (bottom right) relative to the surface grid

cells at a resolution of 1.2◦ expressed as the count of particles over the month of January for each surface grid cell.

Figure 5. Map of the aggregation error values (ppm) associated with

each measurement station for the month of January.

are concentrated. In contrast to the winter months, the

NEP uncertainty during summer is much higher on the

eastern side of the country compared to the mid-interior

or the west of the country (Fig.1c), resulting in a need to

concentrate the new measurement sites in this area. The

uncertainty reduction attributable to the base network in

January is similar to July, at 16.8 %. The best-performing

station in the network for January is station 12, located on

the eastern coast of South Africa, which further reduces

the uncertainty by 40.0 % relative to the base network. The

next-best-performing station was station 29, which reduced

Figure 6. Map of the optimal stations to add to the existing network

to reduce the overall uncertainty of fluxes in South Africa for July,

January and the combined months of July and January. The standard

network design conditions are 50 m surface grid height, diagonal

prior covariance, 2 ppm uncertainty in concentration observations, a

1.2◦ surface grid resolution and the sum of the posterior covariance

matrix elements used to calculate the uncertainty metric for the IO

procedure.

the uncertainty by an additional 18.0 %. An additional

10.3 % increase in uncertainty reduction was attained from

adding the last three stations to the network. The total

uncertainty reduction achieved in January is much higher

compared to July, at 78.3 %. This is due to the ability of the
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network to view the larger summer biospheric fluxes in areas

where the aggregation error penalty is low, or even despite

the aggregation error penalty.

The total flux uncertainty under the base network for the

combined months of January and July was calculated to be

128.43 gC m−2 week−1, similar to the month of January. This

is reduced to 19.83 gC m−2 week−1 under the optimal net-

work. The network for the combined months has a similar

positioning of stations compared to January (Fig. 6), locat-

ing most of the stations in the eastern interior, as well as a

very similar reduction in uncertainty at 84.6 %. The most im-

portant station, as ranked by the IO solution, is station 18,

which reduces the uncertainty by 53.3 % relative to the base

network. This station is located in a region of both high NEP

and fossil fuel flux uncertainty (Figs. 1 and 2). The second-

best station to add to the network is station 29, increasing the

uncertainty reduction by 24.4 %. This station is located near

the area of highest fossil fuel flux uncertainty (Fig. 2). The re-

maining three stations (stations 11, 22 and 27) add only 6.8 %

to the uncertainty reduction. The network solution is differ-

ent to January’s, in that the stations are more concentrated

around the areas of larger fossil fuel flux uncertainty. This

is due to the much lower NEP uncertainty estimates for the

winter months across South Africa compared to the summer

months, but the fossil fuel flux uncertainties remain consis-

tent during the year. The optimal network for the combined

seasons is therefore dominated by the need to reduce these

consistently large uncertainties. The results from the com-

bined months shows that a substantial reduction in the pos-

terior uncertainty for South Africa is possible by introducing

only a few additional stations at key locations.

