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Abstract. Globally, secondary organic aerosol (SOA) is

mostly formed from emissions of biogenic volatile organic

compounds (VOCs) by vegetation, but it can be modified by

human activities as demonstrated in recent research. Specifi-

cally, nitrogen oxides (NOx =NO+NO2) have been shown

to play a critical role in the chemical formation of low volatil-

ity compounds. We have updated the SOA scheme in the

global NCAR (National Center for Atmospheric Research)

Community Atmospheric Model version 4 with chemistry

(CAM4-chem) by implementing a 4-product volatility ba-

sis set (VBS) scheme, including NOx-dependent SOA yields

and aging parameterizations. Small differences are found for

the no-aging VBS and 2-product schemes; large increases in

SOA production and the SOA-to-OA ratio are found for the

aging scheme. The predicted organic aerosol amounts cap-

ture both the magnitude and distribution of US surface an-

nual mean measurements from the Interagency Monitoring

of Protected Visual Environments (IMPROVE) network by

50 %, and the simulated vertical profiles are within a factor

of 2 compared to aerosol mass spectrometer (AMS) measure-

ments from 13 aircraft-based field campaigns across differ-

ent regions and seasons. We then perform sensitivity experi-

ments to examine how the SOA loading responds to a 50 %

reduction in anthropogenic nitric oxide (NO) emissions in

different regions. We find limited SOA reductions of 0.9–

5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and

Amazon NOx perturbations, respectively. The fact that SOA

formation is almost unaffected by changes in NOx can be

largely attributed to a limited shift in chemical regime, to

buffering in chemical pathways (low- and high-NOx path-

ways, O3 versus NO3-initiated oxidation) and to offsetting

tendencies in the biogenic versus anthropogenic SOA re-

sponses.

1 Introduction

Organic aerosols (OAs) account for a substantial fraction of

atmospheric fine particulate matter and can have significant

impacts on both air quality (Huang et al., 2014; Zhang et

al., 2007) and climate (Carslaw et al., 2010). Previous re-

search suggests that organic compounds make up between

10 and 90 % of the total aerosol mass at continental mid-

latitudes and in tropical forests (Andreae and Crutzen, 1997;

Kanakidou et al., 2005; Putaud et al., 2010; Seinfeld and

Pankow, 2003). Aside from primary organic aerosols (POAs)

that are directly emitted into the atmosphere, another major

fraction of OA is composed of secondary organic aerosols

(SOAs), which are formed through chemical transformation

of anthropogenic and biogenic volatile organic compounds

(AVOCs and BVOCs). AVOCs include aromatics, alkanes

and alkenes of about 25, 44 and 38 TgC year−1, respec-
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tively, from industrial processes, fossil fuel use, biomass

burning and road vehicles (Williams and Koppmann, 2007).

Isoprene and monoterpenes are the dominant BVOC emis-

sions with estimated global source strengths of about 500

and 150 TgC year−1, respectively (Guenther et al., 2012).

POA can also re-evaporate upon dilution and participate in

the chemical oxidation processes leading to the formation of

SOA (Robinson et al., 2007).

Biogenic SOA (BSOA) is usually regarded as natural

aerosol and as such cannot be addressed by emission control

legislation. Recent research implied that anthropogenic com-

pounds facilitate BSOA formation, thus providing the possi-

bility to control BSOA by regulating the emission of other

precursor pollutants like AVOCs, POA and nitrogen oxides

(Carlton et al., 2010; Emanuelsson et al., 2013; Hoyle et al.,

2011; Lin et al., 2013; Rollins et al., 2012; Volkamer et al.,

2006). For example, Carlton et al. (2010) have shown that,

in the southeast US, up to 50 % of the total BSOA surface

atmospheric loading is attributed to controllable pollution

emissions. Spracklen et al. (2011) found that at the global

scale the model with a large human-interfered SOA source

was the most consistent with observations, which includes a

maximum of 10 % SOA (10 Tg year−1) from fossil sources,

and the extra is mostly likely due to an anthropogenic pol-

lution enhancement of BSOA. The potential impacts of hu-

man activities are visible in every step of BSOA formation:

the amount of naturally emitted BVOCs through land use and

land cover change, the oxidative transformation of BVOCs to

semivolatiles through altering atmospheric oxidant concen-

trations, and the partitioning behavior to the aerosol phase

through modifying the load and miscibility of pre-existing

organic aerosol (Hoyle et al., 2011).

Among the multiple human-induced influences, nitrogen

oxides (NOx =NO+NO2, emitted from many fossil-fuel

driven activity sectors) play a critical role in SOA formation

through several aspects. First, through the competitive chem-

istry of organo-peroxy radicals (RO2) formed from oxidation

of AVOC and BVOC precursors, which can react mainly with

NO at high NOx or hydroperoxyl (HO2) and peroxy radicals

(RO2) at low NOx conditions (Kroll and Seinfeld, 2008; Zie-

mann and Atkinson, 2012). Calculating the SOA yield de-

pendence on NOx is challenging because the OH /O3 ratio

depends on the VOC /NOx ratio (Presto et al., 2005). Lane et

al. (2008) suggested that SOA yields could be calculated by

a linear combination of the “pure” mass yields scaled by the

strength of each branch. In many SOA models (e.g., Heald et

al., 2008; Lane et al., 2008; Pye et al., 2010), the representa-

tive reactions for each branch are

low−NOx condition : RO2+HO2→ ROOH,

high−NOx condition : RO2+NO→ RONO2.

For AVOCs like light aromatics (Ng et al., 2007) and

BVOCs like isoprene (Kroll et al., 2006) and monoterpenes

(Presto et al., 2005), both the ROOH groups and the RONO2

groups can be low in volatility thus facilitating SOA for-

mation, but RONO2 is not the dominant product of the

RO2+NO channel; therefore, the high-NOx pathway usually

has lower yields of SOA. Second, NOx can influence SOA

formation through nighttime nitrate radical (NO3) chem-

istry. This pathway has a distinctive chemical signature due

to the high yields of organic nitrate (RONO2), which also

forms during daytime photooxidation in the presence of NO

but with a lower yield. The importance of NO3-initiated

SOA formation has been confirmed by chamber experiments

(Griffin et al., 1999; Ng et al., 2008) and field studies, e.g., in

Bakersfield, California, NO3 chemistry contributed approxi-

mately a third of the nighttime increase in total OA (Rollins

et al., 2012). Finally, NOx levels can impact the atmospheric

oxidation capacity. In the NOx-limited regime (in terms of

O3 formation), the OH-initiated oxidation of CO, methane

(CH4) and other VOCs in the presence of NOx produces O3.

