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Abstract. Bromoform (CHBr3) is a short-lived species with

an important but poorly quantified ocean source. It can be

transported to the Tropical Tropopause Layer (TTL), in part

by rapid, deep convective lifting, from where it can influence

the global stratospheric ozone budget. In a modelling study,

we investigate the importance of the regional distribution of

the emissions and of model resolution for the transport of

bromoform to the TTL. We use two idealized CHBr3 emis-

sion fields (one coastal, one uniformly distributed across the

oceans) implemented in high- and coarse-resolution (HR and

CR) versions of the same global model and focus on Febru-

ary as the period of peak convection in the West Pacific. Us-

ing outgoing long-wave radiation and precipitation as met-

rics, the HR version of the model is found to represent con-

vection better. In the more realistic HR model version, the

coastal emission scenario leads to 15–20 % more CHBr3 in

the global TTL, and up to three times more CHBr3 in the

TTL over the Maritime Continent, than when uniform emis-

sions of the same tropical magnitude are employed. Using the

uniform emission scenario in both model versions, the distri-

bution of CHBr3 at 15.7 km (approximately the level of zero

net radiative heating) is qualitatively consistent with the dif-

fering geographic distributions of convection. However, av-

eraged over the whole tropics, the amount of CHBr3 in the

TTL in the two model versions is similar. Using the coastal

scenario, in which emissions are particularly high in the Mar-

itime Continent because of its long coastlines, the mixing ra-

tio of CHBr3 in the TTL is enhanced over the Maritime Con-

tinent in both model versions. The enhancement is larger, and

the peak in CHBr3 mixing ratio occurs at a higher altitude,

in the HR model version. Our regional-scale results indicate

that using aircraft measurements and coarse global models

to infer CHBr3 emissions will be very difficult, particularly

if (as is possible) emissions are distributed heterogeneously

and in regions of strong convective activity. In contrast, the

global-scale agreement between our CR and HR calculations

suggests model resolution is less vital for studies focused on

the transport of bromine into the global stratosphere.

1 Introduction

Very short-lived halogenated substances (VSLS) are thought

to make a significant but uncertain contribution to bromine

in the stratosphere (5 ± 3 ppt [i.e. ∼ 10–40 %] Br, Carpenter

et al., 2014). Much of this uncertainty is linked to the contri-

bution of bromoform (CHBr3), which has both the shortest

lifetime and the largest emissions of the commonly observed

brominated VSLS.

The short lifetime of CHBr3 (∼ 15 days in the tropical

boundary layer; Carpenter et al., 2014) means that measure-

ments in a particular location can only be used to constrain

emissions over relatively small areas of the globe (e.g., Ash-

fold et al., 2014), and inventories are therefore uncertain

(Quack and Wallace, 2003). To illustrate, recent estimates of

total global emissions, constructed using various methodolo-

gies, range between 120–200 Gg Br yr−1 (Ziska et al., 2013)

and ∼ 800 Gg Br yr−1 (Yokouchi et al., 2005; Butler et al.,

2007; O’Brien et al., 2009). Emissions from the oceans are

believed to be the major source, but the relative importance

of coastal and open-ocean emissions is unclear, with uncer-

tainty here linked to the lack of information on the distribu-
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tion and relative strength of the dominant macro- and micro-

algal sources (Ordóñez et al., 2012; Stemmler et al., 2015).

Model estimates of the contribution that CHBr3 makes to

Br in the stratosphere vary due to the assumed emission dis-

tribution (Hossaini et al., 2013), and also due to the treat-

ment of chemical transformations of so-called product gases

(e.g., Aschmann and Sinnhuber, 2013). A further source of

uncertainty of Br injection into the stratosphere, again im-

portant because of the short CHBr3 lifetime, is its sensitivity

to model representations of convective transport (e.g., Liang

et al., 2014). This is likely to be particularly important when

emissions and convective transport are spatially heteroge-

neous, and possibly co-located (e.g., Tegtmeier et al., 2012).