3.4 Sensitivity analysis

The results for the sensitivity analyses run for both months

individually as well as the combined months of January and

July appear in Fig. 7. During the winter months, there was

consistency between the network solutions from the differ-

ent sensitivity tests. All of the tests were in agreement that

stations 0 and 18 should be included: station 0 near the

winter NEP uncertainties, and station 18 near an area of

large fossil fuel flux uncertainty. The tests assessing surface

grid box height, the doubling of night-time observation er-

ror uncertainty and the addition of ocean flux uncertainty

were identical to the standard network design solution. Both

the medium-resolution and the GA network solutions were

very near the standard solution, each obtaining the second-

smallest DI relative to the standard design of 879. These tests

both favoured two stations which were each one step away

from a standard network design station. The solution using

the uncertainty metric based on the trace of the posterior flux

covariance matrix was similar to these two but favoured a

station near the south coast of South Africa, far from the

general concentration of stations, near a localised fossil fuel

source. The two test cases most different from the standard

Figure 7. Map of the optimal stations to add to the existing network

to reduce the overall uncertainty of fluxes in South Africa under the

11 different sensitivity cases for July (top), January (middle) and

the combined months of July and January (bottom). The cases in-

clude the standard case (Standard), surface grid height set at 60 m

(Ht 60 m), surface grid height set at 75 m (Ht 75 m), use of the trace

in the uncertainty metric (Trace), doubling of the night-time ob-

servation error uncertainty (Night), addition of correlation between

elements in the prior covariance matrix (Correl), spatial resolution

set at 0.8◦ (Med Res), spatial resolution set at 0.6◦ (High Res), un-

certainty in the ocean sources set at 10 % of the maximum land NPP

(Ocean1), uncertainty in the ocean sources set at 10 % of the nearest

land NPP (Ocean2) and use of the GA.
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Figure 8. The daytime net primary productivity (NPP) data used as standard deviations of net ecosystem productivity (NEP) at the resolution

of 0.8◦ expressed in gC m−2 week−1 for January (a), and at the resolution of 0.6◦ (b). The Fossil Fuel Data Assimilation System standard

deviations aggregated over a resolution of 0.8◦, also expressed in gC m−2 week−1 (c) and over a resolution of 0.8◦ (d).

solution were the high-resolution network solution and the

solution from the case considering correlation between the

prior fluxes, obtaining a DI of 1747 and 1343 respectively.

They favoured stations near the south coast but also located

stations in the north-eastern interior, near areas of large fossil

fuel uncertainty.

The results from the sensitivity tests for January show a

great deal more variability between network solutions com-

pared to July, with DI values of greater than 0 for almost all

network solution comparisons. Similarly to July, the network

solutions do appear to converge towards three stations, but

not the same stations as July. Under January’s conditions,

only the homogeneous ocean variance test case resulted in

an identical solution to the standard case. There is no single

station which all network solutions contained. Stations 29

(north-eastern interior) and station 12 (eastern coast) were

agreed on by 10 out of 11 tests, and stations 27 (northern

interior) and 11 (south-eastern interior) were agreed on by

9 out of 11 tests. These four stations are influenced by ar-

eas of large fossil fuel flux uncertainty, and stations 29 and

12 near regions of large summer NEP uncertainty. Sensi-

tivity tests with DI values below 1000 when compared to

the standard case include the tests considering surface grid

box height, doubling of night-time observation error uncer-

tainty, the test considering variable ocean flux uncertainty,

the trace uncertainty metric test and the GA test case. These

five test cases show strong agreement. The trace uncertainty

metric case favoured a station near the central interior. This

station was also included in the solutions of the correlation

and medium-resolution cases, where these tests obtained DI

values of 1225 and 1305 respectively when compared to the

standard solution. These tests, as well as the GA and high-

resolution test cases, included stations near the south coast,

near areas of localised fossil fuel uncertainties.

The sensitivity tests from the combined months showed

less variability between solutions compared to January

(Fig. 7c). Station 11 was included in all of the network so-

lutions. Station 18 was agreed upon by 10 out of 11 network

solutions, and stations 27 and 29 (both in the north-eastern

interior) were favoured by 9 out of 11 solutions. The tests

considering 60 m surface height, the trace uncertainty met-

ric, doubling of the night-time observation error uncertainty

and inclusion of ocean flux uncertainty have identical solu-

tions to the standard network design. The 75 m surface height

and medium-resolution tests cases obtained relatively low DI

values of 468 and 449 respectively when compared to the

standard solution (Table 2). The high-resolution test and test

case considering correlation between prior fluxes obtained

DI values of 1121 and 1162 respectively. The solutions from

these tests focused on stations around areas of large fossil

fuel flux uncertainty in the north-western and north-eastern

interior. The solution from the GA resulted in the largest DI

value of 1213 when compared to the standard network, and

equal to this or larger when compared to all other network

solutions. The station in the GA solution responsible for the

disagreement with other solutions is station 7, located in the
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south western interior, far from the concentration of stations

for most network solutions. The remaining four stations from

the GA test are located towards the north-western and north-

eastern interior parts of the country. As discussed in the pre-

vious Sect. (3.3), the three best stations to add to the network

according to the IO solution are stations 18, 29 and 11, with

station 18 attaining the greatest uncertainty reduction. All of

the network solutions for the combined months of January

and July have included station 18, and the three most impor-

tant stations are all in the solution of the GA.