Thus, in such conditions, increasing NOx by human activi-

ties should, in principle, lead to the increase in atmospheric

oxidation capacity (OH and O3) (Seinfeld and Pandis, 2006),

and result in higher SOA yields. For example, using a chemi-

cal transport model, PMCAMx, Lane et al. (2008) suggested

that a 50 % reduction in NOx emissions could decrease pre-

dicted ground-level BSOA by an average of 0.5 µg m−3 in the

eastern US by lessening the atmospheric oxidant levels.

Due to the multiple impacts of NOx on SOA formation,

it is important to understand how NOx emission controls al-

ter the particulate matter atmospheric loading. The goal of

this study is to improve the SOA scheme in a global climate–

chemistry model by incorporating a 4-product volatility ba-

sis set (VBS) framework (Pye et al., 2010), which has four

representative volatility bins to better represent the volatility

distribution of all semivolatiles in the atmosphere than the

default 2-product scheme (Heald et al., 2008; Odum et al.,

1996). The model is then used to investigate the impacts of

anthropogenic NOx emission reduction on SOA formation.

Section 2 describes the observational data sets used in this

study. In Sect. 3, we describe the default and updated SOA

parameterizations embedded within the global chemistry–

climate model framework. We perform control simulations

using six different model configurations, including the de-

fault 2-product scheme and the updated SOA scheme with

and without NOx-dependent yields for monoterpene, and

with and without simplified SOA aging parameterizations.

Section 4 shows the results. The control simulations are eval-

uated and assessed against several observational data sets.

Then, we perform sensitivity simulations to probe the im-

pacts of a global 50 % anthropogenic NO emission reduc-

tion on SOA production. We conduct this experiment as a

simplified potential future scenario based on the 50 % NOx
emission reduction from power plants in the southeast US by

pollution control programs in the past decade (Frost et al.,

2006; Kim et al., 2006). Section 5 summarizes the findings

of this study.
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2 Terminology and data sets

Table 1 summarizes major abbreviations used in this study.

The term OA refers to the total particle-phase organic matter

including carbon, hydrogen, oxygen and other possible ele-

ments. The term OC refers to only the mass of carbon in these

organic compounds. Both OA and OC are used based on dif-

ferent measurement techniques. Similarly, primary organic

carbon (POC) is the carbon mass in POA; secondary organic

carbon (SOC) is the carbon mass in SOA. In this study the

term SOA (secondary organic aerosol) and SOG (secondary

organic gas) refer to particle phase and gas phase, respec-

tively.

2.1 IMPROVE OC measurements

The US total OC data set is from the Interagency Monitoring

of Protected Visual Environments (IMPROVE, Hand et al.,

2011). IMPROVE OC is collected using quartz fiber filters

for 24 h every third day, analyzed offline by thermal optical

reflectance (TOR) (Chow et al., 1993), and corrected for an

approximate positive artifact (Dillner et al., 2009). Assump-

tions made in this correction may not always be appropriate

(Watson et al., 2009), and the potential negative artifacts due

to the volatilization of particulate organics are not accounted

for. We choose 120 surface sites from the IMPROVE net-

work that are within the bottom layer in corresponding model

grids. The original 3-day data from 2005 to 2009 have been

averaged to seasonal and annual mean values. OC concentra-

tions from sites within the same model grid cell (1.9◦× 2.5◦

latitude by longitude) are averaged for comparison to mod-

eled OC concentrations in corresponding model grid cells.

2.2 Aircraft-based OA measurements from an aerosol

mass spectrometer (AMS)

The OA data sets come from 13 aircraft field campaigns that

took place between 2005 and 2009 (Heald et al., 2011). In

these campaigns, total OA density was measured using an

AMS in standard temperature and pressure conditions (STP:

298 K, 1 atm) and provides fast online submicron aerosol

composition (Canagaratna et al., 2007). For each field cam-

paign, the 1 min raw data are averaged temporally and hor-

izontally along the flight track for comparison to the simu-

lated monthly mean OA vertical profile in the corresponding

month and location in the model. Each observed OA profile is

further averaged vertically to a single value for comparison

to the simulated OA concentration averaged over the same

range of altitudes.

2.3 Surface OA/OOA/HOA measurements from AMS

We select 42 surface AMS measurements in 2000–2008 from

previous studies (Spracklen et al., 2011; Zhang et al., 2007)

that differentiate between hydrocarbon-like OA (HOA, a

surrogate for POA from combustion and biomass burning)

and oxygenated OA (OOA, a surrogate for SOA from all

sources). The HOA and OOA are determined by a multiple

component analysis (MCA; Zhang et al., 2007). The aver-

aged OOA, HOA and OA data for each campaign have been

compared to the simulated monthly mean SOA, POA and to-

tal OA in the corresponding model grid. Most of these mea-

surements were taken before 2005. We did not perform simu-

lations in this period due to the lack of GEOS-5 meteorologi-

cal data (described in Sect. 3.1). Therefore, the model results

are averaged from 2005 to 2009 as a climatology to compare

with this observational data set.

3 Modeling framework

3.1 CAM4-chem model

The global Community Atmosphere Model version 4 with

chemistry (CAM4-chem) is part of the Community Earth

System Model (CESM, version 1.2.2) (Tilmes et al., 2015).

Here, we employ CAM4-chem in its specified dynamics

mode, in which CAM and the Community Land Model

(CLM) are driven by offline Goddard Earth Observing Sys-

tem model version 5 (GEOS-5) reanalysis meteorological

fields (available since 2004). The prescribed sea surface tem-

perature and sea ice data are from the Climatological/Slab-

Ocean Data Model (DOCN) and Climatological Ice Model

(DICE) as other components of CESM. In this configuration,

CAM4-chem is run in a chemistry-transport model mode,

such that direct comparison can be performed without having

to consider variability associated with internally generated

meteorology. CAM4-chem includes interactive simulation of

O3–NOx–CO-VOC and bulk aerosol chemistry (based on the

MOZART-4 chemical mechanism) as described in Lamarque

et al. (2012). The default 2-product SOA scheme is described

in Sect. 3.2 and in Heald et al. (2008). Updates performed

for the purpose of this study are discussed in Sects. 3.3

and 3.4. The emissions of isoprene and monoterpenes are

calculated online by the Model of Emissions of Gases and

Aerosols from Nature (MEGAN 2.1), which is embedded in

CLM (Guenther et al., 2012). The anthropogenic, biomass

burning and other (except biogenic) emissions in CESM

are as described in Lamarque et al. (2012). These consist

of anthropogenic emissions from the Precursors of Ozone

and their Effects in the Troposphere (POET) inventory for

2000 (Granier et al., 2005), with Asia replaced by the Re-

gional Emission inventory for ASia (REAS v1) for each year

(Ohara et al., 2007). The biomass burning emissions are from

GFED-v2 (van der Werf et al., 2006) for 2005–2008 and from

the Fire INventory of NCAR (FINN-v1) for 2009 (Wiedin-

myer et al., 2011). All the SOA schemes discussed in this

study consider that SOAs are only generated from oxidiza-

tion of gas-phase VOCs. The SOA formation from organic

compounds emitted originally in the condensed phase is not

considered. Simulations are performed with a 30 min time
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Table 1. Abbreviations used in this study.

