

Supplement of

Dimethylsulfide gas transfer coefficients from algal blooms in the Southern Ocean

T. G. Bell et al.

Correspondence to: T. G. Bell (tbe@pml.ac.uk)

1 **Supplemental Material**

Figure A

- Time series of SOAP waterside gas transfer velocities (k_w) normalised to Schmidt number = 660.
- 5 NOAA COARE model output (red line) shown for reference. Airside gas transfer velocity (k_a) estimates 6 7 8 9 were used to calculate k_w from measured K_w using three different models/parameterisations:
 - COARE (Fairall, C. W. et al. Implementation of the Coupled Ocean-Atmosphere Response Experiment flux algorithm with CO₂, dimethyl sulfide, and O₃, J. Geophys. Res.-Oceans, 116, C00F09, 10.1029/2010jc006884, 2011.).
- M&Y83 (Mackay, D., and Yeun, A. T. K.: Mass transfer coefficient correlations for volatilization of organic solutes from
- 10 water, Environ. Sci. Technol., 17, 4, 211-217, Doi 10.1021/Es00110a006, 1983).
- 11 - Duce91 (Duce, R. A., et al. The atmospheric input of trace species to the world ocean, Global Biogeochemical Cycles, 5, 3, 12 193-259, 1991.).

2 3

4

14 15 **Figure B**

- 16 Percentage contribution of airside resistance (r_a) to total resistance ($R_T = 1/K_w$). Grey points = r_a
- (COARE estimate) / R_T (SOAP data). Red line = NOAA COARE estimates of r_a and R_T . 17

18 19 **Figure C**

20 SOAP gas transfer coefficients plotted as a function of wind speed, with symbol color used to 21 distinguish data above (blue) or below (red) a stability (z/L) threshold of 0.05 (see main text).

22

Figure D

25 Wind speed binned frequency distributions of k_{660} during the SOAP cruise illustrating log-normal behavior.

Wind speed binned frequency distributions of *△C* during the SOAP cruise illustrating log-normal
behavior.

32 Flux (1 33 **Figure F**

- 34 Wind speed binned frequency distributions of F_{DMS} during the SOAP cruise illustrating log-normal
- 35 behavior.

36 37 **Figure G**

Wind speed binned frequency distributions of k_{660} during the Knorr_11 cruise illustrating log-normal behavior.

40

41 dc (42 **Figure H**

43 Wind speed binned frequency distributions of ΔC during the Knorr_11 cruise illustrating log-normal 44 behavior.

44 be 45

46 Flux 47 **Figure I**

48 Wind speed binned frequency distributions of F_{DMS} during the Knorr_11 cruise illustrating log-normal 49 behavior.

50

52 Figure J

53 SOAP gas transfer coefficients plotted as a function of wind speed, with symbol color indicating

- 54 ECMWF-retrieved significant wave height.
- 55

Figure K

SOAP gas transfer coefficient residuals plotted as a function of wind speed, with symbol color
 indicating Chl *a*-from the ship's fluorometer.

Figure L

63 SOAP gas transfer coefficients plotted as a function of wind speed, with symbol color indicating DMS_{sw} 64 RSD (see main text). Colourbar axis restricted to 0.5 to highlight larger RSD values. Maximum value = 65 2.77.