The statistics for the different sensitivity tests for the com-

bined months (Table 3) indicate that the test considering cor-

relation between the prior fluxes obtained the highest un-

certainty reduction, followed by the GA test. The GA was

able to achieve marginally greater uncertainty reduction by

0.3 % compared to the IO standard solution. Most of the

test cases were able to achieve between 80 and 85 % un-

certainty reduction. The test case utilising the trace uncer-

tainty metric achieved a smaller uncertainty reduction, and

the two higher-resolution tests achieved the smallest uncer-

tainty reduction overall. It should be noted that the uncer-

tainty reduction achieved for the trace sensitivity test was

calculated using the JCt uncertainty metric, due to the use of

this metric for the optimisation procedure. Estimates of the

posterior uncertainty for the total flux of South Africa un-

der the base and optimal networks were obtained for each

month. Those which differed substantially from the stan-

dard network solution were the high- and medium-resolution

test cases, and the correlation test case. Under the assump-

tion of positive correlations between the flux errors, the

base network results in a higher total flux uncertainty of

205.82 gC m−2 week−1 for the base network, which is re-

duced to 27.79 gC m−2 week−1 under the optimal network,

now similar to the result of the standard network solution.

Under the base network, the additional covariance terms

introduced through the correlation structure are poorly re-

solved, leading to higher total uncertainties. When there are

more stations added to the network, this is improved. The

high- and medium-spatial-resolution test cases gave total flux

uncertainties of 271.55 and 190.14 gC m−2 week−1 respec-

tively under the base network. These were then reduced to

82.82 and 44.19 gC m−2 week−1 respectively under the opti-

mal network. At the spatial resolutions that we have consid-

ered in our study, the between-pixel variability in the terres-

trial fluxes will increase as the spatial resolution is increased,

for both the biospheric and fossil fluxes (Turner et al., 2000).

For the fossil fuel fluxes, we create the surface of flux un-

certainties using the same procedure for each of the differ-

ent spatial resolution cases. As explained earlier, for each of

the 10 realisations from the FFADS product, we regrid the

0.1◦×0.1◦ fossil fuel emissions onto the surface grid we are

using. To obtain the uncertainty estimates, the within-pixel

variance is calculated for the 10 realisations. The result of

carrying this procedure out at higher spatial resolutions is

that the variance values are larger compared to lower resolu-

tions, and the between-pixel variability is increased (Asefi-

Najafabady et al. 2014). Therefore, the total flux uncertainty

derived at high resolution is expected to be larger than for

lower resolutions.

Most network solutions tended towards the same amount

of clustering of stations, obtaining a clustering index of 23.8.

The GA and test case considering correlation had more dis-

persed networks, and the high-resolution test case had the

highest amount of clustering, with a clustering index of 36.6.

We would expect the correlation case to spread stations since

a given station will reduce uncertainty everywhere within one

correlation length. The GA for the combined months took the

longest to run, at over 32 h, which is 39 times longer than the

running time of the standard IO solution. This was followed

by the high-resolution solution, which took 25.2 h, and the

two ocean flux uncertainty test cases, which took over 5 h

each.

4 Summary and conclusions

Under a reference set of conditions, an optimal network de-

sign was obtained for South Africa for two representative

months of the year. The resulting designs reduced the un-

certainty of carbon fluxes from South Africa compared to the

base network by 43 % in July and 78 % in January. These

relatively large reductions in uncertainty are due to the lack

of coverage by the current network, which only reduces the

uncertainty of fluxes from South Africa by 16 % for both

July and January. The concentration of stations by all net-

works tended towards the central interior, near the North

West Province of South Africa and in the eastern parts of

the country. These represent the areas with the largest uncer-

tainty in biospheric fluxes, as well as fossil fuel emissions, in

the country.

