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Abstract. Seven different instruments and measurement

methods were used to examine the immersion freezing of

bacterial ice nuclei from Snomax® (hereafter Snomax), a

product containing ice-active protein complexes from non-

viable Pseudomonas syringae bacteria. The experimental

conditions were kept as similar as possible for the differ-

ent measurements. Of the participating instruments, some

examined droplets which had been made from suspensions

directly, and the others examined droplets activated on pre-

viously generated Snomax particles, with particle diameters

of mostly a few hundred nanometers and up to a few mi-

crometers in some cases. Data were obtained in the temper-

ature range from −2 to −38 ◦C, and it was found that all

ice-active protein complexes were already activated above

−12 ◦C. Droplets with different Snomax mass concentrations

covering 10 orders of magnitude were examined. Some in-

struments had very short ice nucleation times down to be-

low 1 s, while others had comparably slow cooling rates

around 1 K min−1. Displaying data from the different instru-

ments in terms of numbers of ice-active protein complexes

per dry mass of Snomax, nm, showed that within their un-

certainty, the data agree well with each other as well as to

previously reported literature results. Two parameterizations

were taken from literature for a direct comparison to our re-

sults, and these were a time-dependent approach based on a

contact angle distribution (Niedermeier et al., 2014) and a

modification of the parameterization presented in Hartmann

et al. (2013) representing a time-independent approach. The

agreement between these and the measured data were good;

i.e., they agreed within a temperature range of 0.6 K or equiv-

alently a range in nm of a factor of 2. From the results pre-

sented herein, we propose that Snomax, at least when care-

fully shared and prepared, is a suitable material to test and

compare different instruments for their accuracy of measur-

ing immersion freezing.

1 Introduction

In the Earth’s atmosphere, different types of clouds exist:

warm clouds contain only liquid droplets, cirrus clouds con-

sist solely of ice crystals, and mixed-phase clouds contain

both liquid droplets and ice crystals. Ice formation can oc-

cur by homogenous freezing of cloud droplets at tempera-
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tures below about −38 ◦C, or by heterogeneous ice nucle-

ation processes. In the latter case, a particular aerosol parti-

cle, called an ice nucleating particle (INP), induces the ice

nucleation, which can occur at all temperatures below 0 ◦C.

Immersion freezing is one of the heterogeneous freezing

processes, where an INP immersed in a supercooled cloud

droplet induces ice nucleation. For mixed-phase clouds, this

might be one of the most important freezing process, if not

the most important one, as suggested e.g., by Ansmann et al.

(2009) and Murray et al. (2012). Below −38 ◦C, homoge-

neous freezing can take place. Thus, mixed-phase clouds,

which are most important for the generation of precipita-

tion outside the tropics, tend to occur at T > − 38 ◦C. Cirrus

clouds found at T < − 38 ◦C are generally assumed to have

formed by homogeneous freezing; i.e., for cirrus clouds it

is thought that homogeneous freezing is the most important

mechanism to nucleate ice. However, it was recently sug-

gested by Cziczo et al. (2013) that heterogeneous freezing

might be the dominant ice formation mechanism for convec-

tive outflow and synoptically formed cirrus in the Northern

Hemisphere.

In general, the initiation of ice in clouds, i.e., the ice nucle-

ation process, has to be investigated if we want to understand

and describe the formation of precipitation as well as cloud

radiative properties, e.g., in weather and climate models. It

should also be mentioned that ice multiplication processes

(e.g., Hallett and Mossop, 1974) might play an important role

for the overall ice content in clouds, too. But even our under-

standing of ice nucleation in clouds is still limited. DeMott

et al. (2011) showed, that a scatter of up to 2 orders of mag-

nitude in measured ice fractions was obtained for Saharan

dust samples, when results from different instruments which

measured ice nucleation were compared. Mineral dust is con-

sidered to contribute a large fraction or even the majority of

INPs worldwide (Murray et al., 2012), and K-feldspar was

recently reported by Atkinson et al. (2013) to be the most

ice nucleation effective mineral dust compound found so far.

However, these INPs can only explain ice nucleation in the

temperature range below about−15 ◦C, while in atmospheric

clouds ice is often observed already at higher temperatures

(e.g., Bühl et al., 2013). The presence of biological particles

might contribute to the observed high temperatures for ice

formation in clouds (Schnell and Vali, 1976; Szyrmer and

Zawadzki, 1997; Murray et al., 2012), and recently it was

found that in soil dust, biological components on the dust

particles enhanced or even determined the particles’ ability

to nucleate ice (Conen et al., 2011; O’Sullivan et al., 2014;

Tobo et al., 2014).

The ice nucleation ability of biological material has been

found to originate in ice nucleation active macromolecules

(INM) such as some polysaccharides for pollen (Pummer

et al., 2012; Augustin et al., 2013) and proteinaceous INM

for fungi (Hasegawa et al., 1994; Fröhlich-Nowoisky et al.,

2014) and bacteria (e.g., Hartmann et al., 2013, and refer-

ences therein). Both Augustin et al. (2013) and Hartmann

et al. (2013) were able to determine the ice nucleation abil-

ity of single INM for birch pollen and Snomax, respectively.

While the discovery of INM active in pollen and fungi was

made recently or was only recently intensified again (Pum-

mer et al., 2012; Fröhlich-Nowoisky et al., 2014, respec-

tively), it has long been known that protein complexes are re-

sponsible for the ice activity in bacteria. Much research has

been done on the latter topic, and the literature cited in the

following paragraph is only a small selection of what can be

found.

Already Maki et al. (1974) and Green and Warren (1985)

described that several bacteria occurring in the atmosphere,

among them Pseudomonas syringae, can induce heteroge-

neous freezing at comparatively high temperatures, with

freezing sometimes setting in already at about −2 ◦C. Orser

et al. (1985) described a gene which produces proteins lo-

cated in the outer cell membrane which are responsible for

the ice nucleation. This gene is highly homologous in all ice-

active bacteria. A single ice-active protein was estimated to

have a mass of about 150 kDa and to induce freezing at −12

to −13 ◦C (Wolber et al., 1986; Govindarajan and Lindow,

1988). However, the ice-active proteins show a tendency to

aggregate, forming protein complexes (e.g., Govindarajan

and Lindow, 1988; Southworth et al., 1988; Garnham et al.,

2011). It was found for P. syringae, that ice nucleation can be

induced in the temperature range from about −7 to −10 ◦C.

The respective type of protein complexes active in this tem-

perature region was called group III or class C, and it was

found that they occurred in about “1 of 300 cells” to “almost

all cells” of P. syringae cultures (Yankofsky et al. (1981) and

Turner et al. (1990), respectively). Responsible for group III

ice nucleation behavior are protein complexes of at least two

up to a few single ice-active proteins with diameters of a few

nanometers. Much more rarely, bacterial cells are observed

which induce freezing already at temperatures around −2 to

−4.5 ◦C (group I or class A behavior) and around −4.5 to

−7 ◦C (group II or class B behavior), where the characteri-

zations in groups is given in Yankofsky et al. (1981) and the

one in classes in Turner et al. (1990), both giving slightly

different temperature ranges. Different publications give the

fraction of cells on which these more ice-active cells occur

with 1 in 104 to 1 in 107 (Yankofsky et al., 1981; Govin-

darajan and Lindow, 1988; Cochet and Widehem, 2000), as-

sociated with much larger protein complexes, containing at

least 50 proteins (Govindarajan and Lindow, 1988; South-

worth et al., 1988) which corresponds to sizes of roughly

some 10 nanometers.

These early findings are in agreement with a recent study

by Hartmann et al. (2013), who examined immersion freez-

ing induced by non-viable P. syringae present in Snomax.

Examined droplets contained single or at most a few of

the small protein complexes responsible for the observed

group III freezing behavior. Freezing was mostly induced at

temperatures from −7 to −10 ◦C, and below −12 ◦C no ad-

ditional freezing was observed. Snomax is a commercially
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available material for artificial snow production and con-

tains non-viable P. syringae bacteria and their fragments, i.e.,

cell constituents and fragments of the cell membrane with

or without attached ice-active protein complex, remnants of

the nutrition medium used for bacterial cultivation, and some

other unknown byproducts. It has been used in the past as sur-

rogate for living bacteria (Wood et al., 2002; Möhler et al.,

2008).

Within the research unit INUIT (Ice Nuclei research UnIT,

FOR 1525), which is funded by DFG (Deutsche Forschungs-

gemeinschaft), we did an intercomparison, comparing im-

mersion freezing measured by a suite of different techniques.

We examined different test substances. In order to minimize

experimental biases in measured data, we shared the same

samples and the same particle/droplet production techniques

as far as possible while exploring a wide range of experi-

mental conditions concerning particle sizes, droplet concen-

trations and temperatures. We included mineral dust samples

and a biological sample, namely Snomax, in the INUIT com-

parisons. Results for the former will be presented in separate

papers of the same special issue, while the results from the

respective comparison for the biological sample will form the

focus of this paper.

We present immersion freezing measurements for Sno-

max, made with seven different instruments in the framework

of INUIT. Different Snomax concentrations in the examined

droplets are covered, ranging from 6×10−12 to 1×10−2 mg

per droplet. Also, different ice nucleation times were em-

ployed, ranging from cooling rates of 1 Kmin−1 to short res-

idence times of below 1 s at a given ice nucleation temper-

ature. Two basically different types of measurement meth-

ods were included. Some studies examined droplets which

had been generated from Snomax suspensions directly. Oth-

ers generated dry aerosol particles from Snomax suspensions

to enable a size selection and then immersed each of these

particles in a droplet. These droplets were then examined

with respect to their freezing behavior. In the following, mea-

surement methods and the modeling approach chosen for the

data evaluation are briefly discussed, before the results are

described in Sect. 4.

2 Measurement methods

In this study, we present a comparison between results ob-

tained from different measurement methods for immersion

freezing induced by Snomax. The following seven differ-

ent instruments are included in the comparison (given in

alphabetical order): an acoustic levitator (abbreviated AL

herein), AIDA (Aerosol Interaction and Dynamics in the At-

mosphere) cloud simulation chamber, BINARY (Bielefeld

Ice Nucleation ARraY), FINCH (Fast Ice Nucleus CHam-

ber), LACIS (Leipzig Aerosol Cloud Interaction Simulator),

the Mainz vertical wind tunnel (abbreviated WT herein) and

PINC (Portable Ice Nucleation Chamber). A more detailed

description of the instrumentation and measurement meth-

ods can be found in Appendix A, together with the respective

citations of the relevant literature.

Snomax from the same batch was used for all measure-

ments unless mentioned explicitly. It was obtained from SMI

Snow Makers AG, Switzerland and distributed to all partic-

ipating groups. Care was taken to keep the sample frozen at

all times, besides short (hour long) breaks during transport

by mail from the company to Leipzig and from Leipzig to

the INUIT partners. For the latter the Snomax was sent in

cooled thermal boxes with thermal insulation.

The measurement methods used by the different instru-

ments within this study can be grouped in two subgroups.

On the one hand, there are measurement devices that ex-

amined droplets generated directly from suspensions, which

are referred to as suspension methods in this study. These

include AL, BINARY and WL. The second group consists

of AIDA, FINCH, LACIS and PINC, which generally ex-

amined droplets activated on size-selected Snomax particles,

and in which also some AIDA measurements using polydis-

perse Snomax aerosol were included. This group of instru-

ments will be referred to as particle methods herein. Impor-

tant parameters for each method are given in the following

two paragraphs and also in Table 1.

Droplets examined with the AL, BINARY and the WT

had diameters of 2.0 mm (= 4.2 µL), 1.24 mm (= 1.0 µL) and

0.76 mm (= 0.23 µL), respectively. The suspensions from

which the droplets were made contained ultra-pure water

and Snomax in defined concentrations. Altogether, examined

concentrations ranged from 10−8 to 10 mgmL−1, covering 9

orders of magnitude. Figure 1 shows the ranges of Snomax

mass per droplet which were used for measurements by the

different instruments, while the concentrations of Snomax in

the suspensions used to generate the droplet are shown in the

legends of Figs. 5 and 6.

At each droplet concentration, a total droplet number of

100 droplets was examined with the AL, and either 144 or

180 droplets were examined in the case of BINARY, while

50 droplets were examined at each concentration and at each

temperature by the WT. For the AL, ice nucleation time de-

pended on temperature (see Appendix A1) and the maximum

time the droplets spent in the instrument was 10 to 20 s. BI-

NARY was operated at a cooling rate of 1 Kmin−1. Data re-

ported for WT are integrated ice fractions which were ob-

tained 30 s after the droplets were injected into the instru-

ment, while the instrument remained at a fixed temperature.

For measurements with instruments belonging to the par-

ticle methods (AIDA, FINCH, LACIS and PINC), suspen-

sions were used to generate dry particles. These particles

were mostly in the sub-micron size range and generated

by atomization and subsequent drying in a diffusion dryer.

For polydisperse AIDA measurements, particles in the size

range above 1 µm were also present, as the suspensions were

sprayed into the AIDA chamber directly. For sub-micron par-

ticles, the particle production was similar to that described in

www.atmos-chem-phys.net/15/1463/2015/ Atmos. Chem. Phys., 15, 1463–1485, 2015
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Table 1. Experimental details for the different measurement techniques/instruments.