The peak outflow of convection occurs at altitudes around

12–13 km (corresponding to a potential temperature of

∼ 340 K and a pressure of ∼ 200 hPa), and the tropical

tropopause layer (TTL) is the transition zone between these

altitudes and the stratified stratosphere at ∼ 18 km (∼ 380 K,

∼ 90 hPa) (Levine et al., 2007; Randel and Jensen, 2013).

During Northern Hemisphere winter the strongest convection

is found over the West Pacific and Maritime Continent, above

the warm waters of the Tropical Warm Pool (Gettelman et al.,

2002). This is thought to be the region of strongest transport

of short-lived species from the ocean surface to the TTL (e.g.

Levine et al., 2007).

Inherent to uncertainty around modelled convective trans-

port is the spatial resolution of a model. The horizontal distri-

bution of convection is less realistic in models with a coarse

resolution (e.g., Russo et al., 2011; Chemel et al., 2015). In

particular, coarse-resolution models fail to correctly repre-

sent geographical features around the Maritime Continent,

where CHBr3 emissions might be large (Pyle et al., 2011),

such as coastlines (Schiemann et al., 2014) and orography

(Kirshbaum and Smith, 2009). As a consequence, they fail

to resolve small-scale dynamical features such as sea breezes

which often drive local circulation and convective develop-

ment in coastal areas (Qian, 2008). In contrast, the vertical

extent of convection and the associated vertical transport ap-

pears to depend more strongly on the convection parameteri-

zation rather than the model horizontal resolution (e.g. Hoyle

et al., 2011).

Thus far, global model studies related to CHBr3 emissions

and convective transport have generally employed coarse

(> 2◦) horizontal grids, the resolution used in most climate

model studies. Given the sensitivity of convection to resolu-

tion outlined above, can we trust these low-resolution models

when they are used to construct “top-down” emission inven-

tories (e.g. Warwick et al., 2006)? Are low-resolution models

suitable for evaluation of the accuracy of those inventories

against observations (e.g., Hossaini et al., 2013), or for sim-

ulating transport of CHBr3 towards the stratosphere in con-

vectively active regions?

To begin to address these issues, in this study we employ a

conventional, coarse-resolution version and a high-resolution

version of the same global model to address two main ques-

tions: (i) to what extent does transport of CHBr3 to the TTL

depend on model resolution, and (ii) how does the efficiency

of transport of CHBr3 in the two model versions differ when

the tropical oceanic emissions are either spatially heteroge-

neous, being concentrated along shallow coastlines or are

uniform across all oceans?

In Sect. 2 (Methodology), the model set-up is described.

The idealized CHBr3 emission scenarios used are then dis-

cussed in Sect. 3, and the results regarding the quality of

the model convection and its effect on CHBr3 transport are

given in Sect. 4. Finally in Sect. 5, we summarize the main

findings and discuss the implications, particularly for current

estimates of global CHBr3 emissions.

2 Methodology

Model integrations are performed using the UK Chem-

istry and Aerosols (UKCA) model (Telford et al., 2010;

Archibald et al., 2011; O’Connor et al., 2014), coupled to

an atmosphere-only version of the UK Met Office Unified

Model (UM version 7.3) (Hewitt et al., 2011).

A tropospheric chemistry scheme, described in Telford et

al. (2010) and O’Connor et al. (2014), is used to represent

chemical cycles of Ox , HOx , and NOx as well as the oxi-

dation of CO and other non-methane hydrocarbons as pre-

viously described in Zeng and Pyle (2003). The oxidation

of isoprene is included by implementation of the condensed

Mainz Isoprene Mechanism (MIM) as described in Pöschl

et al. (2000). Photolysis rates for photochemical reactions

are calculated using the fast-JX photolysis scheme (Neu et

al., 2007; Telford et al., 2013). For this study, a bromoform

tracer has been added to the existing chemistry scheme. Its

oxidation is determined by photolysis (Sander et al., 2006)

and reaction with the model-calculated OH (DeMore et al.,

1997). After oxidation, the bromine atoms are ignored, play-

ing no further part in the model chemistry.