Station 11 is located near the uKhahlamba Drakensberg

World Heritage Site. Several remote holiday destinations are

found in this area, near the town of Mooi River, and road in-

frastructure is available. Potentially, facilities at or near these

holiday destinations could be utilised in order to conduct at-

mospheric measurements, particularly if there is a communi-

cations tower available. Station 18 is located near the peak of

Ben Macdhui. This is near the site of a 1996 atmospheric

monitoring campaign, which assessed the ability of trans-

port models to resolve recirculation over and exiting South

Africa to the Indian Ocean (Piketh et al., 1999). Station 29

is near the atmospheric monitoring site of the North-West

University (South Africa), at Welgegund, about 20 km from

the Potchefstroom campus. This site was established in col-

laboration with the University of Helsinki to measure the im-

pact of aerosols and trace gases on the climate and air quality

(Tiitta et al., 2014). Therefore, for at least three of the most

influential stations, facilities or previous measurement cam-

paigns exist, indicating that it should be possible to establish

long-term monitoring of CO2 concentrations near these sites.
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Table 2. Ranking of the new stations added to the base network under 10 different sensitivity tests for the combined months of July and

January. The tests are presented in the following order: surface grid height set at 60 m; surface grid height set at 75 m; trace of the posterior

covariance used in the uncertainty metric; uncertainty of the night-time observation errors is doubled; correlation structure is included in the

prior covariance of the fluxes; spatial resolution is increased to 0.8◦; spatial resolution is increased to 0.6◦; ocean sources are assigned 10 %

of max NPP variance; ocean sources are assigned 10 % of nearest terrestrial NPP variance; and GA is used for optimisation. The percentage

cumulative reduction of uncertainty of the posterior fluxes relative to the base network is provided in brackets.

Rank Ht 60 m Ht 75 m Trace Night Correl Med Res High Res Ocean1 Ocean2 GA

1 18 (52.3) 18 (50.9) 18 (46.8) 18 (50.9) 24 (65.4) 18 (42.9) 18 (36.3) 18 (53.1) 18 (52.3) 27

2 29 (76.0) 29 (74.0) 29 (69.4) 29 (75.1) 11 (77.8) 29 (65.1) 28 (57.1) 29 (77.3) 29 (75.9) 7

3 11 (79.8) 11 (78.3) 11 (73.3) 11 (78.5) 28 (83.6) 11 (70.7) 11 (62.0) 11 (80.8) 11 (80.4) 29

4 22 (81.5) 24 (80.1) 22 (75.1) 22 (80.6) 31 (85.3) 30 (73.6) 30 (66.4) 22 (82.5) 22 (82.1) 18

5 27 (83.5) 27 (82.5) 27 (77.2) 27 (83.1) 27 (86.5) 27 (76.8) 24 (69.5) 27 (84.4) 27 (84.4) 11 (84.9)

Table 3. Table of network comparison statistics for the combined

months of January and July. The sensitivity tests are presented in

the same order as for Table 2.

Sensitivity Uncertainty Running Clustering

test reduction time (hh:mm) index

Standard 84.6 % 0:49 23.8

Ht 60 m 83.5 % 0:49 23.8

Ht 75 m 82.5 % 0:48 23.8

Trace 77.2 % 0:48 23.8

Night 83.1 % 0:48 23.8

Correl 86.5 % 1:13 17.4

Med Res 76.8 % 4:23 23.8

High Res 69.5 % 25:11 36.6

Ocean1 84.4 % 5:27 23.8

Ocean2 84.4 % 5:12 23.8

GA 84.9 % 32:01 17.4

The sensitivity analysis demonstrated that, for most of the

network design parameters considered in this study, the sta-

tions found to be most important by the standard network

design were always identified in the network design solution.

Many of the choices required for the optimal network design

– such as the height of the surface grid cells, whether to in-

flate night-time observation error uncertainties relative to the

daytime and the inclusion of ocean flux uncertainty – have

a negligible impact on the final network design. Substituting

the trace for the sum of the covariance elements also resulted

in similar solutions.

The test cases considering higher spatial resolution tended

to result in network solutions different from the standard

case, largely due to the increase in spatial heterogeneity in

prior flux uncertainties compared to the coarser resolution.

The spatial resolution of an inversion study impacts network

design in several ways. It is the main determinant of the

amount of aggregation error attributed to a measurement site,

with aggregation error reducing as the resolution increases.

As the spatial resolution is degraded, aggregation errors can

become large, leading to the exclusion of sites in the case

of an optimal network design, even if they are in view of

regions of large flux uncertainty. The spatial resolution of

the sources also determines the dimensions of the sensitiv-

ity matrix and prior flux covariance matrix, which impacts

on the computational resources required to run an inversion

or network optimisation. Ideally, the highest manageable res-

olution should be used, as close as possible to the resolution

of the transport model and original spatial products used for

obtaining the prior fluxes and their covariances. Alternative

approaches, such as the use of multi-scale representation of

the source region, can be used to mitigate aggregation er-

rors as well (Wu et al., 2011), but these errors should always

be considered during an inversion or inversion-based optimal

network design exercise.