Methods examining droplets made directly from suspensions:

droplet diameter number of droplets cooling rate or ice nucleation time

examineda,b

AL 2.00 mm 100a temperature dependent,

see Appendix A1

BINARY 1.24 mm 144 or 180a 1 Kmin−1

WT 0.76 mm 50b 30 s

Methods examining droplets activated on aerosol particles:

particle diameter number of droplets cooling rate or ice nucleation time

examineda,b

AIDA 200 to 600 nm size-selected, ∼ 1000 to 10 000b
∼ 1 to 3 Kmin−1

and polydispersec

FINCH 900 nm > 2400b
∼ 1 s

LACIS 500, 650 and 800 nm ≥ 2000b
≈ 0.2 s at T < − 12 ◦C

up to 1.6 s at colder T

PINC 500 nm 500 to 3000b 5 s

a Indicates per concentration, b per data point. c Polydisperse experiments included also particles < 200 nm.
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Figure 1. Snomax mass per droplet examined by the different in-

struments. For AL, BINARY, and WT values follow directly from

the Snomax concentration in the suspensions used to produce the

droplets, and from the respective droplet size. For AIDA, FINCH,

LACIS, and PINC masses were derived using Eq. (2).

detail in Hartmann et al. (2013). All groups used the same at-

omizer (unless explicitly mentioned), which was sent around

within the INUIT community. It was comparable to an atom-

izer available from TSI (Constant Output Atomizer, Model

3076), but differed in that the outlet for the droplets was at

the location of the impaction plate, opposite of the nozzle.

In the atomizer, compressed air expands through an orifice,

forming a high velocity jet, which then draws liquid into the

region of the jet and atomizes it, i.e., forms droplets (see the

instruction manual for TSI Model 3076). The suspensions

used in the atomizer had a concentration of 5 gL−1 (unless

a differing value is given). The droplets generated by the at-

omizer were dried in diffusion dryers. Subsequently, a DMA

(Differential Mobility Analyzer) was used to select a parti-

cle size, and the size-selected dry particles were then fed into

the instruments (i.e., into AIDA, FINCH, LACIS and PINC).

When needed, the particle flow was diluted with dry, particle-

free air to reduce the particle number concentration. In all

of these instruments particles are activated to droplets which

then can freeze upon further cooling.

As for the suspension methods, in the following we give

the number of droplets which were examined by the differ-

ent particle methods, together with the ice nucleation times or

cooling rates. These values are also summarized in Table 1.

In AIDA, roughly 1000 to 10 000 droplets were counted

for each data point; i.e., this is the respective total number

of droplets analyzed by the WELAS WhitE-Light Aerosol

Spectrometer during a 10 s measurement period. In LACIS,

for each separate measurement at each temperature at least

2000 droplets (unfrozen or frozen) were counted; for PINC

there were roughly 500 to 3000, and there were at least 2400

in FINCH. In AIDA, cooling rates used to obtain the data pre-

sented herein ranged roughly from 1/50 to 1/20 Ks−1 (i.e.,

approx. 1 to 3 Kmin−1). Ice nucleation times in the cooled

sections in FINCH, LACIS and PINC were∼ 1 s,< 1 s (tem-

perature dependent) and 5 s, respectively.

3 Data analysis

For the presentation of the data in this study, a singular,

time independent description was chosen. Hartmann et al.

Atmos. Chem. Phys., 15, 1463–1485, 2015 www.atmos-chem-phys.net/15/1463/2015/
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(2013) derived nucleation rates for the immersion freezing

of group III protein complexes in Snomax (thus for P. sy-

ringae), i.e., for those protein complexes which become ice-

active at roughly −7 ◦C. Results in Hartmann et al. (2013)

were found to agree with other studies referenced therein,

showing that nucleation rates increase steeply over a narrow

temperature range. This indicates that the group III protein

complexes responsible for inducing the observed ice nucle-

ation are all comparably similar in their ice nucleation abil-

ity. Furthermore, it was recently shown that ice nucleation by

Snomax shows only a very small time dependence at cool-

ing rates comparable to the current intercomparison (Budke

and Koop, 2015), and hence a time-independent treatment of

the freezing process seems justifiable. It was clearly shown

in Hartmann et al. (2013), that the number of ice nucleation

active macromolecules (INM) (i.e., the protein complexes)

scaled with the volume of the examined particles, and there-

fore also with the mass of Snomax present in a droplet.

Therefore, in the study presented here, the ice nucleation

ability will be expressed per unit mass of Snomax. For sim-

ilar cases, the following description for the frozen fractions

fice (i.e., the number of frozen droplets divided by the total

number of examined droplets) observed for immersion freez-

ing of droplets containing biological material was already in-

troduced by Vali (1971) and again recommended in Murray

et al. (2012):

fice(T )= 1− exp(−nm(T ) ·Cm ·Vd) (1)

nm(T ) is the number of INM per unit of dry Snomax mass,

Cm is the mass concentration of Snomax in the examined

droplets and Vd is the droplet volume and T the tempera-

ture in ◦C. Equation (1) can be used directly for the deter-

mination of nm for those measurements, in which droplets

of a known concentration are examined, i.e., in our study

the suspension methods AL, BINARY, and the WT. For each

suspension method, the examined droplets all had an identi-

cal size, and during each individual experiment, all droplets

had the same Snomax concentration (and different concen-

trations in different experimental runs). Moreover, as immer-

sion freezing can be assumed to be droplet-volume indepen-

dent, it ultimately is only necessary to know how many INM

were present in a droplet initially. If, in one of the suspension

methods, a droplet were to change its size (and hence con-

centration) due to evaporation or additional condensation, the

number of INM present in a droplet would not change. And

therefore, the ice nucleation behavior of a droplet would not

be affected. This, however, holds only as long as the droplet

would not evaporate so much that a freezing point depression

due to increased solute concentration started to influence the

ice nucleation process (Koop and Zobrist, 2009; Attard et al.,

2012).

For the particle methods, neither the exact droplet size was

known at the time at which ice nucleation is induced, nor the

Snomax concentration in the droplet. But as particles used

were either size-selected, or the particle size distribution was

measured, the diameter of the examined particles was known

(dp). Snomax particles were generated from suspensions. In

Sect. 4.1 we will show that the majority of cell fragments

contained in the generated particles were in a size range be-

low 250 nm, together with soluble material. Therefore, it can

be assumed that the particles that were examined in this study

were spherical. Together with the Snomax density (ρ, see

also Sect. 4.1), the mass of Snomax per particle (and hence

per droplet) is then obtained as

M = Cm ·Vd = ρ ·
π

6
· d3

p . (2)

Now Eq. (1) can be written as

fice(T )= 1− exp
(
−nm(T ) · ρ ·

π

6
· d3

p

)
. (3)

It should be mentioned here that the relationship presented

in Eq. (2) was also used to obtain the mass of Snomax per

droplet for the particle methods (i.e., AIDA, FINCH, LACIS

and PINC) shown in Fig. 1. Please note that Eqs. (2) and

(3) are valid for size-selected particles, i.e., for cases where,

during one experiment, particles of the same dp are used, or

for which, alternatively, a mass mean dp can be determined.

In Hartmann et al. (2013) experiments had been conducted

such, that not all of the examined droplets contained INM. It

is obvious that this occurs when the number of INM present

in an ensemble of droplets is smaller than the number of

droplets. In general, when producing particles or droplets

from a suspension, all present INM are distributed randomly

over the produced particles/droplets, following Poisson dis-

tribution (for details see Hartmann et al., 2013):

λ=− ln(1− f ∗ice). (4)

While λ represents the average number of INM per par-

ticle/droplet, f ∗ice denotes the fraction of particles/droplets

which contain at least one of the INM. For λ= 4.7, 1 % of all

particles/droplets do not contain any INM (f ∗ice = 0.99). At

λ= 2, f ∗ice is only 86 %. f ∗ice< 1 shows up in the measure-

ments when fice(T ) levels off in a plateau for temperatures

below about −12 ◦C, where in the plateau region fice(T )=

f ∗ice. For the present study, it was possible for most instru-

ments to run experiments such that a plateau with f ∗ice< 1

could be observed for at least one data set. This occurs when

there are droplets that contain no INM, which can occur for

suspensions with correspondingly low concentrations or for

particles of respective sizes which might consist of biologi-

cal material without containing an INM. In Hartmann et al.

(2013), λ was parameterized as a function of d3
p , i.e., propor-

tional to particle volume, and data obtained in this study will

be compared to this parameterization (see Sect. 5.1).

Different methods examine different numbers of droplets.

Depending on the number of droplets examined in a partic-

ular experiment, an additional uncertainty in the measure-

ments appears for those experiments where f ∗ice< 1, based on

www.atmos-chem-phys.net/15/1463/2015/ Atmos. Chem. Phys., 15, 1463–1485, 2015
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the fact that a comparably small number of INM is Poisson

distributed to all particles/droplets. This is shown exemplar-

ily for four different values of f ∗ice< 1 and a range of droplet

numbers in Fig. 2, where the standard deviations represent

theoretically predicted uncertainties which are due to the ex-

amination of only a limited number of droplets. For calcula-

tion of these values, 1 million droplets were evaluated in all

cases. (To give an example, for a case when the simulation

was done for 100 droplets, it was done 10 000 times, and the

standard deviation was taken from the results of these 10 000

calculations.) At e.g., λ= 0.5, when 50 or 100 droplets are

examined, the relative standard deviation is 17 and 12 %, re-

spectively, while it decreases to 3 % when 2000 droplets are

examined. This clearly shows that the measurement uncer-

tainty decreases with an increase in the number of droplets

examined as an ensemble. This was examined here to ac-

quire a measure for the uncertainty that can be expected for

the different data sets presented in the following.

4 Measurements and results

4.1 Determination of the Snomax density and of the

size of bacterial fragments

As demonstrated in Sect. 3, the density of Snomax parti-

cles is needed for the data evaluation. The effective density

of these particles (ρeff) was determined by using a combi-

nation of mobility and aerodynamic measurements. For the

measurements, particles were produced using the same at-

omizer described above, and a DMA was used to select par-

ticles sizes of either 320 or 550 nm. Behind the DMA, the

mass distribution of the Snomax particles preselected with

the DMA was measured with the Aerosol Particle Mass Ana-

lyzer (APM-II KANOMAX, Model 3601). ρeff was obtained

from the combined measurements of particle electrical mo-

bility dp and mass M:

ρeff =
6M

πdp
3
, (5)

where dp and M are the average mobility diameter and aver-

age mass of the singly charged Snomax particles. The mea-

surements were done at 10 differently concentrated Snomax

suspensions (from 0.1 to 5 gL−1). Figure 3 shows the values

of ρeff plotted as a function of concentration. Note that ρeff

is an apparent density and may include the effect of porosity

and particle shape (see McMurry et al., 2002). A variation in

ρeff is seen for the different examined particle sizes and also

for the differently concentrated Snomax suspensions, but it is

very pronounced only for concentrations which were much

lower than those used in our study. The examination of only

two different particle sizes is not sufficient to derive a trend

for ρeff with size, and hence it was decided for this study to

use the average value of 1.35 gcm−3 for the data evaluation.
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Figure 2. Average f ∗
ice

and the respective standard deviation for

different numbers of examined droplets and for different values of

λ, obtained by theoretical considerations.

Furthermore, as mentioned above, it was assumed that

spherical particles result when sub-micron Snomax particles

are produced from suspensions followed by drying. Snomax

consists not only of non-viable bacteria, but also of nutrient

remnants of the culture medium and of material from the in-

terior of broken bacteria, all of which is present in a Snomax

suspension. It is known that P. syringae bacteria themselves

are rod shaped with a diameter and length roughly below 1

and 2 µm, respectively (Morris et al., 2004). Möhler et al.

(2008) and Hartmann et al. (2013) both found, when using

a particle generation method similar to the one used here,

that a slightly elevated amount of Snomax particles was pro-

duced at sizes of roughly 800 nm (interpreted as whole bac-

terial cells), while a large amount of particles was produced

at sizes down to below 100 nm. We will discuss in the fol-

lowing paragraphs that these smaller particles also contain

ice nucleation active protein complexes originating from P.

syringae bacteria, together with other substances contained

in Snomax.

For the production of Snomax, the P. syringae bacteria are

freeze-dried and irradiated to make them non-viable, and dur-

ing the process the bacteria might already be damaged. Par-

ticle generation with an atomizer might damage them fur-

ther, due to forces appearing in the jet region of the atom-

izer, where the suspension fed into the atomizer is torn into

droplets. However, the protein complexes responsible for the

ice nucleation activity are rather small, on the order of some

nanometers for group III and some 10 nanometers for the

more ice-active groups I and II (see Introduction for details).

These complexes retain their ice nucleation activity as long

as they are still embedded in a fragment of the cell mem-

brane, shown e.g., by the fact that Snomax particles much

smaller than the original bacteria were found to be still ice-

active (Wood et al., 2002; Hartmann et al., 2013).
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Figure 3. The effective density of Snomax measured for particles

generated from differently concentrated suspensions for two differ-

ent dry particle sizes.

We used a dynamic light scattering (DLS) method to de-

termine the size of intact bacteria and of bacterial fragments

present in the examined Snomax particles. For that, mea-

surements were done with a StabiSizer (Microtrac Europe

GmbH, PMX 200CS). A detailed description of the instru-

ments and its applications can be found in Ukhatskaya et al.