Present-day surface emissions for the chemical species

are generated from the emission data set of Lamarque et

al. (2010), as developed for the IPCC fifth assessment re-

port. Isoprene emissions are taken from the POET database

(Granier et al., 2005; Olivier et al., 2003). The general cir-

culation for the periods under analysis is forced by pre-

scribing monthly mean sea surface temperatures and sea ice

cover from the AMIP data set (http://www-pcmdi.llnl.gov/

projects/amip).

The model is run in two different configurations. Firstly,

coarse-resolution (CR) integrations are performed at a hor-

izontal resolution of 3.75◦ in longitude × 2.5◦ in latitude

(gridbox size ∼ 300 km) with 60 sigma-height hybrid lev-

els (∼ 80 km top). These levels follow earth’s surface in

the lower troposphere and transition to constant pressure

surfaces in the stratosphere and above. Secondly, high-

resolution (HR) integrations are carried out at a horizontal

resolution of 0.56◦
× 0.375◦ (gridbox size ∼ 40 km) with 63
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Fig 1: Emissions 

(a) (b) 

(c) (d) 

Figure 1. Tracer emission fields of CHBr3 used in the model runs described here: (a) uniform tracer and (b) coastal tracer in high-resolution

run; (c) uniform tracer and (d) coastal tracer in coarse-resolution run.

sigma-height hybrid levels (∼ 40 km top). Horizontally, the

area of an HR gridbox is ∼ 40 times smaller than a CR

gridbox, while vertically the average resolution in the tro-

posphere is 600 m for CR compared to 360 m for HR. Note

that the two model configurations are typically optimized for

climate and weather forecast integrations respectively; there-

fore the impact of these further differences, which is difficult

to disentangle from the simple effect of grid resolution, will

also be reflected in our analysis.

One CR integration is performed spanning 10 years

(1996–2005) following a 1-year spinup period while there

are five separate HR timeslice integrations for the month of

February and the years 1996, 1998, 2000, 2002, and 2005.

A 4-month HR spin-up run is performed to initialize chemi-

cal fields (including bromoform tracers) prior to the February

runs. A summary of the model integrations can be found in

Table 1. Each integration is run with both a uniform ocean

emission distribution and a coastal emission distribution, as

discussed in the next section.

3 Bromoform emissions

In order to address the sensitivity of bromoform transport

to model resolution, we designed two idealized bromoform

emission data sets, both with a total of 400 Gg yr−1 of bro-

moform emitted. The two idealized emission data sets are

prescribed as follows:

a. Uniform – emissions are uniformly distributed in model

ocean gridboxes with 70 % of the emissions in the trop-

ics and the rest in the extra-tropics, in accordance with

Scenario 3 in Warwick et al. (2006). For the purpose of

this paper we define the tropics as the region between

20◦ S and 20◦ N and the extra-tropics as the region be-

tween 20 and 50◦ N/S.

b. Coastal – the Smith and Sandwell Global Seafloor To-

pography (Smith and Sandwell, 1997) was used to iden-

tify shallow sea areas (defined as having a depth less or

equal to 200 m) on the HR model grid. Emissions were

distributed equally in all shallow-sea gridboxes between

50◦ S and 50◦ N, which resulted in 50 % of emissions in

the tropics and 50 % in the extra-tropics. These emis-

sions were then interpolated onto the CR grid with an

area-averaging technique, ensuring that the total amount

emitted in similar domains (i.e. in the tropics and extra-

tropics) is the same at both resolutions. Coastal emis-

sions in the Maritime Continent are 29 % of the total

coastal emissions and 57 % of the tropical coastal emis-

sions.

The distribution of coastal and uniform emissions at both

model resolutions is presented in Fig. 1. A third tracer was

also used for comparative purposes:

c. Since the amount of bromoform emitted in the tropics

is different in the coastal and uniform tracers, an addi-

tional uniform bromoform tracer was used in HR runs

(Uniform_50), with only 50 % of emissions distributed

in the tropics. This allows us to compare directly the

coastal and uniform_50 concentrations in the Tropics

www.atmos-chem-phys.net/15/14031/2015/ Atmos. Chem. Phys., 15, 14031–14040, 2015
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Table 1. Characteristics of models and simulations.