Abbreviations Description

OA Organic aerosol, including the mass of carbon, oxygen

and other possible elements (OA = POA + SOA).

OC Organic carbon (OC = POC + SOC).

POA Primary organic aerosol.

POC Primary organic carbon.

SOA Secondary organic aerosol.

SOC Secondary organic carbon.

SOG Secondary organic gas.

ASOA Anthropogenic secondary organic aerosol.

BSOA Biogenic secondary organic aerosol.

AVOC Anthropogenic volatile organic compounds.

BVOC Biogenic volatile organic compounds.

SOAM SOA from monoterpene oxidation.

SOAI SOA from isoprene oxidation.

MTP Monoterpenes.

ISOP Isoprene.

HOA Hydrocarbon-like organic aerosol, a surrogate for POA.

OOA Oxygenated organic aerosol, a surrogate for SOA.

step, a horizontal resolution of 1.9◦× 2.5◦ and 56 levels from

the surface to approximately 40 km.

3.2 Default SOA parameterization

In CAM4-chem, the default SOA formation follows the 2-

product approach (Odum et al., 1996). Each parent VOC is

oxidized to generate 2 semivolatile surrogates, which can

partition into pre-existing organic particles including both

POA and SOA. The partitioning of the semivolatile products

is described by absorptive partitioning theory into carbona-

ceous aerosol material (Donahue et al., 2006; Pankow, 1994).

CAM-chem tracks POC in its emission, transport and depo-

sition module. Later, in Sect. 4.2, we assume a POA-to-POC

ratio of 1.4 (Aiken et al., 2008; White and Roberts, 1977) to

calculate POA and OA to compare with observations. The

model simulates anthropogenic SOA (ASOA) from NOx-

dependent OH-initiated oxidation of anthropogenic aromat-

ics (benzene, toluene and xylene), BSOA from the OH-

initiated oxidation of isoprene, and the ozonolysis, OH- and

NO3-initiated oxidation of monoterpene (Table 2). The sur-

rogate SOA products are assumed to be C10H16O4 for SOA

from monoterpenes (SOAM), C5H12O4 for SOA from iso-

prene (SOAI), and C6H7O3, C7H9O3, and C8H11O3 for SOA

from benzene, toluene and xylenes; therefore, the O :C ratio

is constant for each SOA species. The overall O :C ratio in

total OA depends on the split between POA and SOA, and

the fraction of each SOA species. Fossil content is regarded

as POA including both hydrophobic and hydrophilic com-

pounds and is not included in SOA in CAM4-chem. The de-

fault 2-product model in CAM4-chem only applies low-NOx
yields parameterization for all OH- and O3-initiated BSOA

formation. The SOA mass yields (summarized in Table S1)

are from Heald et al. (2008) and references therein.

3.3 Updated SOA scheme

We update the SOA model to include a 4-product VBS

scheme, which has 4 semivolatile surrogates for each parent

VOC species. The saturation concentrations (C*) at 295 K

for the 4 product groups are 0.1, 1, 10 and 100 µg m−3, re-

spectively. This VBS has a wider range of volatilities than

the default 2-product parameterization that can better repre-

sent the volatility distribution of atmospheric semivolatiles.

Another goal of implementing this VBS framework is to fa-

cilitate implementation of advanced processing including the

aging effect. Changing the enthalpies of vaporization (see Ta-

bles S1 and S2 in the Supplement) has no significant effect on

simulated SOA burden (difference smaller than 2 %). In ad-

dition to the current reactions used in the 2-product model,

we have added the NOx-dependent pathway for SOA for-

mation from monoterpenes and the NO3-initiated oxidation

of isoprene into the VBS (see Table 2). SOA formed from

OH-initiated photooxidation of isoprene still only has one

set of yields following the low-NOx parameterizations. We

do not change this isoprene-SOA parameterization to remain

consistent with the VBS framework from Pye et al. (2010).

Additional simulations that include the high-NOx pathway

of isoprene chemistry are discussed in the Supplement. The

SOA mass yields (summarized in Table S2) are from Pye et

al. (2010) and references therein.

In the 4-product VBS model, the partitioning between the

high-NOx (RO2+NO) and low-NOx (RO2+HO2) pathway

Atmos. Chem. Phys., 15, 13487–13506, 2015 www.atmos-chem-phys.net/15/13487/2015/
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Table 2. Summary of SOA treatments in CAM4-chem model runs.

SOA scheme Reactions to form SOA Description

2-product MTP+OH(HO2); MTP+O3(HO2);

MTP+NO3;

ISOP+OH(HO2);

AVOCs+OH(HO2); AVOCs+OH(NO).

Default 2-product scheme;

SOA mass yields summarized in Table S1 (Heald et al., 2008).

VBS MTP+OH(HO2); MTP+O3(HO2);

MTP+OH(NO); MTP+O3(NO);

MTP+NO3;

ISOP+OH(HO2); ISOP+NO3;

AVOCs+OH(HO2); AVOCs+OH(NO).

Updated 4-product VBS scheme;

SOA mass yields summarized in Table S2 (Pye et al., 2010)

VBS_lowNOx MTP+OH(HO2); MTP+O3(HO2);

MTP+NO3;

ISOP+OH(HO2); ISOP+NO3;

AVOCs+OH(HO2); AVOCs+OH(NO).

Same as VBS, but assuming all monoterpene SOA (SOAM) is

formed under low-NOx conditions

VBS_agHigh Same as VBS Same as VBS, with multi-generational aging applied to all

species; kOH = 4× 10−11 cm3 molec−1 s−1.

VBS_agLow Same as VBS Same as VBS, with multi-generational aging applied to all

species; kOH = 5.2× 10−12 cm3 molec−1 s−1.