(2014). In short, the diameter of the fragments was deter-

mined from measurements of scattered light at an angle of

180◦. The light source was a laser with a wavelength of

750 nm.

At first, the size distribution of bacteria and fragments in

a Snomax suspension was examined using the DLS method

directly after suspending Snomax in water. The Snomax con-

centration was the same used to generate dry particles in

an atomizer with subsequent drying for the AIDA, FINCH,

LACIS, and PINC experiments, i.e., 5 gL−1. Additionally,

particles were produced from these suspensions using two

different particle generators, either a nozzle spray disperser

or the atomizer used for this study. Dispersion of the sus-

pensions was followed in both cases by diffusion drying,

and the resulting particles were fed into a ventilated stainless

steel vessel chamber (volume ∼ 4 m3, temperature ∼ 20 ◦C,

pressure∼ 1000 mbar). Particles were then collected on a fil-

ter (47 mm Nuclepore® substrates, Whatman filter 111 106,

0.2 µm pore size) and subsequently washed off to produce

suspensions for further examination with the DLS method.

In the following paragraph, the term “particulates” is used

to denote particulate matter present in the examined suspen-

sions, e.g., bacterial cells or fragments thereof. Results from

the DLS measurements are presented in Fig. 4. The diame-

ter (dDLS) of the particulate matter present in a freshly made

Snomax suspension ranged predominantly between 600 and

2000 nm. The distribution maximum is at 1000 nm. When

suspensions had been sprayed with the nozzle spray dis-
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Figure 4. Size distributions of the particulate matter present in Sno-

max suspensions as measured with DLS. The blue curve represents

the size distribution seen in a freshly produced Snomax suspension,

the black and red curve show size distributions as present in parti-

cles after dispersion with a nozzle spray disperser or an atomizer,

respectively.

perser, DLS detected a larger amount of particulates in the

range > 400 nm, some small particulates between 50 and

400 nm and a lower amount of particulates with larger sizes.

The maximum shifted slightly to 700 nm. The suspended par-

ticulate matter consists presumably of whole bacterial cells

and maybe some larger fragments or crumpled cells. When

the atomizer had been used, the majority of fragments ap-

peared in the diameter range from 50 to 250 nm (with only

a few fragments of the size observed before remaining). This

shows that particle generation by the atomizer (even when

no impaction plate was installed) disintegrated the bacterial

cells to smaller pieces. While this enables particles down to

a few hundred nanometers to also carry INM, it does not

change the number of INM per mass of dry Snomax, as long

as the protein complexes are not destroyed. This is in line

with a finding presented later in this study (Sect. 5.1); namely

that the distribution of INM occurs linearly with the Snomax

mass over a wide range and covering both methods exam-

ining droplets made from suspensions directly and methods

examining droplets activated on dry Snomax particles.

4.2 BINARY data

Figure 5 shows fice as obtained from BINARY for 14 dif-

ferent Snomax concentrations in the suspensions. The con-

centrations ranged from 10−8 to 10 mgmL−1 (see legend in

Fig. 5). For each of the concentrations, four or five runs in-

cluding 36 droplets each were made; i.e., a total of 144 or 180

droplets was examined. For cooling rate and size of the ex-

amined droplets see Table 1. Data were recorded with a res-

olution of 0.1 K in the range between −40 and 0 ◦C. Data

are only shown in the temperature range down to −20 ◦C, as

already pure water had been observed to freeze at lower tem-
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Figure 5. Frozen fractions as a function of temperature (fice) as

measured by BINARY for 14 differently concentrated Snomax sus-

pensions for droplets with diameters of 1240 µm (i.e., 1 µL).

peratures. This could be attributed to ice nucleation induced

by components in the water or by the contact of the droplets

to the walls of the BINARY. It should be mentioned here that

this is irrelevant for the present study as the INM in Snomax

are ice-active well above −12 ◦C.

For the highly concentrated droplets, a sharp increase in

fice is seen at temperatures as high as −3 ◦C, and after the

sharp increase all droplets are frozen. The temperature at

which the increase occurs decreases with Snomax concentra-

tion. For concentrations above 4×10−6 mgmL−1, the maxi-

mum value obtained for fice reaches 1 at temperatures above

−10 ◦C. For lower concentrations, a plateau for fice< 1 is

observed in the temperature range below roughly −12 ◦C;

i.e., for these concentrations not all droplets freeze. This is

similar to the plateau observed in Hartmann et al. (2013) (see

Sect. 3). It shows that in this concentration range only a com-

parably small number of INM is distributed to the generated

droplets, following a Poisson distribution, such that some

droplets contain no INM at all. The plateau value f ∗ice lowers

with lowering concentration, as the number of droplets con-

taining no INM increases. For the two lowest concentrations,

the number of INM containing droplets was so low that only

a few single droplets froze, making these two data sets very

scarce.
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Figure 6. Frozen fractions as a function of temperature measured

with AL and WT for differently concentrated Snomax suspensions.

Data for the one data set which showed a plateau value below 1 are

displayed with closed symbols. When the same symbols were used,

the mass of Snomax per droplet was similar.

4.3 Acoustic levitator and Mainz vertical wind tunnel

Figure 6 shows fice as measured with AL and WT for differ-

ent Snomax concentrations in the droplets (see legend). For

ice nucleation times, sizes and numbers of examined droplets

see Table 1. Data were recorded with a resolution of 1 K.

Measurements are presented for six and two different Sno-

max concentrations for the AL and the WT, respectively. For

the three highest concentrations used for experiments with

the AL and the highest one used for the WT, less than five

data points exist. This is due to the steepness of the increase

in fice and the comparably coarse temperature resolution.

Comparable to what was found for BINARY, some of the

most concentrated droplets initiated freezing at high temper-

atures, even already at −2 ◦C. Again, a decrease in Snomax

concentration per droplet corresponds to a shift of the freez-

ing temperatures towards lower values. For the lowest con-

centration used in the WT, a plateau develops at f ∗ice< 1

in the temperature range between −12 and −20 ◦C. In all

other cases f ∗ice reaches 1; i.e., all droplets froze at the low-

est examined temperatures. In general, the curves are some-

what more shallow than they are for BINARY. For the latter,

curves which go up to f ∗ice = 1 reach that value at a tem-

perature of −9 ◦C or above. This is different particularly for
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the AL. Data for the lowest, second lowest, and third low-

est concentration go up to f ∗ice = 1, but reach this final value

only at −18, −12, and −11 ◦C, respectively. A direct com-

parison can be done using the data set obtained for the sec-

ond lowest concentration with the AL, which is similar in

mass per droplet to BINARY data with a concentration of

2.6× 10−5 mgmL−1. Data from the WT are similar to those

from the AL. For measurements with the WT, a similar mass

of Snomax in the droplets was used as in the AL (indicated

by the use of the same symbols in Fig. 6). The strongest dif-

ference between AL and WT is seen for the data sets with the

lowest concentration, where data for the AL increases up to

1, while a plateau is observed at 0.87 for the WT.

4.4 LACIS, FINCH and PINC

Values of fice as measured by LACIS, FINCH and PINC are

shown in Fig. 7. Experimental details are again summarized

in Table 1. The three different instruments all used dry par-

ticles produced from a Snomax suspension. PINC data la-

beled with #1 in Fig. 7 were obtained during a stay of the in-

strument at TROPOS, where PINC measured in parallel with

LACIS. During those measurements in Leipzig, a cyclone

had been installed in the particle generation setup to avoid

multiply charged, i.e., larger particles. PINC data labeled

#2 and #3 were measured at the ETH in Zürich, Switzer-

land, where particles were generated by a different atomizer

than otherwise used in this study, and in one case also by

a different batch of Snomax. Open symbols in Fig. 7 given

for LACIS represent the data published in Hartmann et al.

(2013), for which particles had also been generated using

a different atomizer and a different batch of Snomax. LACIS

and PINC data are given for particle diameters of 500 nm,

and for LACIS additionally data for 650 and 800 nm are

shown. FINCH data were measured at its home laboratoy, the

Goethe University in Frankfurt, Germany, for a particle di-

ameter of 900 nm. A pre-impactor was installed at the DMA

to avoid multiply charged particles.

For LACIS, error bars given in Fig. 7 correspond to stan-

dard deviations obtained from separate measurements, while

for FINCH and PINC they represent standard deviations ob-

tained from averaging several subsequently measured data

points in one run. The errors were found to compare well to

the uncertainties shown in Fig. 2, which had been obtained

theoretically.

As for BINARY, the AL and the WT, also here a steep in-

crease in fice is seen, however only for temperatures roughly

above −7 ◦C. All curves show a plateau with f ∗ice< 1. This

is all indicative of the fact that the mass of Snomax included

in the examined particles is much lower than that included

in most of the droplets examined with BINARY, the AL and

the WT, resulting in a lower λ. But in the LACIS data set it

can be seen already that f ∗ice (and λ) increase with increasing

particle size.
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Figure 7. Frozen fractions as a function of temperature measured

with FINCH, LACIS and PINC for different dry particle sizes. Open

symbols given for LACIS represent the data published in Hartmann

et al. (2013). PINC data labeled with #1 were taken during a cam-

paign at LACIS, #2 and #3 denote data taken at ETH using the

INUIT snomax sample and a different Snomax sample, respectively.

For more details on the different data sets see Sect. A7.

A comparison of LACIS data obtained in the framework of

this study with older data obtained by Hartmann et al. (2013)

reveals some deviations (compare the data for 650 nm from

the old and new data set), but these are still within measure-

ment uncertainty. The new data set was obtained roughly 2

years after the old one, and the two measurements differed

in the Snomax sample that was used, in the concentration of

the Snomax suspension used to generate the particles and in

the atomizer itself (Hartmann et al., 2013, used an atomizer

following the TSI design without modifications). Similarly,

a comparison can be done for PINC data obtained at two

different locations (TROPOS and ETH), which also means

that different atomizers and different concentrations in the

Snomax suspension were used, together with two different

batches of Snomax (both done at ETH). In general, the in-

crease in fice observed by PINC occurs roughly 2 K below

where it was observed for LACIS. But the PINC data ob-

tained for the different Snomax batches and different atom-

izers agree well with each other. These results obtained from

LACIS and PINC can be interpreted such that likely neither

the atomizer used to generate the particles, nor the concen-

tration in the suspension nor the Snomax batch had a clearly
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Figure 8. Frozen fractions as a function of temperature, measured

with AIDA during nine different experiments. Different dry parti-

cle sizes or size distributions had been fed into the chamber. The

diameter given in the legend indicates the effective volume mean

diameter and, in parenthesis, the mobility diameter selected at the

DMA is given in addition.

noticeable influence on the results of the measurements. It

should, however, be pointed out that some participants of

this study reported that Snomax was observed to show a de-

cline in ice nucleation ability, particularly when it was stored

above 0 ◦C for some length of time (weeks), and less so but

still noticeable when it was stored frozen for several months

(data not shown in this study).

f ∗ice for 500 nm particles examined with LACIS and PINC

agree well with each other for temperatures below about

−12 ◦C, while it was already mentioned above that PINC

observed the onset of ice nucleation at lower temperatures

(by roughly 2 K), compared to LACIS. This might originate

in the measurement principle of PINC (see Appendix A7),

where supersaturation with respect to ice and water is gen-

erated by a temperature gradient between two iced walls.

For measurements at high temperatures (roughly−10 ◦C and

warmer), it is not possible to generate high supersaturation

with respect to water any more, and residence times for

supersaturated conditions become very short. Hence PINC

measurements in the temperature region above−10 ◦C might

be biased by instrumental limitations.

FINCH data were taken for a particle diameter of 900 nm,

and a plateau is observed close to that observed for 800 nm

particles with LACIS. Droplets examined in FINCH con-

tain roughly the same Snomax mass as droplets with the

lowest concentrations examined in the AL and the WT or

droplets with Snomax concentrations between 2.7×10−7 and

1.0× 10−6 mgmL−1 examined in BINARY. The respective

data sets from AL, BINARY, LACIS, PINC and WT show

a steep increase in fice only below −7 ◦C, while fice mea-

sured by FINCH is 0.2 already at −6.5 ◦C. Unfortunately,

no FINCH data are available in the temperature range above

−6 ◦C for further comparisons.

4.5 AIDA

Figure 8 shows data obtained with AIDA. Nine separate

runs were evaluated. For each run, the particle size spectrum

present in AIDA was different. While for some runs a poly-

disperse particle size distribution was used, size-segregated

particles were fed in for others (see legend). In all cases the

complete particle size distribution from 10 to 17 000 nm was

measured and taken into account to calculate total particle

number concentrations and related parameters. A summary

of cooling rates, particle sizes, and numbers of examined

droplets is again given in Table 1.

For five of the runs presented here, expansions in the

AIDA chamber were started when the temperature in AIDA

was above −7 ◦C. For these cases, droplets were activated

on the particles before AIDA was cooled to the expected on-

set temperature for the immersion freezing of the Snomax

particles, and immersion freezing could set in as soon as the

expansion cooled the chamber sufficiently. For any of these

runs, a series of data points (2 up to 5), all averaged over

10 s, is presented in Fig. 8. The calculation of fice was lim-

ited to the early ice formation and growth period with ice

crystals well below the size limit of about 50 µm in diameter

at which settling losses may affect the measured ice crystal

number concentration. For four AIDA runs, the expansions

were started at a temperature of about −9 ◦C, so that super-

saturation with respect to water, and hence droplet activa-

tion, was only reached below −9 ◦C. In these cases, droplets

were activated at temperatures where the Snomax particles,

as soon as they were suspended in the growing droplets, in-

duced freezing at very high rates. Therefore, the formation of

droplets was followed by a steep increase in the number of

ice crystals, and for these runs, only the maximum value of

fice is depicted in Fig. 8.