Name Horizontal Vertical Run Tracers Tropical emissions

period (Gg yr−1)

CR 3.75◦
× 2.5◦ 60 levels 1996–2005 Uniform 280

(80 km top) Coastal 200

HR 0.56◦
× 0.375◦ 63 levels Feb 1996, 1998, Uniform 280

(40 km top) 2000, 2002, Coastal 200

2005 Uniform_50 200

Figure 2. Observed and modelled fields for February 2005: (a) outgoing longwave radiation (OLR) from AIRS in W m−2; (b) precipitation

from TRMM in mm day−1; (c) OLR and (d) precipitation for the high-resolution run; and (e) OLR and (f) precipitation for the coarse-

resolution run.

and therefore investigate the sensitivity of model con-

vective transport on the spatial location of emissions.

4 Results

4.1 Convection characteristics

Monthly mean maps of Tropical Rainfall Measuring Mission

(TRMM) observations of precipitation and from the Atmo-

spheric Infrared Sounder (AIRS) observations of out-going

long-wave radiation (OLR) are shown in Fig. 2 for Febru-

ary 2005 chosen as a representative February (see below) for

which an HR run was available. Equivalent quantities for the

coarse and high-resolution model runs are also shown. The

most obvious differences compared to the observations are

with the CR integration and are (a) the misplaced location

of the convection in the CR run in the West Pacific with the

maximum being incorrectly restricted to a narrow band as-

sociated with the Inter-Tropical Convergence Zone (ITCZ);

and (b) the overly strong continental convection in the CR

model over S. America and S. Africa. This can be explained

by differences in low-level circulation and surface moisture

fluxes between CR and HR. With its larger grid box size, CR

integrations fail to properly represent the sharp gradients be-

tween land and sea around the islands in the Maritime Con-

tinent and this leads to a poor representation of wind con-

vergence and sea breezes. Over large continents, precipita-

tion is often overestimated in CR, which leads to a positive

feedback cycle of a more moist surface and further enhanced

convection. Using either precipitation or OLR as a measure

of model performance, it is evident that the high-resolution

integrations perform better.

In the rest of this study, we concentrate on Febru-

ary 2005 to study differences in TTL bromoform con-

centrations arising from the different model resolutions

or different distributions of emissions. OLR was anoma-
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Figure 3. The monthly average mixing ratios at 15.7 km in Febru-

ary 2005 are shown for (a) the Uniform_50 tracer; and (b) the

Coastal tracer. Average vertical profiles of the mixing ratios for the

two tracers are shown for (c) the Tropics (20◦ S–20◦ N) and (d) the

Maritime Continent (20◦ S–10◦ N; 90–160◦ E, as shown in (a) and

(b)).

lously low over much of the Maritime Continent and north-

ern Australia in February 2005, which was in the declin-

ing phase of a weak ENSO event (Oceanic Nino Index

of 0.4 – http://www.cpc.ncep.noaa.gov/products/analysis_

monitoring/ensostuff/ensoyears.shtml). Nevertheless, a com-

parison of the 5-year average of the different high-resolution

runs and the 10-year average from the coarse-resolution run

shows broadly similar results (not shown), so the choice of

year is not crucial. A comparison with the multi-year aver-

ages is given at the end of Sect. 4.2.2 to illustrate the rela-

tive magnitude of the variability calculated with the different

model resolutions and emission scenarios.

4.2 Bromoform transport

In this section we first use the more realistic HR model to

compare the cases with coastal emissions and uniform emis-

sions. We then look at the effect of the model resolution.