VBS_agAVOC Same as VBS Same as VBS, with multi-generational aging applied to ASOA

only; kOH = 4× 10−11 cm3 molec−1 s−1.

is determined by the branching ratio β (Pye et al., 2010):

β =
[NO]

[NO]+ [HO2]
.

Thus, 100×β% of the parent hydrocarbon channels through

the high-NOx pathway, and 100× (1−β)% of the parent

hydrocarbon channels through the low-NOx pathway. This

format of β is a simplification of

β =

∑
kRO2+NO×[NO]∑

kRO2+NO×[NO] +
∑
kRO2+HO2

×[HO2]
,

where kRO2+NO and kRO2+HO2
represent the reaction rate co-

efficients of RO2+NO and RO2+HO2, respectively.

Field studies that quantified the elemental composition of

OA indicate the importance of aged oxygenated OA (Aiken

et al., 2008; Chen et al., 2011; Heald et al., 2010). Several

regional modeling studies have found the “aging” process

necessary to produce reasonable OA mass (Athanasopoulou

et al., 2013; Hodzic and Jimenez, 2011; Knote et al., 2015;

Lane et al., 2008; Tsimpidi et al., 2010). In this study we im-

plement a simplified aging parameterization into the global

model to provide a rough assessment of the SOA sensitiv-

ity in VBS to the effect of aerosol aging. At every model

time step, each gas-phase SOA product except for the lowest

volatility product (C*= 0.1 µg m−3) is assumed to be fur-

ther oxidized by OH with a reaction rate constant kOH of

4×10−11 cm3 molec−1 s−1 (Atkinson and Arey, 2003; Tsim-

pidi et al., 2010), which reduces its volatility by an order of

magnitude. The oxygen-to-carbon ratio (O :C) is assumed to

be constant for each surrogate SOA product; thus, an increase

in SOA mass due to the addition of oxygen is not considered

in the aging process. Considering the complexity of various

SOA species and the large uncertainties in aging process, the

assumption of a fixed O :C ratio for each SOA product sur-

rogate is acceptable for global model parameterizations. The

aging rate kOH = 4× 10−11 cm3 molec−1 s−1 is at the high

end of previously suggested parameters (Lane et al., 2008).

We do simulations with and without this aging parameteriza-

tion to quantify the possible range of global SOA strengths

and additional simulations (see Sect. 3.4) to examine the ef-

fect of different aging parameters.

Particle-phase SOA as well as gas-phase SOG are removed

from the atmosphere by wet and dry deposition. Dry de-

position follows a resistance-in-series formulation (Heald et

al., 2008; Wesely, 1998). SOA and other soluble aerosols

are removed by both in-cloud scavenging and below-cloud

washout (Barth et al., 2000; Lamarque et al., 2012).

3.4 Experiment setup

In this study, we apply six different treatments of SOA

formation, as summarized in Table 2. 2-product is the de-

fault SOA model; VBS and VBS_agHigh are the updated

4-product VBS schemes with and without the aging ef-

fect. VBS_agHigh applies the high aging rate kOH = 4×

10−11 cm3 molec−1 s−1 to all species, thus, presumably pro-

viding the higher bound of simulated SOA loadings. These

three schemes (2-product, VBS and VBS_agHigh) are the

www.atmos-chem-phys.net/15/13487/2015/ Atmos. Chem. Phys., 15, 13487–13506, 2015
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main SOA schemes that we use to compare with observations

(Sect. 4.2) and study the sensitivity to NOx perturbations. For

each of the three schemes, we perform one control run and

one sensitivity run in which anthropogenic NO emissions are

reduced by 50 % (Sect. 4.3). We perform additional simu-

lations to explore the impact of different aging and NOx-

dependency parameterizations: VBS_agLow applies a lower

kOH of 5.2× 10−12 cm3 molec−1 s−1 (Hu et al., 2013) to all

species, which is close to the lower limit suggested by other

studies (Hodzic and Jimenez, 2011; Spracklen et al., 2011);

VBS_agAVOC applies kOH = 4× 10−11 cm3 molec−1 s−1 to

AVOCs only, as suggested by some studies that ASOA ages

longer than BSOA (Lee-Taylor et al., 2015). VBS_lowNOx
is the same as VBS except that all SOAM is assumed to

be formed through the low-NOx (RO2+HO2) pathway. This

VBS_lowNOx scheme is done to isolate the influence of the

NOx-dependent pathway for SOAM formation, which is not

considered in the default 2-product settings. All simulations

are conducted for the years 2004–2009 with offline mete-

orology from GEOS-5 reanalysis and specific monthly an-

thropogenic emissions. The year 2004 result is discarded as

spin-up.

4 Results

4.1 Comparison of various SOA schemes

The annual mean zonally averaged SOA concentration is

shown in Fig. 1. The tropical maximum in the lower tro-

posphere is due to large year-round Amazonian BVOC

emissions coupled with extensive seasonal biomass burn-

ing that provides ample pre-existing POA onto which the

semivolatiles can condense. The second surface maximum in

the Northern Hemisphere mid-latitudes, 30–60◦, is mostly at-

tributed to (1) summertime BVOC emissions from broadleaf

deciduous forest in the temperate and boreal zones, espe-

cially the southeast US which has very high BVOC emis-

sions in the summer (Guenther et al., 2006); (2) plentiful sup-

ply of anthropogenic and biomass burning emitted POA; and

(3) large amounts of AVOC emissions from human activi-

ties. In most simulations, indicated by the white contour lines

in Fig. 1, the BSOA from isoprene and monoterpene oxida-

tion accounts for more than 70 % of the total SOA in most

latitudes and altitudes, which actually includes both “nat-

urally formed” and “anthropogenically influenced” BSOA.

The rest is ASOA from the oxidation of AVOCs. In the

VBS_agAVOC run, ASOA accounts for a larger fraction in

Northern Hemisphere mid-latitudes than other simulations

ranging from 30 to 50 % because in this scheme the aging

process is only applied to ASOA.