Not many data points exist in the temperature range in

which the plateau would be expected; i.e., there are no

data below −12 ◦C and four data points between −10 and

−12 ◦C. These four points were obtained for differently sized

particles and show a range of values for fice. These differ-

ences are mainly caused by a different Snomax mass con-

tained in the droplets, i.e., by a different aerosol particle size

present during the different runs. This will be addressed later.
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Figure 9. Average number of INM per particle or droplet as a func-

tion of the third power of particle diameter or mass per droplet,

respectively, for data sets that showed a clear plateau with f ∗
ice
< 1.

Grey symbols represent data published in Hartmann et al. (2013).

The grey line is the corresponding fit function derived in Hartmann

et al. (2013), which also describes the data collected in the present

study well. The black line represents a fit obtained for this study

(for details see text).

A steep increase of fice in the temperature range between

roughly −7 and −10 ◦C is visible, similar to what was ob-

served for most other instruments.

5 Comparisons

5.1 Comparing frozen fractions in the plateau region

Immersion freezing induced by P. syringae is known to set in

well above−12 ◦C (mostly even above−10 ◦C, e.g., Yankof-

sky et al., 1981), and as shown for the separate instruments

in Sect. 4, this was observed in the current work as well. As

discussed above, some measurements were made for droplet

ensembles for which not each droplet contained an INM. In

these cases, a plateau formed, and the respective frozen frac-

tions are denoted as f ∗ice herein. These cases are examined in

more detail now. This is done following an approach intro-

duced in Hartmann et al. (2013). For that, we used Eq. (4) to

calculate λ, based on f ∗ice. For each instrument where the re-

spective data were available, and there for each particle size

or Snomax concentration in the droplets, an average f ∗ice was

obtained for temperatures ≤−12 ◦C. For BINARY, again

only data ≥−20 ◦C were considered. AIDA data were only

taken at temperatures above−12 ◦C, and the four data points

sampled between −10.5 and −12 ◦C were also included.

Figure 9 shows the respective data, where λ is plotted ver-

sus d3
p . For data from BINARY and the WT, Eq. (2) was used

to convert the mass of Snomax contained in the droplets to

d3
p , using ρ = 1.35 gcm−3. The grey symbols in Fig. 9 repre-

sent data from Hartmann et al. (2013), and the grey line is the

relation given therein between λ and d3
p ; namely, λ= F · d3

p

(with F = 9.995× 10−10 nm−3).

The uncertainties shown in Fig. 9 are taken from the mea-

surement uncertainties of fice. These uncertainties are sim-

ilar to those which can be obtained based on the number

of droplets counted by the different instruments, besides for

the two suspension methods AL and BINARY. For these

two, uncertainties which are based on counting statistics are

larger than the experimental uncertainties of the measure-

ments, likely due to the comparably low number of examined

droplets. Hence, for these two, also uncertainties taken from

the analysis presented in Fig. 2 are shown in Fig. 9, displayed

with broader error bars.

It can be seen that the data point for the largest λ from

the BINARY data set deviates from the linear relationship

seen for most data points in Fig. 9. At large λ values, small

deviations in fice cause a large uncertainty in λ, due to the

strong non-linearity of λ as function of fice, particularly for

fice> 0.95, i.e., for λ> 3. Hence the data point from BI-

NARY for the largest λ is less well constrained than the oth-

ers, and data for λ> 3 can not be expected to follow a lin-

ear behavior as otherwise displayed in Fig. 9. AIDA data

included in Fig. 9 deviate towards lower values. However,

because of the fast ice crystal growth at temperatures around

−10 ◦C already mentioned above, in a single AIDA expan-

sion run it was not possible to measure the full transition of

fice from its steep increase below about−10 ◦C to the plateau

value. Only four data points were obtained at temperatures

between −10.5 and −12 ◦C, were the plateau was not yet

fully reached according to most other data sets. This could

explain the slight low bias in λ seen for AIDA data.

Two new fits for data shown in Fig. 9 were also done for

data points obtained in this study for T < −12 ◦C and λ< 3.

For that, data obtained in this study was used together with

data from Hartmann et al. (2013) in one case, while for the

other case data from Hartmann et al. (2013) was excluded.

For these two cases, values of F of 8.21× 10−10 nm−3 and

8.18× 10−10 nm−3 were obtained, respectively. This is less

than 20 % lower than the respective value derived based on

data from Hartmann et al. (2013) alone. The resulting fits

are very similar and are depicted together as one black line

in Fig. 9. Generally, it can be said that data obtained in this

study align well with those from Hartmann et al. (2013).

In general, the data presented in Fig. 9 confirm that the

distribution of INM over the droplet population can be well

described using a Poisson distribution. When a sufficiently

small number of INM is distributed over a sufficiently large

number of droplets, so that not all of the generated droplets

contain an INM, a plateau at f ∗ice< 1 occurs below −12 ◦C.

Moreover, the presented analysis included the determination

of d3
p for BINARY and the WT based on the mass and density
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of Snomax in the droplets. The fact that a good comparison

was found with data from FINCH, LACIS and PINC justi-

fies the value used for the density of Snomax, where, how-

ever, it should be pointed out that values for ρeff between 1.2

and 1.5 gcm−3 would only lead to a deviation in the Sno-

max mass per droplet of 10 % for the suspension methods,

which would result in error bars still being located within the

respective symbols depicted in Fig. 9.

5.2 Comparing active site densities per mass, nm

5.2.1 BINARY

Here we first show and discuss values of nm (i.e., INM per

unit of dry Snomax mass) as derived from BINARY data, and

then compare and discuss the respective values derived from

measurements of all other instruments.

Figure 10 shows nm derived from measured fice using

Eq. (1). Although 9 orders of magnitude were spanned with

respect to the Snomax concentrations in the examined sus-

pensions, data on nm for all these different concentrations

fall nicely together. After a first increase in fice starting at

roughly −2 ◦C, a slight shoulder is visible in the data at

nm ∼ 106 mg−1 and ∼−6 ◦C. A second strong rise in nm is

seen in the temperature range from−7 to−9 ◦C, leveling off

at a value of nm ∼ 109 mg−1.

The two clearly distinct rises show that the ice activity

comes from two clearly different types of INP (i.e., from

two distinct types of INM or more specific two different pro-

tein complexes (remember that we are dealing with P. sy-

ringae)). In each of the two temperature ranges, one type is

ice-active, corresponding to different groups or classes as de-

scribed above (see Introduction). Group III behavior is seen

clearly in the temperature range below −7 ◦C. All INM ac-

tive above −7 ◦C will be ranked as group I, as no further

clear discrimination between different types of INM can be

seen in this temperature range. In both temperature ranges,

below and above −7 ◦C, a rise of fice as well as of nm is dis-

tributed over a certain temperature range, as even within one

group of INM there are small differences between the dif-

ferent protein complexes. As the temperature lowers, more

and more of the respective INM induce ice formation. When

a plateau is reached, all INM of one group which are capa-

ble of inducing ice have done so. Therefore the plateau re-

veals how many INM per mass of dry Snomax are present

in the sample. As mentioned above, this is ∼ 106 mg−1 and

∼ 109 mg−1 for the two groups of INM observed here.

For T > − 6 ◦C, only droplets made from suspensions

with concentrations > 10−5 mgmL−1 froze. This is in line

with the fact that the more ice-active group I-INM occur

roughly 3 orders of magnitude less frequent than the less

ice-active ones. For a concentration of 10−8 mgmL−1, even

the more abundant group III-INM were hardly present in

any of the droplets (see Fig. 5), and hence at concentrations

< 10−5 mgmL−1, it can be expected that the more ice ac-
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Figure 10. BINARY data represented as number of INM per dry

Snomax mass, nm, as a function of temperature, for all data shown

in Fig. 5 and using identical symbols.

tive but less abundant group I-INM ceased to populate the

droplets.

5.2.2 Overall comparison

In Figure 11, values for nm are shown for all fice data pre-

sented in Sect. 4, where Eqs. (1) or (3) were used to obtain

nm for those methods which examined droplets from suspen-

sions or size-segregated particles, respectively. The panel on

the left of Fig. 11 gives an overview of all data, while the

panel on the right is an enlargement of a part of the former.

Data of all different instruments are close to each other,

with some exceptions. As described above, also here a region

can be seen in which fice increases linearly for most data

sets, in the temperature range from roughly −7 to −9 ◦C,

and the plateau in nm is visible roughly below−12 ◦C. Of all

data down to −12 ◦C, and for nm between 2× 106 mg−1 and

7× 108 mg−1, 72 % of all data points fall within a 1 K band

and 78 % within 2 K band around the mean. In the region

where nm forms a plateau, all data are found in the range

from 7× 108 mg−1 to 2.1× 109 mg−1, i.e., less than a factor

of 3 apart, with an average value of 1.4× 109 mg−1. Hence,

apart from issues which will be discussed below, data from

the instruments included in this study agree quite well.
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Figure 11. Number of INM per dry Snomax mass as a function of temperature, derived from measured fice of all instruments, i.e., for all

data shown in Figs. 5 to 8. BINARY data are solely displayed in red, but otherwise the same symbols and color codes are used as in Figs. 5

to 8; i.e., in all cases data from one instrument are always displayed in a single color. The right panel is similar to the left, zooming in on

values for 5× 106 mg−1<nm< 2.5× 109 mg−1 and on temperatures > −21 ◦C.

For the AL, all values for nm below −8 ◦C are clearly

lower than those from all other instruments. A similar ef-

fect is also seen, albeit only weakly, for data from the high

concentrated droplets examined in the WT, which, however,

might be traced back to the temperature resolution of only

1 K of that data set. The observed lower nm values for the AL

are related to the fact that the respective curves for fice did in-

crease less steeply than those reported by other instruments

and only leveled off below −10 ◦C (Sect. 4.3 and Fig. 6).

Data from the WT obtained for the low Snomax concentra-

tion increase almost as steep as the bulk of the data in the

temperature range below −10 ◦C and form a plateau in nm

with values slightly above the bulk of the data. Here, the com-

paratively low number of examined droplets corresponds to

a comparably large uncertainty in the data which causes these

data to agree with the bulk within measurement uncertainty

(see Sect. 3 together with Figs. 2 and 9).

FINCH, as already discussed for fice, did not detect the

steep increase in nm between −7 and −9 ◦C. Instead, nm

measured at −6.5 ◦C does not differ significantly from those

values measured between −8 and −12 ◦C, while nm mea-

sured at −13 ◦C is almost twice as large as values measured

at higher temperatures.

As discussed above, a somewhat delayed increase for the

PINC data compared to the bulk is visible. This might orig-

inate in the fact that the instrumental limitations impede

immersion freezing measurements at temperatures above

−10 ◦C and cause very short residence times at these com-

paratively high temperatures. It should also be mentioned

that all of the PINC data for T > − 12 ◦C were done with

a different atomizer; however, this is likely not the reason for

the deviation, as data for T < − 12 ◦C are in agreement, no

matter which atomizer was used. PINC data in the plateau

region agree well with the bulk. It should be mentioned that

nm values for T < − 12 ◦C, i.e., in the plateau region, when

derived from PINC and also from LACIS data, show a scat-

ter of roughly a factor of up to 1.5 when these measurements

were done repeatedly at the same temperature. The observed

scatter is larger in the temperature range above−9 ◦C, partic-

ularly for LACIS data, which, however, originates from the

steep increase in fice and nm at these temperatures.

Above −10 ◦C, nm derived from AIDA measurements

agree with the bulk of the data. In the range below −10 ◦C,

the two data points obtained from measurements examining

polydisperse particles are among the lowest ones found at the

respective temperatures, and they are are lower than the two

AIDA data points from monodisperse measurements done in
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this temperature range by about roughly a factor of 2. A pos-

sible explanation could be that polydisperse measurements

in AIDA include very small aerosol particles for which the

distribution of INM might not follow a Poisson distribution.

When the above explicitly mentioned data are excluded

from the examination, a much larger fraction of all data is

included in the 1 and 2 K bands described above. A dis-

cussion motivating the exclusion of these data is given in

the section following below. These data are BINARY data

for T < − 20 ◦C, which generally had been excluded in the

analysis presented herein, data from the AL for T ≤−9 ◦C,

the two polydisperse measurements done with AIDA at

T < − 10 ◦C, the FINCH data point at −6.5 ◦C and PINC

data for T > − 10 ◦C. When these data are excluded, of all

data down to −12 ◦C and for nm between 2× 106 mg−1 and

7× 108 mg−1, 86 % of all separate data points fall within

a 1 K band and 91 % within a 2 K band around the mean,

while, as before, all data in the plateau region are less than

a factor of 3 apart from each other.

6 Discussion

The comparison introduced in the study presented here

taught us some lessons. But before we discuss them, we want

to mention that, unless otherwise stated, the following re-

marks are generally valid also for other suspension methods

or other particle methods, not only for those included in this

study.