4.2.1 Coastal versus uniform emissions at high

resolution

Figure 3 shows the mixing ratio of CHBr3, comparing the

Uniform_50 and Coastal tracers, at 15.7 km altitude in Febru-

ary 2005 calculated using the high-resolution model. An al-

titude of 15.7 km is used as it is the model level close to, but

above, the level of zero net radiative heating above which

air will ascend into the stratosphere (see Russo et al. (2011)

for a detailed discussion about the height of the zero radia-

tive heating level). Figure 3a shows the case where the emis-

sions of CHBr3 are uniformly distributed across the tropical

oceans, while Fig. 3b shows the case for an equal amount of

emissions concentrated in the shallow coastal regions. The

mixing ratios in the TTL around the Maritime Continent are

noticeably greater for the coastal emissions. This can be seen

more clearly in panels c and d where the average vertical

profiles are shown for the Tropics and for the Maritime Con-

tinent (indicated by the rectangle in the top two plots). The

peak values for the Coastal tracer at ∼ 15 km are over twice

as large as for the Uniform-50 tracer over the Maritime Con-

tinent. This is consistent with the enhanced emissions in this

region due to the long coastlines (and hence large area with

low ocean depth) associated with the islands (see Fig. 1)

combined with the enhanced upward transport in convection

over this region. Globally, the CHBr3 mixing ratio in the TTL

is approximately 15–20 % higher when the coastal emissions

are used. This is again due to a shorter time between emission

and lofting into the TTL when the coastal emissions are col-

located with the convection, leading to less chemical degra-

dation of CHBr3 in the low and middle troposphere. These

results, for February 2005, are robust across the 5 different

years studies in the HR integrations.

The large local differences between CHBr3 calculated in

the TTL for the different model emission distributions (but

with the same magnitude of emissions across the tropics)

has important implications for emissions derived from air-

craft measurements. We discuss this further in Sect. 5.

4.2.2 High resolution versus coarse resolution

One aim of this study is to explore the effect of model res-

olution on the transport of CHBr3 into the TTL following

emissions in tropics. Accordingly from now on, we use the

Uniform CHBr3 tracers (Fig. 1a and c), rather than Uniform-

50, at the two different model resolutions. Recall that, at

either resolution, the Uniform tracer has 70 % of its emis-

sions in the tropics. By using separate tracers for tropical

and extratropical emissions, the contribution of extratropical

emissions to the total TTL mixing ratio is found to be small

(∼ 10 % for the Uniform tracer in the HR model). The ef-

fect of extra-tropical emissions (defined here as 20–50◦ N/S)

on the CHBr3 TTL mixing ratios can, to first order, be dis-

counted.

Figure 4a and b show the 15.7 km CHBr3 field for Febru-

ary 2005 modelled with Uniform emissions from the high-

and coarse-resolution model runs, respectively. The overall

mixing ratio patterns are consistent with the different dis-

tributions in convection over the oceanic source regions for

CHBr3. There is a sharp peak in bromoform mixing ratios

along the ITCZ in the CR calculation, associated with the

www.atmos-chem-phys.net/15/14031/2015/ Atmos. Chem. Phys., 15, 14031–14040, 2015
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Figure 4. The monthly average mixing ratios for the Uniform tracer

at 15.7 km in February 2005 are shown for (a) the high-resolution

run; and (b) the coarse-resolution run. Contours of monthly av-

erage potential temperature are shown in (a) and (b). Average

vertical profiles of the mixing ratios for the two runs are shown

for (c) the Tropics (20◦ S–20◦ N) and (d) the Maritime Continent

(20◦ S–10◦ N; 90–160◦ E). High-resolution run is shown in blue;

the coarse-resolution run is shown in pink.

unrealistic peak in convection discussed in Sect. 4.1. When

averaged over the whole of the Tropics, the vertical profiles

shown in panels c and d show little difference. However, we

do find ∼ 10–15 % higher mixing ratios at 15.7 km in the

coarse-resolution run over the Maritime Continent.

Larger differences are seen between the coarse- and high-

resolution runs for the Coastal CHBr3 tracer (Fig. 5), with

noticeably more CHBr3 lofted into the TTL in the high-

resolution run and with the peak value at a slightly higher

altitude (Fig. 5d). This feature, with the peak at higher alti-

tudes, is particularly prominent over the Maritime Continent.

The maximum in the CHBr3 field on the 15.7 km surface

does not coincide with the minimum in potential tempera-

ture in either the coarse- or high-resolution runs, as might be

expected purely on the basis of the strength of convection.

Rather the maximum tracer fields are seen to the south and

west of the main convection.