Table 3 details the annual global SOA budget in each

control experiment. Compared to the default 2-product ap-

proach, the VBS scheme predicts a smaller global annual

burden of SOA (19 % lower than the 2-product), although

the surface concentration is 11 % higher with compensating

lower concentrations at higher elevations. Due to the higher

yields in the VBS (see Tables S1 and S2), more parent hy-

drocarbon is consumed near the source location and less is

transported to the upper troposphere relative to the 2-product

scheme. Their different volatility also contributes to the dif-

ference in SOA concentrations. Table 3 suggests a shorter

SOA lifetime of 8.9 days in the VBS than the lifetime of

11.4 days in the 2-product scheme due to the larger wet-

deposition flux, which is consistent with the higher surface

concentration. The SOA global burden in the VBS_lowNOx
run is 14 % higher than the VBS. This is consistent with

the fact that the high-NOx (RO2+NO) channel is less SOA-

producing compared to the low-NOx (RO2+HO2) channel.

The yields of SOAM at 10 µg m−3 under high- and low-NOx
are 0.09 and 0.19, respectively (Table S2).

For present climate, the differences in annual burden be-

tween the two VBS models without aging effect (VBS and

VBS_lowNOx) and the 2-product model are relatively small

(< 20 %), because for most parent hydrocarbon species they

are fitted into the same chamber data (see Heald et al.,

2008; Pye et al., 2010, and references therein). In con-

trast, in VBS_agHigh, adding the aging effect accelerates

the shift of volatile mass towards lower volatility bins and

hence more mass in the particle phase, and results in an

overall doubling of the net SOA (particle phase) produc-

tion, which is important for SOA environmental impacts.

We find that the SOA production is sensitive to the as-

sumed OH oxidation rate constant (kOH) for aging of the

semivolatile intermediates. For example, using VBS_agLow

scheme with a lower kOH of 5.2× 10−12 cm3 molec−1 s−1

(Hu et al., 2013), the annual mean SOA production rate

would be 44.6± 2.0 Tg[C] year−1, in comparison to a pro-

duction rate of 58.6± 2.4 Tg[C] year−1 in the VBS_agHigh

scheme with kOH = 4× 10−11 cm3 molec−1 s−1, and a pro-

duction rate of 28.6± 1.6 Tg[C] year−1 in the VBS scheme

without aging parameterization. This single aging parameter

represents the multi-generational aging of hundreds of thou-

sands of oxidation intermediate species that are involved in

the SOA formation (Lee-Taylor et al., 2015) and is currently

not well characterized for individual precursors and chemical

environments. In the rest of this study, we will use the three

schemes, 2-product, VBS and VBS_agHigh, to compare with

observations and explore the NOx-dependent effects.

4.2 Evaluation of OA in CAM4-chem simulations

4.2.1 Comparison with the IMPROVE network OC

observations

The IMPROVE surface observations and the model outputs

are averaged from 2005 to 2009. Modeled OC concentrations

are calculated as the sum of primary carbon (directly emit-

ted and transported in the model) and the carbon contained

in each SOA species that is calculated assuming the surro-
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Figure 1. Annual mean zonally averaged SOA concentration (µg m−3) (shown as colored shades) and the fraction of biogenic SOA (%)

(shown as white contours) in CAM4-chem for different SOA treatments.

Table 3. Summary of simulated annual mean global budget of SOA (particle-phase).

Burden Net SOA production Lifetime Wet deposition Other losses (by SOA dry

Tg[C] Tg[C] year−1 Day Tg[C] year−1 deposition) Tg[C] year−1

2-product 0.85± 0.04 27.3± 2.1 11.4± 0.4 −24.4± 1.8 -2.9± 0.3

VBS 0.69± 0.03 28.6± 1.6 8.9± 0.2 −25.3± 1.4 −3.3± 0.3

VBS_lowNOx 0.79± 0.03 33.7± 1.8 8.5± 0.2 −29.8± 1.5 −3.9± 0.3

VBS_agHigh 1.08± 0.06 58.6± 2.4 6.7± 0.1 −52.1± 2.1 −6.5± 0.4

VBS_agLow 0.96± 0.05 44.6± 2.0 7.8± 0.1 −40.0± 1.7 −4.8± 0.3

VBS_agAVOC 0.75± 0.03 31.5± 1.6 8.6± 0.2 −27.8± 1.4 −3.7± 0.3

gate SOA products described in Sect. 3.2. Figures 2a and

3 show the model–IMPROVE comparison of annual mean

surface total OC concentrations using the models 2-product,

VBS and VBS_agHigh. The total OC in the 2-product and

the VBS models are similar to each other and are close to the

IMPROVE OC magnitude. They capture the observed spa-

tial distribution to within 50 % (r2
= 0.45 and 0.47, respec-

tively). They capture the low OC values in the middle and

west inland areas, and high OC values in the southeast US

where considerable BVOC is emitted from forest as well as

POC and AVOC emitted from economic sectors. In the north-

east US and some coastal polluted regions in California, OC

is greatly overestimated by the models. Figure 2c indicates

large simulated POC concentrations in these regions while

IMPROVE total OC (=POC+SOC) is not even as large

as the simulated POC concentrations. Therefore, the positive

bias of the two no-aging simulations in the northeast US is

likely due to an overestimate of POC emissions in the inven-

tory or due to the assumption that all POAs are non-volatile

once emitted and stay in the particle phase until deposition.

The fact that IMPROVE sites are predominantly located in

remote clean regions might also contribute to this discrep-

ancy. In Fig. 2b the white contour lines illustrate the annual

mean fraction of SOC in total OC. Table 4 summarizes the

fractions in each season. In the two no-aging models, the an-

nual mean SOC-to-OC ratio ranges from 20 to 30 % in the

northeast US and from 40 to 60 % in the southeast US. Even

in summer, the ratio does not exceed 50 % in the northeast US

and 70 % in the southeast US, which is lower than the sug-

gested values from Ahmadov et al. (2012) and Shrivastava

et al. (2008). The aging experiment VBS_agHigh increases

the SOC-to-OC ratio greatly (68 and 81 % in summertime

northeast and southeast US) and overestimates OC across the

entire US due to large SOA formation from aging, which is

consistent with previous studies in that the aging coefficient

we apply here (kOH = 4× 10−11 cm3 molec−1 s−1) is at the
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Table 4. Fraction of SOC in total OC (%) in the southeast US and the northeast US.