Based on the results from the current work, we propose

that Snomax is an appropriate material to be used as a test

substance for future studies, at least when carefully shared

and prepared. The majority of the data obtained for this study

was collected using Snomax from the same batch and using

the same atomizer. However, data measured by LACIS and

PINC using different Snomax batches, atomizers and suspen-

sion concentrations have also been included here. Given that

none of the variations in sample generation and preparation

noticeably influenced the measurement results, we suggest

that Snomax could be used as a standard reference aerosol for

future comparisons. This can also encourage others to com-

pare respective results with those published herein.

We also note that the examination of the complete tem-

perature range can yield additional information, compared

to the examination of only the temperature range in which

a strong increase in fice is observed. The range in which

the strong increase is observed is important when tempera-

ture accuracy is examined. However, also temperature ranges

were observed in which no additional ice nucleation was ob-

served, i.e., in which nm was rather constant (around −6 ◦C

and below −12 ◦C). When fice measured in these tempera-

ture ranges is below 1, then these measurements, made for

Snomax or other substances, can give information about the

counting accuracy of the instrument or about instrumental is-

sues. To obtain the respective measurements with values of

fice below 1, either sufficiently low concentrated suspensions

for suspension methods, or a respectively small particle size

for the particle methods has to be chosen, where, however, in

our study all particle sizes which could possibly be chosen

with a DMA were sufficiently small.

In our study, measurements in the plateau region below

−20 ◦C revealed a clear increase in fice for the BINARY

data sets obtained for the four lowest concentrations. This

increase occurred well above the homogeneous nucleation

temperature of −38 ◦C, where an increase is unavoidable.

These BIANRY data were neither displayed here, nor were

they included in the analysis of the ice nucleation behavior of

Snomax. The observed increase was either caused by impu-

rities in the water used for dilution or by the substrate surface

itself, as evidenced by the fact that the respective nm values

did scale with the dilution factor, i.e., a reduction of Sno-

max concentration by a factor of 10 resulted in an increase

in the observed nm values by a factor of about 10. A possible

influence of the substrate is avoided in AL and WT. But gen-

erally, for suspension methods the possibility of an influence

of impurities in the water increases with the size of the exam-

ined droplets. Another disadvantage of the suspension meth-

ods is, that usually only a smaller number of droplets can be

examined, compared to the particle methods. This number

of droplets still differs between different suspension meth-

ods; e.g., while BINARY measurements are automated and

examine 36 droplets in one run, in both AL and WT single

droplets are examined separately consecutively.

In Figure 11, it can be seen that data for the more ice-

active group I-INM were only reported by the AL and BI-

NARY, indicating an advantage of the suspension methods.

At the same time, a weakness of the particle methods is ap-

parent, which is due to reaching the lower limits of detec-

tion. Suspension methods can vary the amount of ice nucle-

ating material over a wide range. Samples exist, in which

only a very small fraction of all particles carries an INM (or,

alternatively, an ice-active site on mineral dust particles), as

is the case for group I-INM in Snomax, for example. In con-

trast, when particles are generated for the particle methods,

they are restricted in their upper size (and mass) by the par-

ticle generation method. Additionally, particles in the super-

micron size range are lost, due to impaction and/or sedimen-

tation, in the particle generation and instrument set-up, in-

creasingly so with size. In order to generate a particle popu-

lation in which 50 % of the particles carry at least one of the

group I-INM observed in Snomax (i.e., have a λ of 0.5 for

these), they would have to have a diameter of roughly 8 µm.

As mentioned above, however, particles in this size range

are difficult to generate and sample. Hence particle methods

are limited in their ability to detect rarely occurring INM (or

ice-active sites on mineral dusts). Among these instruments,

AIDA can detect the lowest ice crystal concentrations. The

largest particle size examined up to date in FINCH is 900

and 1000 nm in LACIS and PINC. This may not represent

the absolute upper size limit detectable in these instruments,
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but instrument and detector limitations make it challenging

to sample super-micron particles.

In the present study we used a time-independent approach

to compare data from the different instruments. Based on our

results as presented in Fig. 11, where data from the fastest

(LACIS) and slowest (BINARY) instrument agreed well, it

can be argued that a strong time dependence for Snomax is

unlikely. This would also be expected from the steep depen-

dence of fice with temperature.

However, this likely does not apply for all ice nucleat-

ing substances, and examination of the time dependence can

be informative. AIDA and BINARY can vary their cooling

rates, ranging from 1 to 3 Kmin−1 for AIDA and from 0.1

to 10 Kmin−1 for BINARY. The WT allows to record the

time when the freezing occurred; however, up to now only

cumulative results after 30 s have been used. And examining

a time dependence is not possible or can be done covering

only a smaller range for AL, FINCH, LACIS and PINC.

In Section 5.2.2, it was discussed that some nm data devi-

ated noticeably from the bulk of the data. This included BI-

NARY data below−20 ◦C, as discussed above in this section.

Also concerned were data measured with AL at temperatures

of−9 ◦C and below, two data points measured with AIDA for

polydisperse aerosols, the FINCH data point at −6.5 ◦C and

data measured with PINC for temperatures above −10 ◦C.

In the following paragraphs, we will discuss specific issues

which might have been the cause for these observed devia-

tions.

– Acoustic levitator. We first want to address the AL.

Some of the AL data agree well with the bulk of the

data, but measurements below −8 ◦C show noticeably

lower values for nm. These measurements were done

for droplets with lower concentrations of Snomax per

droplet, which only freeze at temperatures below about

−7 ◦C. An explanation might be the following: in the

AL, the temperature is measured directly at the surface

of the droplets by an infra-red thermometer. The sig-

nal which is taken to indicate first ice nucleation is the

start of an increase in the droplet temperature, result-

ing from the release of latent heat during ice formation.

The droplets examined in the AL are rather large (2 mm

in diameter), and nucleation most likely takes place in

the interior of the droplets. When the first ice nucle-

ation occurs, it will take some time until the related in-

crease in droplet temperature propagates to the droplet

surface. Meanwhile the droplet is continuously cooled

down and hence the temperature at which the increase

in the droplet temperature is detected is somewhat be-

low that at which the first ice nucleation took place.

This effect might not be negligible in particular for Sno-

max experiments where freezing takes place in a tem-

perature range not far below 0 ◦C. There the cooling rate

of the droplets in the AL is very fast; i.e., they cool down

from 0 to −10 ◦C within 10 s; i.e., the cooling rate is

1 Ks−1 (see Fig. A1). For droplets in which ice is nucle-

ated at temperatures at and above −8 ◦C, freezing may

proceed so very fast that this effect does not play a no-

ticeable role, but at lower temperatures it might become

apparent by a less steeper slope of fice and nm.

Another reason for the observed deviations in the AL

data to others could be that the droplets, which are

cooled down very fast during the first 10 s, are still

warmer in their bulk than at their surface. Hence, by

the time the interior reaches a temperature which is suf-

ficiently low for ice nucleation to take place, the droplet

surface is already colder.

These deviations will be examined in more detail in the

future, and likely a calibration of this effect, maybe even

based on the herein presented Snomax data set, seems

feasible to account for the offset in temperature in the

respective temperature range.

– AIDA. For AIDA, nm data obtained for polydisperse

measurements at T < − 10 ◦C were at the lower end

of values observed at the respective temperatures. This

was discussed in Sect. 5.2.2, and we only repeat here

that the particles which were used in these experiments

were the smallest ones used in this study, and possibly

it might not be valid to assume that the distribution of

INM to these particles still followed a Poisson distribu-

tion. This could be checked in future experiments with

size-selected particles below 200 nm diameter.

– FINCH. FINCH was the only instrument which did not

detect the steep increase in nm between −7 and −9 ◦C,

and also detected an increase in nm by a factor of 2 be-

tween −12 and −13 ◦C, at a temperature where no ad-

ditional new ice activity is expected from Snomax INM.

All of the data presented in this study were taken dur-

ing one experimental run, for which temperatures were

scanned comparatively fast, which might have caused

problems. However, as it was not possible to obtain

additional data prior to the submission of this study,

a more detailed discussion of possible issues in FINCH

is not possible.

– PINC. At temperatures above roughly −10 ◦C, nm de-

termined from PINC measurements were clearly lower

than other values for nm obtained for this study. The up-

per sampling temperature used in PINC for this study

was −8 ◦C. In order to achieve supersaturation at the

sample position at −8 ◦C, the warm wall needs to be

at temperatures warmer than −3 ◦C, which makes the

mass transfer for ice from warm to cold wall quite high,

leading to anomalous ice crystal counts from falling

frost particles growing on the cold wall. This results

in the limit of detection being too high to quantify ice

formation at temperatures above −8 ◦C. However, be-

low −8 ◦C, data contaminated by frost falling off the
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walls can be distinguished and excluded. A further issue

might originate in the measurement principle of PINC

(see Appendix A7), where supersaturation with respect

to ice and water is generated by a temperature gradi-

ent between two iced walls. For measurements at high

temperatures (roughly −10 ◦C and warmer), it is not

possible to generate high enough supersaturation with

respect to water any more, and residence times for su-

persaturated conditions become very short. Hence PINC

measurements in the temperature region above −10 ◦C

might be biased by instrumental limitations.

7 Comparison of nm averages with parameterizations

from literature

In this section we compare two existing parameterizations

from the literature to those obtained in the current work. In

a first step, average nm values were derived from our data.

Based on the instrumental peculiarities discussed above,

some data were excluded from the averaging procedure, as

described in Sect. 6. The remaining data from each of the in-

struments were averaged separately. All values for nm were

averaged in 1 K bins below−12.5 ◦C and in 0.5 K bins above.

The resulting seven data sets were then averaged to yield

overall nm values representative for this study. The results are

shown as black circles in both panels of Fig. 12. According to

the averaging procedure, each instrument contributed to the

average with an equal weight, and the error bars depicted for

nm reflect the deviation based on averaging the seven data

sets. The uncertainty shown for the temperature represents

±0.6 K. All separate data points that were included in the

averaging are shown in light grey in the background.

Two existing models are compared to the average data in

Fig. 12. The red line represents the following curve:

nm(T )=
6F

πρ
(1− exp(−t ·A(exp(B · T ))))

= 1.4× 109 mg−1(
1− exp

(
−2× 10−10

(
exp

(
−2.34 ◦C−1

· T
))))

(6)

This was obtained by equalling the fractions of unfrozen

droplets as described with the CHESS-model in Hartmann

et al. (2013) to those as described in Eq. (3), with T in ◦C,

ρ = 1.35 gcm−3 (see Sect. 5.1) and values taken from Hart-

mann et al. (2013): F = 9.995× 10−10 nm−3, A= 9.99×

10−10 s−1, B =−2.34 ◦C−1 and t = 0.2 s (the respective nu-

cleation time in LACIS, on which the determination ofA and

B was based). (The resulting nm represents a time indepen-

dent parameter, while a time-dependence had been incorpo-

rated in the CHESS-model originally.)

The blue line was obtained as follows: a model based on

classical nucleation theory, the Soccer ball model (SBM) as

described in Niedermeier et al. (2014), was used to calculate

fice for a nucleation time of 10 s (which is roughly a mean
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Figure 12. Average nm values (black circles) overlying all sep-

arate data points which were included in the average (shown as

background in light grey), together with fits obtained from a time-

independent variant of the parameterization given in Hartmann et al.

(2013) (red curve, see Eq. 6) and in Niedermeier et al. (2014) (blue

curve).

value for the methods used in this study). A slight time de-

pendence of the ice nucleation process for Snomax can be

observed (as discussed in detail in Budke and Koop, 2015).

But as a change of the nucleation time of a factor of 10 shifts

the freezing curve by roughly only 0.3 K (and a factor of 100

by 0.6 K etc.), we use the mean nucleation time given above

as being representative for the whole study and otherwise ne-

glect a time dependence. The contact angle distribution used

for Snomax was µ0 = 0.595 rad (34.1◦) and σ = 0.04 rad

(2.3◦) for the mean contact angle and the standard deviation

(Niedermeier et al., 2014). fice as calculated by the SBM was

then converted to nm using Eq. (3). nm was derived for par-

ticles of sizes with 500, 1000, 1500 and 2000 nm (i.e., for

different λ values), and as to be expected, the resulting nm

showed to be independent of the particle size. The result of

these calculations is seen as a blue line in Fig. 12.

The maximum average value of nm of 1.4× 109 mg−1 co-

incides very well by both approaches presented in Fig. 12.

But both parameterizations were originally made to describe

the immersion freezing behavior of the more abundant but

less ice-active INM, so that the shoulder in nm at roughly

−6 ◦C is not represented explicitly. A further deviation oc-

curs in the region where the steep increase in nm levels off
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into the plateau (roughly around −10 ◦C), where the bend in

the curve based on Eq. (6) (Hartmann et al., 2013) is slightly

sharper than that seen in the average values. Another small

deviation can be seen for the three lowest average nm values

below 2×103 mg−1, which are underestimated by the SBM.

However, with the exception of these three values, both pa-

rameterizations describe the average data well over the whole

course within a temperature uncertainty of ±0.6 K (95 %

confidence range) in the entire range in which an increase of

nm is seen. When judging the deviation in relation to nm, it is

less than a factor of 2 at all temperatures at which measure-

ments were made, again besides for the SBM parameteriza-

tion above −5 ◦C. But the INM which are ice-active at these

high temperatures, i.e., belonging to group I, can be expected

to be of a minor if not negligible atmospheric relevance, due

to their scarce occurrence which was already noted e.g., by

Yankofsky et al. (1981). Therefore, a new parameterization

taking this second type of INM explicitly into account was

omitted in this study. Instead it can be concluded that most of

the data measured in the framework of this present study are

in agreement with already existing parameterizations, where

the two parameterizations described here represent a time-

independent one (Eq. 6) and one in which a time dependence

of the freezing process technically is accounted for (SBM).

