

Supplement of

Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

Q. J. Zhang et al.

Correspondence to: Q. J. Zhang (qzhang@aria.fr)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Pollutant	Statistics	VBS-LNOX			VBS-LA		
	-	16^{th}	21 st	29 th	 16^{th}	21 st	29 th
NO _x	Max.	-4.3	-5.2	-7.3	-7.3	-5.7	-8.7
(ppb)		(-32%)	(-65%)	(-60%)	(-54%)	(-72%)	(-71%)
	D20	0.64	0.42	0.50	0.57	0.26	0.51
	P30	-0.04	-0.42	-0.59	-0.57	-0.30	-0.51
		(-58%)	(-41%)	(-52%)	(-51%)	(-35%)	(-45%)
BC	Max	-0.7	-15	-1.6	0.4	-1 2	-1.2
$(\mu q m^{-3})$	Iviax.	(35%)	(74%)	(70%)	(21%)	(62%)	(53%)
(µg m)		(-3370)	(-/+/0)	(-70%)	(21/0)	(-0270)	(-33%)
	P30	-0.17	-0.31	-0.22	-0.22	-0.34	-0.27
		(-51%)	(-62%)	(-59%)	(-67%)	(-69%)	(-71%)
O_3	Max.	7.5	4.3	8.3	12.9	4.3	9.8
(ppb)		(12%)	(5%)	(13%)	(21%)	(5%)	(16%)
	P30	43	11.3	3.0	46	117	33
	150	(9%)	(20%)	(6%)	(9%)	(20%)	(7%)
		()/0)	(2070)	(070)	()/0)	(2070)	(770)
O,	Max.	8.5	3.6	8.0	13.1	3.5	9.2
(nnh)		(13%)	(4%)	(13%)	(21%)	(4%)	(14%)
(PPC)		(10/0)	(170)	(10/0)	(21/0)	(1/0)	(11/0)
	P30	3.0	11.0	1.8	3.4	11.4	2.1
		(6%)	(19%)	(4%)	(7%)	(19%)	(4%)
.							
OA 3	Max.	1.7	0.4	1.5	1.0	-9.2	-3.2
(µg m ⁻³)		(28%)	(3%)	(21%)	(17%)	(-75%)	(-44%)
	P30	-1.6	2.3	-1.0	-3.1	-4.9	-3.2
		(-41%)	(36%)	(-25%)	(-79%)	(-76%)	(-78%)
			. ,	. ,	. ,	. ,	. ,
OA^*	Max.	-0.5	-1.0	-0.5			
$(\mu g m^{-3})$		(-8%)	(-8%)	(-7%)			
	D20	1.0	1.0	1 /			
	P30	-1.9	1.9	-1.4			
		(-30%)	(29%)	(-33%)			

Table S1 Bias (relative bias) for comparison of maximum and 30th percentile (P30) modeled and measured pollutant concentrations from VBS-LNOX (and VBS-HNOX for OA as well) and VBS-LA

OA*: OA from VBS-HNOX simulations

Fig. S1.Modeled NO_x (left) and VOC/NO_x (right) from VBS-HNOX at 10h on 16th, which shows a high-NO_x condition (VOC/NO_x~3 ppbC ppb⁻¹, Lane et al., 2008) inside the Paris pollution plume (represented by NO_x) close to Paris represented by a triangle.

References:

Lane, T. E., Donahue, N. M., and Pandis, S. N.: Effect of NO_x on secondary organic aerosol concentrations, Environ. Sci. Technol., 42, 6022–6027, 2008.

Fig. S2. Comparison of measured (a1-3) and modeled O_x from VBS-LA (b1-3) and VBS-LNOX (c1-3) during the flights on 16^{th} , 21^{st} and 29^{th} , respectively.

Fig. S3. Comparison of modeled POA from VBS-LA (a1-3), VBS-LNOX (b1-3) and VBS-HNOX (c1-3) during the flights on 16th, 21st and 29th, respectively.

Fig. S4. Comparison of modeled SI-SOA from VBS-LA (a1-3), VBS-LNOX (b1-3) and VBS-HNOX (c1-3) during the flights on 16th, 21st and 29th, respectively.

Fig. S5. Comparison of modeled ASOA from VBS-LA (a1-3), VBS-LNOX (b1-3) and VBS-HNOX (c1-3) during the flights on 16th, 21st and 29th, respectively.

Fig. S6. Comparison of modeled BSOA from VBS-LA (a1-3), VBS-LNOX (b1-3) and VBS-HNOX (c1-3) during the flights on 16th, 21st and 29th, respectively.

Fig. S7. OA vs. O_x (a1-3), SI-SOA vs. O_x (b1-3), ASOA vs. O_x (c1-3) and BSOA (d1-3) vs. O_x during the first two flight legs on 16th, 21st and 29th, respectively. For OA vs. O_x (a, b, c), results from the measurement and VBS-HNOX are presented. For others, only results from VBS-HNOX are presented.

Fig. S8. OA vs. O_x (a1-3), SI-SOA vs. O_x (b1-3), ASOA vs. O_x (c1-3) and BSOA (d1-3) vs. O_x during the last two flight legs on 16th, 21st and 29th, respectively. For OA vs. O_x (a, b, c), results from the measurement and VBS-HNOX are presented. For others, only results from VBS-HNOX are presented.

Fig. S9. Urban OA (PM_{10} fraction) plume ($\mu g m^{-3}$) evolution on July 16th from VBS-LA, the triangle represents the location of Paris, illustrated by 6 panels (from a to f) corresponding to 7h (UTC +2) to 22h (UTC +2) with a time step of three hours.

Fig. S10. Urban POA (a), SI-SOA (b), ASOA (c) and BSOA (d) (in PM_{10}) plume ($\mu g m^{-3}$) from VBS-LA at 16h (UTC +2) of July 16th, the triangle represents the location of Paris.

Fig. S11. Modeled monthly mean OA concentration in PM_{10} (µg m⁻³) from VBS-LA which represents the influence of Paris emissions on OA levels, the triangle represents the location of Paris.

Fig. S12. Modeled monthly mean POA (a), SI-SOA (b), ASOA (c) and BSOA (d) concentration in PM_{10} (µg m⁻³) from VBS-LA which represents the influence of Paris emissions on OA levels, the triangle represents the location of Paris.