Annual MAM JJA SON DJF

Northeast US 2-product 24 % 15 % 45 % 20 % 6 %

VBS 28 % 19 % 49 % 23 % 8 %

VBS_agHigh 45 % 33 % 68 % 39 % 12 %

Southeast US 2-product 39 % 29 % 62 % 32 % 8 %

VBS 44 % 34 % 67 % 37 % 10 %

VBS_agHigh 63 % 55 % 81 % 56 % 18 %

Figure 2. Annual mean surface concentrations (units: µg[C] m−3) of (a1)–(a3) total organic carbon (OC=POC+SOC), (b1–b3) secondary

organic carbon (SOC) and (c) primary organic carbon (POC). The data is averaged from 2005 to 2009. In (a1)–(a3), scatters are IMPROVE

observations and color shades are simulated total OC from the models 2-product, VBS and VBS_agHigh. In (b1)–(b3), white contours

indicate the fraction of SOC in total OC (%), ranging from 30 to 70 % with an interval of 10 %. (c) shows simulated POC, which is identical

in the three simulations.

high end of suggested aging rates. The VBS_agHigh scheme

slightly improves the replication of spatial distribution of an-

nual mean OC concentrations (r2
= 0.53 as compared to 0.45

and 0.47 in the 2-product and VBS schemes) but not in sum-

mer (r2
= 0.13, Table 5). Assuming only ASOA ages, the

VBS_agAVOC scheme does not improve the simulated spa-

tial distribution (r2
= 0.48 in annual average and r2

= 0.18

in summer; Table 5).
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Figure 3. Comparison of averaged annual mean surface OC con-

centrations (µg[C] m−3) between IMPROVE measurements and the

three simulations: 2-product, VBS and VBS_agHigh. Different col-

ors indicate sites in different regions. In each subplot, the dashed

line is the 1 : 1 line. The coefficients of determination (r2), root-

mean-square difference (rmsd) and the model-to-observation slope

(k) are included.

Table 5. Coefficients of determination (r2) of IMPROVE measure-

ments versus simulated total OC.

Annual MAM JJA SON DJF

2-product 0.45 0.40 0.18 0.41 0.42

VBS 0.47 0.42 0.18 0.43 0.42

VBS_agHigh 0.53 0.54 0.13 0.49 0.45

VBS_agAVOC 0.48 0.45 0.18 0.44 0.44

4.2.2 Vertical profiles of OA from aircraft-based AMS

measurements

To assess the simulated OA vertical profile in these models,

we select 13 aircraft campaigns that had available AMS mea-

surements between 2005 and 2009. The comparison of verti-

cal profiles is shown in Fig. 4. The VBS_agHigh scheme pro-

vides a higher OA concentration than the other two no-aging

simulations. Overall, the intermodel differences are smaller

than the model–observation differences. In biomass-burning-

influenced regions, the observed OA profile is usually asso-

ciated with large variations at elevated altitude, indicating

sporadic fire plumes. For example, for the AMMA campaign

(west Africa), the aircraft tracked biomass-burning plumes,

thus giving several maxima of observed mean OA at multi-

ple altitudes. In this case, the observed median value at each

layer is a more reliable value for evaluation of the simulations

(Heald et al., 2011). The simulated OA profiles in these fire-

influenced regions are close to the observed median OA pro-

files and all are within 1 standard deviation of observations

except at site DODO (west Africa). The enhanced observed

concentrations in DODO in the upper troposphere indicate

strong deep convection. The discrepancies are likely caused

by biases in subgrid meteorology and vertical transport rather

than the chemical formation of SOA or POA emissions. Pol-

luted regions have high OA concentrations at the surface. All

three of the simulations capture both the vertical distribu-

tion characteristics and magnitude of concentration with the

largest model–observation difference within 5 µg m−3. OA in

remote sites is close to zero. The models capture OA at IM-

PEX (west North America and east Pacific) and OP3 (Bor-

neo) sites but overestimate at TROMPEX (Cabo Verde) and

VOCALS-UK (South Pacific). Generally, the simulated OA

profiles are all within a factor of 2 of the observed magnitude,

indicating a reasonable model performance across different

regions and seasons. Figure 5 compares OA concentrations

averaged across each entire campaign. All three simulations

underestimate observed OA in most campaigns, except in

the remote sites of TROMPEX (Cabo Verde) and VOCALS-

UK (eastern South Pacific). The VBS_agHigh scheme has

the lowest root-mean-square difference (rmsd) of 1.45 and

captures 56 % of observed OA mean concentrations, as com-

pared to 50 and 52 % in the 2-product and VBS schemes.

4.2.3 OA, SOA and POA from surface AMS

measurements

The observed OOA is a surrogate for SOA, and HOA is a sur-

rogate for POA in AMS measurements (Aiken et al., 2009;

Lanz et al., 2007; Zhang et al., 2005). We use 42 short-

term surface AMS measurements (Spracklen et al., 2011;

Zhang et al., 2007) and classify their locations into four

groups: North America (17 sites), Europe (12 sites), East

Asia (12 sites) and Amazon (1 site). Most of these mea-

surements were taken before 2005. The 2005–2009 monthly
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Figure 4. Comparison between the observed vertical profiles of OA concentration (µg m−3) from 13 AMS field campaigns and the three

model simulations: 2-product, VBS and VBS_agHigh. The campaign information is summarized in Heald et al. (2011) (Fig. 1 and Table 1

therein). The error bars are 1 standard deviation of the binned observations for each 0.5 km interval. The grey shades are simulated POA

assuming a POA-to-POC ratio of 1.4. The model simulations are sampled for the corresponding months and locations for each campaign.

The location and location type for each campaign is included in each subplot.

mean model results have been averaged into a climatology to

compare to the observations, which may lead to large model–

observation differences. Figure 6 compares the measured

and simulated OA, OOA(SOA) and HOA(POA). The com-

parisons between observations and simulations show large

discrepancies (in opposite directions) for primary and sec-

ondary species. POA is identical in the three simulations.

Consistent with the comparison to the IMPROVE network

in Sect. 4.2.1, the models overestimate POA in most regions

and especially in North America, which will promote con-

densation of semivolatiles onto pre-existing organic matter,

thus forming more SOA. The SOA concentrations in the

two no-aging models, 2-product and VBS, are close to ob-

served OOA in North America and lower in other regions. By

including the aging, the VBS_agHigh simulation increases

SOA concentration, leading to an overestimation in North

America and still an underestimation in most other regions.

The total OA concentrations in all models exceed observed

OA in North America. In Fig. 7 we plot the comparison of

SOA(OOA)-to-OA ratios from the observations and simula-

tions. The 2-product and VBS models significantly underes-

timate the observed OOA-to-OA ratios that range from 0.4 to

1. The VBS_agHigh model makes an improvement but is still

lower than the observations due to the large amount of sim-

ulated POA. Overall, the intermodel differences are smaller

than the model–observation differences. These conclusions

are consistent with Sect. 4.2.1 and 4.2.2.