8 Summary and conclusions

In this study, data obtained for immersion freezing from

seven different measurement methods and instruments were

compared to each other. These instruments included meth-

ods examining droplets which were made from suspensions

directly (suspension methods), which were an acoustic levi-

tator (AL), an optical freezing array (BINARY) and a wind

tunnel (WT). The remaining four instruments all examined

INP (particle methods) and included an expansion chamber

(AIDA), a flow tube (LACIS) and two ice nucleation coun-

ters (FINCH and PINC). The comparison was done within

the research unit INUIT (Ice Nucleation research UnIT), and

focused on the examination of ice nucleation up to com-

parably high temperatures, where the highest temperatures

probed with the different instruments were in the range from

−2 to −8 ◦C. Due to its ability to induce ice nucleation at

these high temperatures, Snomax was used as the test sub-

stance. This is a commercially available product containing

ice nucleation active protein complexes originating from P.

syringae bacteria. Care was taken to use similar droplet and

particle generation techniques and Snomax from the same

batch as far as possible.

To enable a comparison, all data were represented as num-

ber of ice-active entities per mass of examined (dry) sub-

stance (nm), an approach taken from Vali (1971). In gen-

eral, the observed curve for nm is in agreement with the vast

body of literature existing for P. syringae and Snomax, for

which it is known that ice nucleation active protein com-

plexes (i.e., ice nucleation active macromolecules, INM) in-

duce the freezing, and that more and less ice-active types

of INM exist, i.e., group I and group III protein complexes.

A sharp increase in measured frozen fractions and nm was

seen starting at temperatures below −2 ◦C, leveling off in

a shoulder at −6 ◦C, followed by a second steep increase

from −7 to −9 ◦C. The two increases show the temperature

ranges in which two differently sized (and differently ice-

active) INM types become ice-active. A plateau in nm devel-

oping below −12 ◦C yielded that the number of group III-

INM in the examined Snomax sample was 1.4× 109 mg−1.

The more ice-active group I-INM were 3 orders of magnitude

less abundant, i.e., occurring in numbers of ∼ 1×106 mg−1.

Data determined for this study mostly were found within

a range of 1 K for temperatures above −12 ◦C (86 % after

exclusion of some outliers). For temperatures below−12 ◦C,

they were found in a range from 7× 108 mg−1 to 2.1×

109 mg−1, i.e. less than a factor of 3 apart around the av-

erage value of 1.4×109 mg−1. Pronounced differences were

only seen for some instruments in some temperature ranges,

including the AL below −9 ◦C, BINARY below −20 ◦C,

FINCH above −8 ◦C, PINC above −10 ◦C and two AIDA

expansions made for polydisperse particles below −10 ◦C.

Possible reasons for the observed deviations are discussed in

the text, together with general advantages and disadvantages

of suspension and particle methods.

In the present study, besides the above discussed devia-

tions, data agreed well over the whole temperature range in

which measurements were made. In the temperature range

below−12 ◦C, where data from five of the seven instruments

could be included in the comparison, values scattered by less

than a factor of 3. Suspension methods and particle meth-

ods included in our study yielded similar average numbers

of INM per particle/droplet, as can be seen by the fact that

λ was found to be proportional to the particle volume and

by the fact that nm agreed well for the different instruments

over the whole temperature range. Here it shows that it might

have been advantageous, that the bacterial cells were torn

apart in the atomizer which we used to produce particles. If

we had dealt with whole bacterial cells, these cells could not

have been distributed into particles smaller than the cell size,

and λ would have dropped to 0 sharply for these small parti-

cles. It also is of advantage that Snomax contains much solu-

ble material, as particles produced from solutions tend to be

more spherical than e.g., insoluble mineral dust particles. As

we found that the relation between suspension methods and

particle methods could be based on a simple relation of the

mass of Snomax to the volume of Snomax particles, particle

shape can be assumed to have been close to sphericity. This

facilitates the comparison of results from the different instru-

ments. More difficulties might arise for less spherical INP or

for substances where the relation between mass (or surface)

of the INP and number of the ice-active entities is not as sim-

ple. We propose that Snomax indeed is a substance which

can be used as a model sample when testing instrumentation
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with respect to performance in immersion freezing, partic-

ularly in the temperature range where the strong increase in

measured ice fractions is seen, but also at lower temperatures.

For the latter, conditions of the experiment should be chosen

such that not all droplets carry an INM, which can be reached

by examining sub micron dry particles or sufficiently diluted

suspensions, because this enables to measure frozen fractions

below 1 and hence gain additional information about the per-

formance of the instrument.

Two parameterizations taken from literature (Hartmann

et al., 2013; Niedermeier et al., 2014) compared well with

the data obtained in this study, although in these parameter-

izations the more ice-active INM had not been incorporated.

Nevertheless, deviations over the whole course (from −2 to

−38 ◦C) are small enough to argue that these parameteriza-

tions, and also the time-independent parameterization based

on Hartmann et al. (2013) derived in the present study (see

Eq. 6) are applicable for describing immersion freezing in-

duced by P. syringae bacteria over the whole temperature

range in which immersion freezing occurs.
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Appendix A: Instrumentation

A1 Acoustic levitator (AL)

The employed acoustic levitator is the type APOS BA 10

from the company TEC5. A standing ultrasonic wave is pro-

duced by interference between a radiator and a reflector. At

the nodes drops can be levitated without any wall or substrate

contact and without electrical charges (Diehl et al., 2009).

For heterogeneous experiments the levitator is installed in-

side a walk-in cold chamber together with a platinum-resistor

thermometer Pt100 to measure the ambient temperature.

A digital video camera is used to record the freezing pro-

cess and the droplet sizes. With an infrared thermometer the

temperature of the freezing drops is measured directly and

free of contact. As this requires a circular spot of approxi-

mately 1 mm in diameter, the investigated drops had sizes of

2.0± 0.1 mm in diameter (Diehl et al., 2014).

Because of their rather large volume and missing venti-

lated heat transfer, the levitated drops cooled down rather

slowly while exchanging heat with the ambient air in the cold

chamber which was approximately −23 ◦C during the Sno-

max experiments. This resulted in a non-linear cooling rate

and the temperature of pure water drops in the levitator de-

veloped as follows (see also Fig. A1):

Tdrop(t)=−21.83862+ 21.88997 · exp

(
−

t

15.3108

)
. (A1)

Individual drops containing Snomax in various concentra-

tions were levitated one after another and cooled down ac-

cording to Eq. (A1). The transition from the liquid to the

ice phase was visible by a sudden increase of the droplet

temperature (caused by the release of latent heat) recorded

by the infrared thermometer. For each particle concentration,

approximately 100 drops were observed until they froze and

the freezing temperatures, i.e., the lowest droplet tempera-

tures, were recorded with a measuring error of ±0.7 K. Af-

terwards, for temperature steps of 1 K the fractions of frozen

drops were counted.

A2 AIDA

The AIDA (Aerosol Interaction and Dynamics in the At-

mosphere) controlled expansion cloud-simulation chamber

(Möhler et al., 2003) was used to measure the droplet-

freezing activity of Snomax particles during expansion cool-

ing. The experimental procedure of AIDA immersion mode

freezing measurements is described in previous literature

(Hiranuma et al., 2014; Niemand et al., 2012) and is only

briefly discussed here. The AIDA chamber consists of a ther-

mally instated 84 m3 aluminum vessel and an industrial air

pump to simulate the adiabatic cooling of an updrafted air

parcel by mechanical cooling. Due to the continuous cool-

ing, water vapor becomes fully saturated inside the vessel,

resulting in freezing of Snomax particles immersed in water
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Figure A1. Development of droplet temperature during cooling in

the AL.

droplets. Consequently, AIDA enables experiments with an

abundant concentration of supercooled droplets (up to sev-

eral hundred droplets per cubic centimeter) and atmospheri-

cally relevant supercooled droplet sizes (several micrometer

in diameter) within experimental uncertainties in temperature

of ±0.3 K and in relative humidity with respect to water of

±5 %.

The injection of Snomax particles into the AIDA chamber

was carried out by atomization of a Snomax suspension (5 g

Snomax in 1 L of 18.2 M�cm ultrapure water). For consis-

tency with other INUIT project partners, the same atomizer

type was used at AIDA for particle generation. Accordingly,

aerosolized Snomax particles were directed into the venti-

lated AIDA vessel and characterized for number concentra-

tion (Nae) and particle size distribution by a Scanning Mobil-

ity Particle Sizer (SMPS, TSI, Model 3080 DMA and Model

3010 condensation particle counter) and an Aerosol Particle

Sizer (APS, TSI, Model 3321) prior to each expansion exper-

iment.

During the typical AIDA expansion experiments carried

out for the present work, a constant mechanical pumping cre-

ated the chamber pressure drop from atmospheric pressure to

roughly 900 mbar, resulting in time-averaged cooling rates of

about 1 to 3 Kmin−1. A total of nine expansions (three poly-

disperse and six size-selected measurements) was performed

and immersion freezing activities of Snomax aerosols were

recorded in the temperature range from −7.5 to −11.5 ◦C.

The number density of activated ice, Nice, was measured

by the Welas optical particle counter (PALAS, Sensor se-

ries 2300 and 2500, Benz et al., 2005) installed on the bot-

tom of the vessel during each expansion, and was later on

used to evaluate the activated ice fraction (fice =Nice/Nae).

We note that four expansions were carried starting roughly

at −9 ◦C, in order to estimate fice in the temperature region

below −9 ◦C with a minimum influence of ice losses by the

settling of ice crystals.
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A3 BINARY

The BINARY (Bielefeld Ice Nucleation ARraY) setup con-

sists of an array of 36 microliter-sized droplets positioned on

a thin hydrophobic glass surface placed on a Peltier cooling

stage (Budke and Koop, 2015). With the Peltier stage con-

nected to a sink bath at 5 ◦C, the droplets can be cooled

to −40 ◦C at cooling rates between 0.1 and 10 ◦Cmin−1.

Heterogeneous ice nucleation at the glass surface is mini-

mized due to the hydrophobicity of the glass, and also by us-

ing freshly double-distilled water. The droplets are separated

from each other by a polydimethylsiloxane (PDMS) spacer

and the resulting compartments are sealed at the top with an-

other glass slide. The droplet separation prevents a Wegener–

Bergeron–Findeisen process, in which frozen droplets grow

at the expense of unfrozen, i.e., supercooled liquid, droplets

due to the vapor pressure difference between ice and super-

cooled liquid water Murphy and Koop (2005). During an ex-

periment the droplet array is monitored continuously with

a CCD camera which enables the automatic detection of nu-

cleation events. A LabVIEW™ virtual instrument is used to

control the temperature of the Peltier stage and to analyze in

real time the obtained digital images, typically recorded ev-

ery 6 s. Freezing is determined optically based on the change

in brightness when the transparent liquid droplets become

opaque upon freezing. The mean gray value, gv, (ranging

from gv= 0 (black) to gv= 255 (white)) is determined for

each compartment/droplet i in every image j , i.e., at ev-

ery temperature. The difference in gv between successive

images and, hence, temperatures 1gvi,j = gvi,j − gvi,j−1 is

then used to determine freezing and melting events. Typical

gray value differences 1gvi,j upon freezing are larger than

∼ 10, while the maximum background noise value is well

below ±1, which we set as the threshold value for freezing

and melting, respectively.

A4 FINCH

FINCH (Fast Ice Nucleus CHamber) consists of an 80 cm

long flow tube (8.8 cm inner diameter), which can be cooled

down to −65 ◦C. Right before entering the tube on the top

the sample flow is cooled and mixed with particle-free, hu-

midified, warm air as well as with dry, cold air. The mixing

of the different air flows and the cooling of the tube results

in a defined freezing temperature and supersaturation inside

the tube (Bundke et al., 2008). For the present study FINCH

was operated at 150 % RHi (relative humidity with respect to

ice), which is well above water saturation for the used range

of freezing temperatures. Therefore, particles that are enter-

ing the flow tube grow to droplets and subsequently freeze

depending on the nature of the immersed aerosol particle

and the adjusted freezing temperature. An optical detector

similar to Bundke et al. (2010) is mounted at the outlet of

the flow tube. It determines whether the arriving hydromete-

ors are liquid droplets or frozen ice crystals from which the

frozen fraction fice can be calculated.

FINCH measurements were performed on size-segregated

particles, which were produced by atomizing a Snomax sus-

pension (1 g Snomax in 1 L of deionized water, using the

same atomizer as for AIDA, LACIS, and PINC measure-

ments). After spraying, the particles were dried in a silica

diffusion drier and size-selected by a DMA (Differential Mo-

bility Analyzer, TSI 3081, sheath flow of 3 L min−1). The

monodisperse aerosol flow (∼ 0.1 to 0.3 L min−1) was mixed

with ∼ 2.7 to 2.9 L min−1 of dry, particle-free air to reduce

the number of particles considerably. For the measurements

with FINCH a particle number concentration of less than

∼ 1500 L−1 is aimed at to avoid particle coincidence in the

detector.