The GA was able to find marginally better solutions than

the IO method, if run with sufficient population size and

number of iterations, but in general did include the most in-

fluential stations from the IO solution. The increase in un-

certainty reduction was found to be marginal but cost a great

deal more in running time before this solution was found.

If the resolution of the standard case had been higher, the

GA would have taken longer to run, and the current com-

puting system may have had insufficient memory. Moreover,

to find a better solution than the IO, the iterations and pop-

ulation size would have had to be set even higher, due to

the greater heterogeneity in the prior flux uncertainties in a

higher-resolution setup, further increasing the computational

costs. An additional advantage of the IO method over the GA

method is that an evolution of results is generated, which

is useful for practical purposes. By identifying the station

which on its own best reduces the uncertainty in the poste-

rior fluxes, it gives the decision makers the location of the

site which should be prioritised over others in the network.

Even though we accounted for aggregation error, which

would have corrected the total flux estimate for the domain,

there were still large differences between the total flux un-

certainties from the inversion results under different spatial

resolutions. This was due to the treatment of the prior un-

certainties under the different spatial resolutions. Degrading

the spatial resolution results in a loss of information; there-
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Table 4. Table of dissimilarity indices for the optimal network solutions for the combined months of January and July. The sensitivity tests

are presented in the same order as for Table 2.

Sensitivity Standard Ht 60 m Ht 75 m Trace Night Correl Med Res High Res Ocean1 Ocean2 GA

test

Standard 0 0 469 0 0 1162 449 1121 0 0 1213

Ht 60 m 0 0 469 0 0 1162 449 1122 0 0 1213

Ht 75 m 469 469 0 469 469 761 380 720 469 469 1285

Trace 0 0 469 0 0 1162 449 1121 0 0 1213

Night 0 0 469 0 0 1162 449 1121 0 0 1213

Correl 1162 1162 761 1162 1162 0 1162 851 1162 1162 2046

Med Res 449 449 380 449 449 1162 0 741 449 449 1265

High Res 1121 1121 720 1121 1121 851 741 0 1121 1121 1693

Ocean1 0 0 469 0 0 1162 449 1121 0 0 1213

Ocean2 0 0 469 0 0 1162 449 1121 0 0 1213

GA 1213 1213 1285 1213 1213 2046 1265 1693 1213 1213 0

fore it is best to run the inversion at as high a resolution as

possible. Favouring optimisation techniques like IO, which

can more easily accommodate high spatial resolution, over

those which could force a reduction in resolution due to high

computational demands, such as the GA, may be unavoid-

able. Techniques like simulated annealing and the GA do

not guarantee the global optimum, as demonstrated by Patra

and Maksyutov (2002) for simulated annealing and during

the initial trials of the GA in this study. Patra and Maksyu-

tov (2002) also showed that as the number of stations in the

network increased, the performance of simulated annealing

relative to the IO decreased, with IO eventually achieving

significantly better uncertainty reductions.

Of the sensitivity tests, including correlation had one of

the largest impacts on the final network result, often differ-

ing significantly from the standard solution. The correlation

structure used in this study was generic, simply assuming that

fluxes from nearby grid cells and fluxes at the same location

near in time would be correlated, included for the purpose

of assessing the impact of correlation in the prior fluxes. For

a network to be based on a prior covariance matrix includ-

ing correlation, there would need to be confidence that this

correlation structure and size of correlations between fluxes

were accurate. This is generally not the case, and easier to as-

sess when concentration measurements are available, which

is why many network designs have assumed independence

between prior fluxes (Rayner, 2004; Patra and Maksyutov,

2002). Including correlations which are too large can lead

to an over-constrained system (Lauvaux et al., 2012), which

is evidenced in this study where the uncertainty reductions

were the largest under the correlation test case.

Overall the results suggest that a good improvement in

knowledge of South African fluxes is achievable from a fea-

sible atmospheric network and that the general features of

this network are invariable under various parameterisations

of the transport model, prior information, and optimisation

routine.
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