4.3 The impact of anthropogenic NOx pollution on

surface SOA

For each of the 2-product, VBS and VBS_agHigh schemes,

we perform a control run and a sensitivity run in which the

anthropogenic NO emissions are reduced by 50 % to ex-

plore the impact of NOx pollution on surface SOA concen-

trations. Other NO sources including biomass burning and

soil emissions are not changed. The 50 % reduction in an-

thropogenic NO emissions leads to a 36 % decrease in an-

nual mean total NO emissions and a 38 % decrease in sur-

face NOx concentrations at global scale (Fig. S1 in the Sup-

plement). The global surface level of oxidants OH, O3 and

NO3 decrease by 13, 8 and 29 %, respectively (Fig. S2). The

surface NO : HO2 ratio has been greatly reduced by 67 %,

while the change in branching ratio (β = NO
NO+HO2

) is small

(−3.4 %), indicating the NO concentration in the model is

too high for HO2 to compete. The spatial distribution and

probability density function of β are plotted in Figs. S3 and
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Figure 5. Comparison between averaged OA concentration

(µg m−3) from 13 AMS field campaigns and the three model sim-

ulations: 2-product, VBS and VBS_agHigh. The campaign infor-

mation is summarized in Heald et al. (2011) (Fig. 1 and Table 1

therein). All data in each campaign are temporally, horizontally and

vertically averaged to a single value and compared to the model

outputs averaged over the same period and location.

S4 in the Supplement. We choose a polluted and a clean re-

gion as examples: the southeast US (32–40◦ N, 95–77◦W)

and the Amazon (17◦ S–5◦ N, 77–55◦W), both of which are

mostly in the NOx-limited regime in terms of ozone forma-

tion due to their large BVOC emissions (Lane et al., 2008),

i.e., the concentration of O3 and OH are positively related

to concentration of NOx . We examine the dependence of an-

nual mean surface SOA concentrations on β and oxidants

level at the global scale and over the southeast US and Ama-

zon regions in Fig. 8. The comparison of the sensitivity (red)

and the control runs (green) indicates that the 50 % reduc-

tion in anthropogenic NO emissions leads to a small decrease

in β, oxidation level and SOA concentrations. In Fig. 8,

the small SOA concentrations associated with small β val-

ues (β < 0.6) mostly happen over the ocean (not shown) or

polar regions where VOC precursors hardly exist and NOx
concentrations are low. In the range 0.6< β < 1.0, the com-

mon regime over land, the highest SOA concentrations oc-

cur at relatively lower β values, which are mostly located

in tropical rain forests with large BVOC emissions and high

SOA production efficiency through the low-NOx pathway.

The influences of β and oxidant level are tightly related be-

cause high β indicating high NOx is usually associated with

high concentrations of oxidants. The dependence of SOA on

oxidant concentration indicates a maximum at medium oxi-

dant level of approximately 0.8× 1012 molec cm−3. The low

SOA concentrations at high oxidant level mostly occur in

polluted regions where SOA production is overwhelmingly

dominated by the high-NOx (low-yields) pathway.

The SOA production in response to NOx perturbations

is complex, as described in Sect. 1. For example, in

the VBS_agHigh scheme, we consider monoterpene SOA

(SOAM) coming from NO3-initiated oxidation and the low-

and high-NOx pathway for both OH- and O3-initiated ox-

idation. As shown in Fig. 9, with a 50 % reduction in an-

thropogenic NO emissions, total surface SOAM concentra-

tion decreases, dominated by the decrease in NO3-oxidation

branch. This decrease in total SOAM mass is a result of ad-

dition or cancellation of various changes in each branch, and

the relative importance of different branches may change

with different regions. One interesting phenomenon is that

when NOx emissions are reduced, the low-NOx OH- and

O3-initiated oxidation branches form less SOAM mass in

the Amazon but more SOAM in human-influenced regions

like mid-latitude broadleaf forest in the southeast US, coastal

Asia and boreal forest in northern Europe. To further under-

stand and quantitatively evaluate the complex NOx influence

on SOA formation, we examine the predicted change in sur-

face SOA concentrations in different pathways in response to

the decrease in anthropogenic NO emissions, as illustrated by

Fig. 10. Table 6 details the relative contribution of each path-

way to the total SOA change. The results for various SOA

types, i.e., aromatic SOA, isoprene SOA and monoterpene

SOA, are discussed below.

4.3.1 Anthropogenic SOAs from benzene, toluene and

xylenes (ASOA)

ASOA in the three models are assumed to form from OH-

initiated oxidation, including both low-NOx and high-NOx
pathways, i.e., AVOCs+OH(HO2) and AVOCs+OH(NO).

In the southeast US as shown in Fig. 10, all models pre-

dict an increase in the low-NOx pathway and a decrease in

the high-NOx pathway. This is because the model assumes

linear interpolation between low- and high-NOx pathways

based on the branching ratio (Sect. 3.3). When NOx is re-

duced, more AVOCs are oxidized under the low-NOx path-

way, which has higher yields (see Tables S1 and S2). Due

to the limited change in β, the effect of shifting to a high-

yield HO2 pathway is very small. The total ASOA formation
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Figure 6. Comparison of surface AMS measurements (units: µg m−3) and three simulations. First column: total OA; second column:

SOA(OOA); third column: POA(HOA). The r2 and rmsd are included in each subplot. The OOA is a surrogate for SOA from all sources.

The observed HOA is a surrogate for POA from combustion and biomass burning. Simulated POA is identical in the three simulations. In

the POA-HOA comparison, data points with observed HOA smaller than 0.01 µg m−3 have been set to 0.01 µg m−3 to be shown in the plots.

Table 6. The relative contributions (%) of each SOA formation pathway to the total SOA concentration change in the southeast US and the

Amazon, defined as
SOA change in each pathway

|total SOA change|
. The sums of all numbers in each simulation equal −100 % because the total SOA change in

the sensitivity runs compared to the control runs are always negative. The reaction denotations are the same as defined in Fig. 10.