A5 LACIS

LACIS (Leipzig Aerosol Cloud Interaction Simulator) was

used in its immersion freezing mode (Hartmann et al., 2011)

for the study presented here. LACIS is a 7 m long flow tube,

consisting of 1 m sections which can be temperature con-

trolled separately. Temperatures can go down to−40 ◦C. Be-

fore entering the flow tube, the sheath air stream is hydrated

such – by use of a humidifier (PH-30T-24KS, Perma Pure) –

that droplets form on the aerosol particles upon cooling, i.e.,

during the passage of the flow tube. These droplets can sub-

sequently freeze, depending on the nature of the immersed

aerosol particle and the adjusted temperature. At the LACIS

outlet, a self-built optical particle spectrometer (TOPS-Ice,

Clauss et al., 2013) determines if the arriving hydrometeors

are liquid droplets or frozen ice crystals, resulting in the de-

termination of a frozen fraction, fice.

LACIS measurements were performed on size-segregated

particles which were produced by atomizing a Snomax sus-

pension (5 g Snomax in 1 L of 18.2 M�cm ultrapure water,

using exactly the same atomizer as used for AIDA, FINCH

and PINC measurements). After spraying, the particles were

dried and size-selected by a DMA (Differential Mobility An-

alyzer, type Vienna Hauke medium, aerosol to sheath air flow

ratio of 1 : 5) and provided for further analysis.

For a more detailed description of the particle genera-

tion and measurement procedure see Hartmann et al. (2013),

where similar measurements were introduced, differing only

in the use of a different batch of Snomax, the use of a differ-

ent atomizer, and the use of a different concentration in the

sprayed suspension (1.6 gL−1), which, however, does not in-

fluence the particle generation as the aerosol was dried after

spraying.

A6 Mainz vertical wind tunnel (WT)

In the Mainz vertical wind tunnel, drops are freely floated

at their terminal velocities in an air stream. Thus, ventilation

and heat transfer are similar to the situation in the real at-
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mosphere. The wind speed is uniformly distributed around

the tunnel cross section area up to the boundary layer at the

tunnel walls. This ensures that drops float in a stable fash-

ion in the experimental section of the tunnel (Diehl et al.,

2011). The droplet sizes were calculated from the recorded

wind speed in the tunnel as it must be equal to the terminal

velocity of the droplet to keep the droplet floating in the ex-

perimental section. The droplet temperature was determined

from the ambient temperature in the wind tunnel and the dew

point with an estimated error of ±0.75 K.

The experiments were performed in a manner very simi-

lar to earlier studies with pollen (Diehl et al., 2002; v. Blohn

et al., 2005) at constant ambient temperatures; i.e., the wind

tunnel was pre-cooled to certain temperatures in steps of 1 K.

The adaption time of the drops, i.e., the time after which the

droplet temperature was equal to the ambient temperature,

was calculated according to Pruppacher and Klett (1997)

(Chapt. 13) by considering ventilation and heat transfer of

a droplet floating in an air stream. The results indicate that

drops of the investigated sizes reached the ambient tempera-

tures of −5 to −18 ◦C in the wind tunnel after 3 to 4 s. Indi-

vidual drops of 760 µm diameter containing Snomax in two

different concentrations were observed for approximately 30

to 40 s. Per temperature interval and Snomax concentration

around 50 drops were investigated. The fractions of frozen

drops were counted for a total observation time of 30 s.

A7 PINC

The Portable Ice Nucleation Chamber (PINC) operation prin-

ciple is based on the Continuous Flow Diffusion Chamber

(CFDC; Rogers, 1988) with two flat parallel plates (568×

300 mm) whose inner walls are iced before each experi-

ment. Applying a temperature gradient between the two iced

walls leads to supersaturation with respect to ice and wa-

ter and allows ice crystals to form and grow on ice nu-

clei in the sub-saturated (RH < 100 %) and supersaturated

(RH > 100 %) regimes. For conditions when ice nucleation

is observed at RHw< 100 %, deposition mode ice forma-

tion is inferred, whereas for any ice formation observed at

RHw> 100 %, condensation/immersion freezing is implied.

Droplets evaporate in the evaporation section downstream of

the freezing chamber. Upstream of PINC, aerosol particles

are counted with a condensation particle counter (CPC) af-

ter flowing through an impactor with a D50 cutoff at 0.91 µm

aerodynamic diameter (Chou et al., 2011). The ice crystals

are counted with an optical particle counter (OPC) at the exit

of PINC and are distinguished from the small unactivated

aerosol particles by their size.

Further details on the PINC design are described in Chou

et al. (2011) and Kanji et al. (2013). The activated fraction

is calculated by taking the ratio of the ice crystal number

concentration to the total particle number concentration mea-

sured with the CPC. For comparison with other ice nucle-

ation counters measuring in the immersion mode, only data

taken by PINC at RHw ≥ 100 % and below the RHw at which

droplets survive past the evaporation section (RHw,ds ), are

presented. For each temperature, RH was scanned contin-

uously from RHi = 100 % up to RHw,ds . At T =−20 ◦C,

RHw,ds is 104.5 %. However, at T =−10 ◦C it decreases to

101.7 %. Particle losses in the tubing and the impactor up-

stream of PINC were accounted for by a particle loss curve

which was found for kaolinite particles with a mobility diam-

eter between 500–950 nm or measured before the experiment

using Snomax (for measurements at T > − 12 ◦C).

Temperature uncertainties in PINC are on the order of

±0.1 K resulting in a relative uncertainty of ±2 % in relative

humidity. The temperature uncertainty results in a variation

across the sample lamina of up to 0.8 K (±0.4 K). The uncer-

tainty in nm from the optical particle counter is 10 %.

Measurements were made during three different occa-

sions. Measurements were done in Leipzig in parallel to

LACIS measurements (data labeled with #1), where parti-

cles were produced using the INUIT Snomax batch and the

atomizer used within the INUIT community. During these

measurements, PINC only measured at T < − 14 ◦C, due

to instrumental issues during the campaign. Snomax from

the INUIT batch was then also used for measurements at

ETH, and care had been taken to store the sample frozen

at all times (stored at −18.2 ◦C). The respective data are la-

beled #2. At ETH, also Snomax from a different batch was

used, and the respective data are marked by #3 (this Snomax

sample was stored at +5 ◦C). PINC measurements done at

ETH, including all measurements at T > − 12 ◦C, were per-

formed with Snomax particles prepared by suspending 0.08 g

or 0.4 g Snomax in 80 mL of deionized distilled water (DDW,

18.2 M�cm) (#2 and #3, respectively). Particles were sus-

pended using an atomizer and size-selected at 500 nm with

a DMA (TSI, 1 : 5 sample to sheath air ratio).

The results suggest a good agreement between LACIS and

PINC data at temperatures below −14 ◦C. At warmer tem-

peratures, a RHw of 100 to 101.7 % and the short residence

time of the aerosol particles in PINC of 5 s might not be suffi-

cient to guarantee droplet formation. Thus, it is possible that

we do not observe immersion freezing at these conditions,

but rather deposition or condensation nucleation of ice.

Acknowledgements. The present study was done within the

DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525),

including project BU 1432/4-1, DI 1539/1-1, KO 2944/2-1, MO

668/4-1, and WE 4722/1-1. Z. A. Kanji and Y. Boose would like

to acknowledge SNF for funding. The authors also thank the two

referees of this work, Russel Schnell and Gabor Vali, for their

encouraging reviews.

Edited by: A. Bertram

www.atmos-chem-phys.net/15/1463/2015/ Atmos. Chem. Phys., 15, 1463–1485, 2015



1484 H. Wex et al.: Comparing ice nucleation measurements

References

Ansmann, A., Tesche, M., Seifert, P., Althausen, D., Engelmann, R.,

Fruntke, J., Wandinger, U., Mattis, I., and Müller, D.: Evolu-

tion of the ice phase in tropical altocumulus: SAMUM lidar

observations over Cape Verde, J. Geophys. Res., 114, D17208,

doi:10.1029/2008JD011659, 2009.

Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F.,

Baustian, K. J., Carslaw, K. S., Dobbie, S., O’Sullivan, D., and

Malkin, T. L.: The importance of feldspar for ice nucleation

by mineral dust in mixed-phase clouds, Nature, 498, 355–358,

doi:10.1038/nature12278, 2013.

Attard, E., Yang, H., Delort, A.-M., Amato, P., Pöschl, U., Glaux,

C., Koop, T., and Morris, C. E.: Effects of atmospheric conditions

on ice nucleation activity of Pseudomonas, Atmos. Chem. Phys.,

12, 10667–10677, doi:10.5194/acp-12-10667-2012, 2012.

Augustin, S., Wex, H., Niedermeier, D., Pummer, B., Grothe,

H., Hartmann, S., Tomsche, L., Clauss, T., Voigtländer, J., Ig-

natius, K., and Stratmann, F.: Immersion freezing of birch

pollen washing water, Atmos. Chem. Phys., 13, 10989–11003,

doi:10.5194/acp-13-10989-2013, 2013.

Benz, S., Megahed, K., Möhler, O., Saathoff, H., Wagner, R., and

Schurath, U.: T-dependent rate measurements of homogeneous

ice nucleation in cloud droplets using a large atmospheric simu-

lation chamber, J. Photochem. Photobio., 176, 208–217, 2005.

Budke, C. and Koop, T.: BINARY: an optical freezing array for as-

sessing temperature and time dependence of heterogeneous ice

nucleation, Atmos. Meas. Tech., 8, 689–703, doi:10.5194/amt-8-

689-2015, 2015.

Bühl, J., Ansmann, A., Seifert, P., Baars, H., and Engelmann, R.:

Toward a quantitative characterization of heterogeneous ice for-

mation with lidar/radar: comparison of CALIPSO/CloudSat with

ground-based observations, Geophys. Res. Lett., 40, 4404–4408,

doi:10.1002/grl.50792, 2013.

Bundke, U., Nillius, B., Jaenicke, R., Wetter, T., Klein, H., and

Bingemer, H.: The fast Ice Nucleus chamber FINCH, Atmos.

Res., 90, 180–186, doi:10.1016/j.atmosres.2008.02.008, 2008.

Bundke, U., Reimann, B., Nillius, B., Jaenicke, R., and Bingemer,

H.: Development of a Bioaerosol single particle detector (BIO

IN) for the Fast Ice Nucleus CHamber FINCH, Atmos. Meas.

Tech., 3, 263–271, doi:10.5194/amt-3-263-2010, 2010.

Chou, C., Stetzer, O., Weingartner, E., Jurányi, Z., Kanji, Z. A., and

Lohmann, U.: Ice nuclei properties within a Saharan dust event

at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11,

4725–4738, doi:10.5194/acp-11-4725-2011, 2011.

Clauss, T., Kiselev, A., Hartmann, S., Augustin, S., Pfeifer, S., Nie-

dermeier, D., Wex, H., and Stratmann, F.: Application of lin-

ear polarized light for the discrimination of frozen and liquid

droplets in ice nucleation experiments, Atmos. Meas. Tech., 6,

1041–1052, doi:10.5194/amt-6-1041-2013, 2013.

Cochet, N. and Widehem, P.: Ice crystallization by Pseudomonas

syringae, Appl. Microbiol. Biot., 54, 153–161, 2000.

Conen, F., Morris, C. E., Leifeld, J., Yakutin, M. V., and Alewell,

C.: Biological residues define the ice nucleation properties of soil

dust, Atmos. Chem. Phys., 11, 9643–9648, doi:10.5194/acp-11-

9643-2011, 2011.

Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M.,

Zondlo, M. A., Smith, J. B., Twohy, C. H., and Mur-

phy, D. M.: Clarifying the dominant sources and mecha-

nisms of cirrus cloud formation, Science, 340, 1320–1324,

doi:10.1126/science.1234145, 2013.

DeMott, P. J., Möhler, O., Stetzer, O., Vali, G., Levin, Z., Pet-

ters, M. D., Murakami, M., Leisner, T., Bundke, U., Klein, H.,

Kanji, Z. A., Cotton, R., Jones, H., Benz, S., Brinkmann, M.,

Rzesanke, D., Saathoff, H., Nicolet, M., Saito, A., Nillius, B.,

Bingemer, H., Abbatt, J., Ardon, K., Ganor, E., Georgakopou-

los, D. G., and Saunders, C.: Resurgence in ice nuclei mea-

surement research, B. Am. Meteorol. Soc., 92, 1623–1635,

doi:10.1126/science.1234145, 2011.

Diehl, K., Matthias-Maser, S., Mitra, S. K., and Jaenicke, R.: The

ice nucleating ability of pollen. Part II: Laboratory studies in im-

mersion and contact freezing modes, Atmos. Res., 61, 125–133,

2002.

Diehl, K., Ettner-Mahl, M., Hannemann, A., and Mitra, S. K.: Ho-

mogeneous freezing of single sulfuric and nitric acid solution

drops levitated in an acoustic trap, Atmos. Res., 94, 356–361,

2009.

Diehl, K., Mitra, S. K., Szakáll, M., v. Blohn, N., Borrmann, S., and

Pruppacher, H. R.: The Mainz vertical wind tunnel facility: a re-

view of 25 years of laboratory experiments on cloud physics and

chemistry, in: Wind Tunnels: Aerodynamics, Models, and Ex-

periments., edited by: Pereira, J., Nova Science Publishers Inc.,

Hauppauge, NY, Chapter 2, 2011.