These features are similar when considered in potential

temperature coordinates, as can be seen from the potential

temperature contours shown in Figs. 4a and 5a. The high-

est mixing ratios are found at levels between 365 and 370 K

which are well above the main level of zero net radiative

Figure 5. As for Fig. 4, except that these plots are for the Coastal

Tracer.

heating; air at this level will be transported to the stratosphere

either vertically or along isentropic surfaces into the extrat-

ropical lower stratosphere.

When the emission sources are heterogeneous, as is the

case with the Coastal tracer emissions, the magnitude of the

vertical transport for a short-lived gas will depend on the co-

incidence between source region and convective activity. In

Sect. 4.1 we showed that the HR run captures the strong con-

vection over the Maritime Continent better than at the coarser

resolution (Fig. 2). This strong convection combined with the

large coastal source around the Maritime Continent leads to

the higher peak mixing ratios in bromoform, at higher alti-

tudes (Fig. 5d), with enhanced transport likely into the strato-

sphere.

The representativeness of February 2005 can be exam-

ined by comparing the 5 years of the high-resolution run

(1996, 1998, 2000, 2002, 2005) with (a) the same 5 years

(Fig. 6) and (b) all 10 years from the 10-year CR run (not

shown). The same result was found for each comparison.

Figure 6 shows the vertical profiles (mean and variability) of

the CHBr3 tracer for four cases: the Uniform tracer averaged

over (panel a) the whole Tropics and (panel b) the Maritime

Continent; and (panels c and d) the Coastal tracer for the

same two cases. With the Uniform tracer emissions, the tropi-

cal average profiles and associated variability for CR and HR

shown in Fig. 6a are similar. The variability is greater over

the Maritime Continent (Fig. 6b), as might be expected for

a region whose convection is strongly influenced by ENSO

Atmos. Chem. Phys., 15, 14031–14040, 2015 www.atmos-chem-phys.net/15/14031/2015/
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Fig 6: Mean Feb vertical profiles (solid line) +- 2 stdev for HR (5 years) 
and CR (5 years).  Vertical profiles are averaged over the Tropics (20S:
20N) and the Maritime Continent (20S:10N; 90:160E) for Uniform tracer 
(top) and coastal tracer (bottom). 

(a) (b) 

(c) (d) 

Uniform Uniform 

Coastal Coastal 

Figure 6. Average vertical profiles of the mixing ratios for the Uni-

form tracer in five representative Februaries (1996, 1998, 2000,

2002, 2005) are shown for (a) the Tropics (20◦ S–20◦ N) and (b) the

Maritime Continent (20◦ S–10◦ N; 90–160◦ E). Equivalent plots for

the Coastal tracer are shown in (c) and (d). High-resolution run is

shown in blue; the coarse-resolution run is shown in pink. Dashed

lines indicate 2 standard deviations from the mean (solid).

events, though the difference between CR and HR versions is

still small. The variability found with the Coastal tracer is en-

hanced compared with the Uniform tracer in both HR and CR

runs. This enhancement is most noticeable over the Maritime

Continent where there is additionally a 10–15 % increase in

the peak CHBr3 tracer amount in the high-resolution run, in-

dicating that the effect in February 2005 is typical, though

larger than in other years.

It is also worth noting the small maximum in CHBr3 at

5 km over the Maritime Continent. This feature is present

in the 5-year average as well as in 2005. We ascribe this to

low-level convection around the coast-lines in the Maritime

Continent as previously reported for Borneo (Robinson et al.,

2012). It is not apparent in the latitude band average.

5 Discussion and conclusions

We use high- and coarse-resolution versions of the UKCA

model to investigate the impact that model resolution and

the geographical distribution of emissions have on CHBr3

mixing ratios in the TTL. The study focuses on Febru-

ary 2005, with its representativeness checked through com-

parisons with Februaries from other years. Comparing the

OLR and the precipitation from the two model runs with ob-

servations shows that the HR model captures the convection

more realistically than the CR run in terms of both strength

and location. We ascribe this difference mainly to the HR

model’s better description of the low-level circulation and

sea breezes associated with the larger islands of the Maritime

Continent.

The HR model produces significant differences between

how coastal and uniform emissions affect the CHBr3 mix-

ing ratios in the TTL (Fig. 3). The effect varies regionally

with, for example, over twice as much CHBr3 over the Mar-

itime Continent for the coastal emission case. When averaged

over the global TTL there is 15–20 % more CHBr3 in the

TTL with the Coastal emissions. Several of the CHBr3 emis-

sion estimates currently used in global models are based, at

least in part, on aircraft measurements made in the free tro-

posphere and TTL (e.g., Warwick et al., 2006; Liang et al.,

2010; Ordóñez et al., 2012). The inhomogeneity in Fig. 3b

shows that estimates based on aircraft measurements are sen-

sitive to (a) the location of the measurements; (b) the descrip-

tion of convection in the model used; and (c) the assumed

ratio of coastal and open-ocean emissions. Many of the air-

craft measurements used to derive global emissions are lo-

cated in or around the Pacific Ocean (e.g., Liang et al., 2010;

Navarro et al., 2015), where our calculations indicate higher

than average TTL mixing ratios for CHBr3. It seems likely

that global emission estimates based on these aircraft mea-

surements could be biased high, which could offer an expla-

nation for some of the current discrepancies between the var-

ious estimates (Carpenter et al., 2014). The larger the relative

contribution of coastal emissions, the more important this

factor will be. Conversely, aircraft measurements can likely

be used to improve regional (and hence global) emission es-

timates. Such a region-by-region approach would probably

require more measurements than is currently available.

The transport of short-lived species into the TTL and on to

the stratosphere depends on the location of the emissions and

on the location of the major vertical ascent occurring in con-

vection. A maximum flux into the TTL would occur when

the region of emission and convection exactly coincide. On

the other hand, if emission is far from convection then it is

likely that substantial chemical loss could occur before any

rapid vertical transport; the overall flux into the TTL would

then be low. Convection is modelled better at higher resolu-

tion so the difference between TTL CHBr3 calculated for the

Uniform or Coastal tracers can be large in some regions, as

discussed above. For our CR integrations, the difference in

the global TTL mixing ratios of CHBr3 due to emission dis-

tribution is smaller (compare Fig. 4c, d with Fig. 5c, d). Other

models run at coarse resolution might also be expected to

underestimate the amount of short-lived tracer lifted to TTL

regionally, with the underestimation differing from year-to-

year (Fig. 6).

The differences are largest for short-lived species, and so

the major effect on the stratospheric Bry budget will be felt

through CHBr3 with its tropical lifetime of ∼ 15 days and a

potentially large proportion of emissions in coastal regions.

Similarly, if iodine-containing species play a role in upper

tropospheric and stratospheric chemistry (Saiz-Lopez et al.,

2015), understanding their precise emission locations will be

important and high-resolution modelling will be required to

capture their local impact. On the other hand, the calculated

www.atmos-chem-phys.net/15/14031/2015/ Atmos. Chem. Phys., 15, 14031–14040, 2015
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TTL mixing ratio of the other major short-lived contributor

to stratospheric bromine, dibromomethane (CH2Br2), will

be relatively unaffected by the model resolution as it has a

∼ 3 month tropical lifetime (Carpenter et al., 2014) and dom-

inant open-ocean sources (Ziska et al., 2013).

We have not examined differences in the impact on the

stratosphere for the different model resolutions and emission

distributions. This would require a complete model calcula-

tion, where the degradation products of bromoform are mod-

elled in a fully interactive chemistry scheme. We note that the

multi-year averages of the CHBr3 mixing ratios in the global

TTL are similar for the CR and HR models implying that

the large-scale performance of the two models is reasonably

similar when the total emissions are the same. This suggests

that the resolution of the models currently used in multi-

annual integrations to study the transport of bromine into the

global stratosphere is acceptable (although unacceptable if

the aim is to compare model results with observed chemical

distributions in the TTL or to infer emissions). However, be-

cause the details of the convection do change with resolution,

any changes in the preferred transport pathways with climate

change may not be accurately modelled.
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