Diehl, K., Debertshäuser, M., Eppers, O., Schmithüsen, H., Mi-

tra, S. K., and Borrmann, S.: Particle surface area depen-

dence of mineral dust in immersion freezing mode: investiga-

tions with freely suspended drops in an acoustic levitator and

a vertical wind tunnel, Atmos. Chem. Phys., 14, 12343–12355,

doi:10.5194/acp-14-12343-2014, 2014.

Fröhlich-Nowoisky, J., Hill, T. C. J., Pummer, B. G., Franc, G. D.,

and Pöschl, U.: Ice Nucleation Activity in the Widespread Soil

Fungus Mortierella alpina, Biogeosciences Discuss., 11, 12697–

12731, doi:10.5194/bgd-11-12697-2014, 2014.

Garnham, C. P., Campbell, R. L., Walker, V. K., and Davies, P. L.:

Novel dimeric beta-helical model of an ice nucleation pro-

tein with bridged active sites, BMC Struct. Biol., 11,

doi:10.1186/1472-6807-11-36, 2011.

Govindarajan, A. G. and Lindow, S. E.: Size of bacterial

ice-nucleation sites measured in situ by radiation inacti-

vation analysis, P. Natl. Acad. Sci. USA, 85, 1334–1338,

doi:10.1073/pnas.85.5.1334, 1988.

Green, R. L. and Warren, G. J.: Physical and functional repeti-

tion in a bacterial ice nucleation gene, Nature, 317, 645–648,

doi:10.1038/317645a0, 1985.

Hallett, J. and Mossop, S. C.: Production of secondary ice

particles during the riming process, Nature, 249, 26–28,

doi:10.1038/249026a0, 1974.

Hartmann, S., Niedermeier, D., Voigtländer, J., Clauss, T., Shaw,

R. A., Wex, H., Kiselev, A., and Stratmann, F.: Homogeneous

and heterogeneous ice nucleation at LACIS: operating princi-

ple and theoretical studies, Atmos. Chem. Phys., 11, 1753–1767,

doi:10.5194/acp-11-1753-2011, 2011.

Hartmann, S., Augustin, S., Clauss, T., Wex, H., Šantl-Temkiv,

T., Voigtländer, J., Niedermeier, D., and Stratmann, F.: Immer-

sion freezing of ice nucleation active protein complexes, At-

mos. Chem. Phys., 13, 5751–5766, doi:10.5194/acp-13-5751-

2013, 2013.

Atmos. Chem. Phys., 15, 1463–1485, 2015 www.atmos-chem-phys.net/15/1463/2015/

http://dx.doi.org/10.1029/2008JD011659
http://dx.doi.org/10.1038/nature12278
http://dx.doi.org/10.5194/acp-12-10667-2012
http://dx.doi.org/10.5194/acp-13-10989-2013
http://dx.doi.org/10.5194/amt-8-689-2015
http://dx.doi.org/10.5194/amt-8-689-2015
http://dx.doi.org/10.1002/grl.50792
http://dx.doi.org/10.1016/j.atmosres.2008.02.008
http://dx.doi.org/10.5194/amt-3-263-2010
http://dx.doi.org/10.5194/acp-11-4725-2011
http://dx.doi.org/10.5194/amt-6-1041-2013
http://dx.doi.org/10.5194/acp-11-9643-2011
http://dx.doi.org/10.5194/acp-11-9643-2011
http://dx.doi.org/10.1126/science.1234145
http://dx.doi.org/10.1126/science.1234145
http://dx.doi.org/10.5194/acp-14-12343-2014
http://dx.doi.org/10.5194/bgd-11-12697-2014
http://dx.doi.org/10.1186/1472-6807-11-36
http://dx.doi.org/10.1073/pnas.85.5.1334
http://dx.doi.org/10.1038/317645a0
http://dx.doi.org/10.1038/249026a0
http://dx.doi.org/10.5194/acp-11-1753-2011
http://dx.doi.org/10.5194/acp-13-5751-2013
http://dx.doi.org/10.5194/acp-13-5751-2013


H. Wex et al.: Comparing ice nucleation measurements 1485

Hasegawa, Y., Ishihara, Y., and Tokuyama, T.: Characteristics of ice

nucleation in Fusarium avenaceum IFO 7158, Biosci. Biotech.

Bioch., 58, 2273–2274, 1994.

Hiranuma, N., Hoffmann, N., Kiselev, A., Dreyer, A., Zhang, K.,

Kulkarni, G., Koop, T., and Möhler, O.: Influence of surface

morphology on the immersion mode ice nucleation efficiency

of hematite particles, Atmos. Chem. Phys., 14, 2315–2324,

doi:10.5194/acp-14-2315-2014, 2014.

Kanji, Z. A., Welti, A., Chou, C., Stetzer, O., and Lohmann, U.:

Laboratory studies of immersion and deposition mode ice nucle-

ation of ozone aged mineral dust particles, Atmos. Chem. Phys.,

13, 9097–9118, doi:10.5194/acp-13-9097-2013, 2013.

Koop, T. and Zobrist, B.: Parameterizations for ice nucleation in

biological and atmospheric systems, Phys. Chem. Chem. Phys.,

11, 10839–10850, 2009.

Maki, L. R., Galyan, E. L., Changchi, M.-M., and Caldwell, D. R.:

Ice nucleation induced by Pseudomonas syringae, Appl. Micro-

biol., 28, 456–459, 1974.

McMurry, P. H., Wang, X., Park, K., and Ehara, K.: The relation-

ship between mass and mobility for atmospheric particles: a new

technique for measuring particle density, Aerosol Sci. Tech., 36,

227–238, 2002.

Möhler, O., Stetzer, O., Schaefers, S., Linke, C., Schnaiter, M.,

Tiede, R., Saathoff, H., Krämer, M., Mangold, A., Budz, P., Zink,

P., Schreiner, J., Mauersberger, K., Haag, W., Kärcher, B., and

Schurath, U.: Experimental investigation of homogeneous freez-

ing of sulphuric acid particles in the aerosol chamber AIDA, At-

mos. Chem. Phys., 3, 211==223, doi:10.5194/acp-3-211-2003,

2003.

Möhler, O., Georgakopoulos, D. G., Morris, C. E., Benz, S., Ebert,

V., Hunsmann, S., Saathoff, H., Schnaiter, M., and Wagner, R.:

Heterogeneous ice nucleation activity of bacteria: new labora-

tory experiments at simulated cloud conditions, Biogeosciences,

5, 1425–1435, doi:10.5194/bg-5-1425-2008, 2008.

Morris, C. E., Georgakopoulos, D. G., and Sands, D. C.: Ice nucle-

ation active bacteria and their potential role in precipitation, J.

Phys. IV, 121, 87–103, doi:10.1051/jp4:2004121004, 2004.

Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice

and supercooled water for atmospheric applications, Q. J. Roy.

Meteor. Soc., 131, 1539–1565, 2005.

Murray, B. J., O’Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice

nucleation by particles immersed in supercooled cloud droplets,

Chem. Soc. Rev., 41, 6519–6554, 2012.

Niedermeier, D., Ervens, B., Clauss, T., Voigtländer, J., Wex, H.,

Hartmann, S., and Stratmann, F.: A computationally efficient

description of heterogeneous freezing: a simplified version of

the Soccer ball model, Geophys. Res. Lett., 41, 736–741,

doi:10.1002/2013GL058684, 2014.

Niemand, M., Möhler, O., Vogel, B., Vogel, H., Hoose, C., Con-

nolly, P., Klein, H., Bingemer, H., DeMott, P., Skrotzki, J., and

Leisner, T.: A particle-surface-area-based parameterization of

immersion freezing on desert dust particles, J. Atmos. Sci., 69,

3077–3092, doi:10.1175/jas-d-11-0249.1, 2012.

Orser, C., Staskawicz, B. J., Panopoulos, N. J., Dahlbeck, D., and

Lindow, S. E.: Cloning and expression of bacterial ice nucleation

genes in Escherichia-Coli, J. Bacteriol., 164, 359–366, 1985.

O’Sullivan, D., Murray, B. J., Malkin, T. L., Whale, T. F., Umo,

N. S., Atkinson, J. D., Price, H. C., Baustian, K. J., Browse, J.,

and Webb, M. E.: Ice nucleation by fertile soil dusts: relative

importance of mineral and biogenic components, Atmos. Chem.

Phys., 14, 1853–1867, doi:10.5194/acp-14-1853-2014, 2014.

Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Pre-

cipitation, Kluwer Academic Publishers, Dordrecht, the Nether-

lands, Chapter 13, 1997.

Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe,

H.: Suspendable macromolecules are responsible for ice nucle-

ation activity of birch and conifer pollen, Atmos. Chem. Phys.,

12, 2541–2550, doi:10.5194/acp-12-2541-2012, 2012.

Rogers, D. C.: Development of a continuous flow thermal gradient

diffusion chamber for ice nucleation studies, Atmos. Res., 22,

149–181, 1988.

Schnell, R. and Vali, G.: Biogenic ice nuclei: Part I. Terrestrial and

marine sources, J. Atmos. Sci., 33, 1554–1564, 1976.

Southworth, M. W., Wolber, P. K., and Warren, G. J.: Nonlinear

relationship between concentration and activity of a bacterial ice

nucleation protein, J. Biol. Chem., 263, 15211–15216, 1988.

Szyrmer, W. and Zawadzki, I.: Biogenic and anthropogenic sources

of ice-forming nuclei: a review, B. Am. Meteorol. Soc., 78, 209–

228, 1997.

Tobo, Y., DeMott, P. J., Hill, T. C. J., Prenni, A. J., Swoboda-

Colberg, N. G., Franc, G. D., and Kreidenweis, S. M.: Organic

matter matters for ice nuclei of agricultural soil origin, Atmos.

Chem. Phys., 14, 8521–8531, doi:10.5194/acp-14-8521-2014,

2014.

Turner, M. A., Arellano, F., and Kozloff, L. M.: Three separate

classes of bacterial ice nucleation structures, J. Bacteriol., 172,

2521–2526, 1990.

Ukhatskaya, E. V., Kurkov, S. V., Matthews, S. E., and Loftsson, T.:

Antifungal drug solubilizing activity and self-aggregation ability

of cationic aminocalix[4]arene in comparison to SBEβCD: effect

of addition of water-soluble polymer, J. Incl. Phenom. Macro.,

79, 47–55, doi:10.1007/s10847-013-0302-5, 2014.

v. Blohn, N., Mitra, S. K., Diehl, K., and Borrmann, S.: The ice nu-

cleating ability of pollen. Part III: New laboratory studies in im-

mersion and contact freezing modes including more pollen types,

Atmos. Res., 78, 182–189, doi:10.1016/j.atmosres.2005.03.008,

2005.

Vali, G.: Quantitative evaluation of experimental results on hetero-

geneous freezing nucleation of supercooled liquids, J. Atmos.

Sci., 28, 402–409, 1971.

Wolber, P. K., Deininger, C. A., Southworth, M. W., Vandekerck-

hove, J., Vanmontagu, M., and Warren, G. J.: Identification and

purification of a bacterial ice-nucleation protein, P. Natl. Acad.

Sci. USA, 83, 7256–7260, 1986.

Wood, S. E., Baker, M. B., and Swanson, B. D.: Instrument for stud-

ies of homogeneous and heterogeneous ice nucleation in free-

falling supercooled water droplets, Rev. Sci. Instrum., 73, 3988–

3996, 2002.

Yankofsky, S. A., Levin, Z., Bertold, T., and Sandlerman, N.: Some

basic characteristics of bacterial freezing nuclei, J. Appl. Meteo-

rol., 20, 1013–1019, 1981.

www.atmos-chem-phys.net/15/1463/2015/ Atmos. Chem. Phys., 15, 1463–1485, 2015

http://dx.doi.org/10.5194/acp-14-2315-2014
http://dx.doi.org/10.5194/acp-13-9097-2013
http://dx.doi.org/10.5194/acp-3-211-2003
http://dx.doi.org/10.5194/bg-5-1425-2008
http://dx.doi.org/10.1051/jp4:2004121004
http://dx.doi.org/10.1002/2013GL058684
http://dx.doi.org/10.1175/jas-d-11-0249.1
http://dx.doi.org/10.5194/acp-14-1853-2014
http://dx.doi.org/10.5194/acp-12-2541-2012
http://dx.doi.org/10.5194/acp-14-8521-2014
http://dx.doi.org/10.1007/s10847-013-0302-5
http://dx.doi.org/10.1016/j.atmosres.2005.03.008

	Abstract
	Introduction
	Measurement methods
	Data analysis
	Measurements and results
	Determination of the Snomax density and of the size of bacterial fragments
	BINARY data
	Acoustic levitator and Mainz vertical wind tunnel
	LACIS, FINCH and PINC
	AIDA

	Comparisons
	Comparing frozen fractions in the plateau region
	Comparing active site densities per mass, nm
	BINARY
	Overall comparison


	Discussion
	Comparison of nm averages with parameterizations from literature
	Summary and conclusions
	Appendix A: Instrumentation
	Appendix A1: Acoustic levitator (AL)
	Appendix A2: AIDA
	Appendix A3: BINARY
	Appendix A4: FINCH
	Appendix A5: LACIS
	Appendix A6: Mainz vertical wind tunnel (WT)
	Appendix A7: PINC

	Acknowledgements
	References