M1 M2 M3 M4 M5 I1 I2 A1 A2

SE US 2-product −10.4 +15.0 −65.3 −46.8 +10.6 −3.1

VBS +2.9 −13.5 +29.5 +8.8 −63.8 −40.3 −32.7 +13.7 −4.5

VBS_agHigh +1.0 −5.3 +8.9 +2.0 −48.9 −35.1 −18.9 +3.5 −7.2

Amazon 2-product −5.1 −0.2 −65.0 −30.8 +1.4 −0.4

VBS +0.4 −7.8 +5.9 −15.8 −45.1 −16.2 −21.9 +0.9 −0.5

VBS_agHigh −1.4 −4.3 −9.5 −13.9 −27.2 −30.4 −12.6 0.0 −0.6

depends on both the low-/high-pathway partitioning and the

oxidation capacity, so it can either increase (e.g., 2-product,

VBS) or decrease (VBS_agHigh). In the Amazon, the ASOA

changes follow the same pattern as in the southeast US, but

their relative contributions are very small due to the low con-

centrations of AVOCs and anthropogenic NOx . The contribu-

tions of ASOA changes to the total SOA change (defined as
change in ASOA
|total SOA change|

) range from −3.7 to 9.2 % in the southeast

US and from −0.6 to 1.0 % in the Amazon.

4.3.2 Isoprene SOA (SOAI)

In our current models, the isoprene only has one set of yields

for OH-initiated daytime oxidation following low-NOx pa-

rameterization and is oxidized by NO3 during the night (the

latter is not considered in the 2-product model). The OH

oxidation is the dominant branch to form SOAI in both re-

gions. When anthropogenic NO emissions are halved, both

OH- and NO3-initiated branches decrease in the southeast

US and the Amazon due to reduced atmospheric OH and
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Figure 7. Comparison of observed OOA-to-OA ratio from surface

AMS measurements and simulated SOA- to-OA ratio from the 2-

product, VBS and VBS_agHigh schemes. r2 and rmsd are included

in each subplot.

NO3 levels, respectively. The contributions of SOAI changes

(
change in SOAI
|total SOA change|

) are−46.8 to−73.0 and−30.8 to−43.0 %

in the two regions.

4.3.3 Monoterpene SOA (SOAM)

Monoterpenes are oxidized by OH, O3 and NO3 in all

models but the 2-product model only considers the low-

NOx pathway (Table 2). In the southeast US with large

human influence, the surface SOAM formation is largely

attributed to NO3-initiated oxidation as indicated by most

models, which dominates the reduction in response to re-

duced NOx . This branch itself contributes to the total

SOA change (
change in SOAM from NO3−oxidation

|total SOA change|
) by −48.9 to

−65.3 %. This reduction in NO3 branch compared to its nor-

mal value is relatively small because the decrease in NO3

concentration is only 24 %. In the VBS and VBS_agHigh

models, the partitioning between high- vs. low-NOx path-

ways determines the tendency of increasing yields from the

low-NOx pathway and decreasing yields through the high-

NOx pathway. The OH oxidation in the southeast US fol-

lows such tendency. However, the SOA formed from both

high- and low-NOx pathways of ozonolysis increases. One

possible explanation is the “buffering” between O3- and

NO3-initiated oxidation, both of which mostly happen at

night. Compared to the control run, NO3 is significantly

lower in the sensitivity run; thus, more monoterpenes would

be oxidized by O3 under both low- and high- NOx condi-

tions. Adding up the changes in all branches, the SOAM

change contributions to total SOA change are about −36.1

to −60.7 %. In the Amazon’s pristine environment, most

branches demonstrate a slight reduction in SOAM in all mod-

els. Since the absolute magnitude of anthropogenic NOx is

small, the major influence of the NOx might be the decline

in level of atmospheric oxidants: OH, O3 and NO3 decrease

by 14, 6 and 16 %, respectively. Despite the minor lessening

of oxidation capacity, the SOAM reduction and total SOA

reduction are negligible.

4.3.4 Summary of surface SOA concentration change

The changes in total SOA concentration at the surface in dif-

ferent regions are summarized in Table 7. In both human-

influenced and clean regions, the 50 % reduction in anthro-

pogenic NO emissions leads to a decline of BSOA, which

dominates the overall SOA decrease. The ASOA could ei-

ther increase (in models without aging parameterization) or

decrease (in models with aging considered). Among the mul-

tiple effects of NOx , BSOA is mostly influenced by changes

in NO3-initiated oxidation. Both BSOA and ASOA are also

influenced by the change in atmospheric oxidation capacity

and the partitioning between high- vs. low-NOx pathways.

The annual mean total surface SOA reductions in the

southeast US, the Amazon and global average range from

119 to 518, 30 to 153, 3.6 to 43 ng m−3, respectively. The

corresponding percentage reductions are 6.4–12.0, 0.9–2.8

and 0.9–5.6 %. These changes are comparable with previous

estimates (Carlton et al., 2010;Lane et al., 2008) but all are

smaller than the magnitude of 1 standard deviation, indicat-

ing that such changes are not statistically significant com-

pared to interannual variations caused by climate and emis-

sion variations. The column concentrations of tropospheric

SOA are also examined (results not shown here), and the

conclusion still holds – no significant change of SOA col-

umn concentration when anthropogenic NO emissions are

reduced by 50 %. One major reason is the small reduction

in branching ratio β, which limits the shift between high- vs.

low-NOx chemical regimes. The fact that SOA is stable in

response to anthropogenic NOx changes is also attributed to

the buffering of various branches (e.g., increased ozonoly-

sis and decreased NO3 oxidation), the partitioning between

low- and high-NOx pathways and the offset from opposite

tendencies of BSOA and ASOA responses (in the no-aging

models).
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Figure 8. Dependence of annual mean surface SOA concentration (µg m−3) on branching ratio and oxidants level at global scale, in the

southeast US and the Amazon. The control runs and the sensitivity runs using VBS and VBS_agHigh schemes are shown. The 2-product

results are similar to the VBS results (not shown). Data points over ocean are excluded. Note that the scales for the southeast US are different

from the Amazon and the global subplots.

Table 7. Changes in surface SOA concentrations due to a 50 % reduction in anthropogenic NO emissions. Total SOA changes from each

model are listed for global average, the southeast US and the Amazon.

Concentration in Standard deviation Concentration change in Percentage

control run (ng m−3) (ng m−3) sensitivity run (ng m−3) change

SE US (32–40◦ N, 95–77◦W) 2-product 1638 248 −119 −7.3 %

VBS 2005 286 −127 −6.4 %

VBS_agHigh 4331 594 −518 −12.0 %

Amazon (17◦ S–5◦ N, 77–55◦W) 2-product 3360 1383 −30 −0.9 %

VBS 3884 1197 −46 −1.2 %

VBS_agHigh 5390 1542 −153 −2.8 %

Global average 2-product 358 40 −3.6 −1.0 %

VBS 393 37 −3.6 −0.9 %

VBS_agHigh 774 52 −43 −5.6 %

5 Summary

NOx plays a complex role in the chemical formation of SOA.

The complexity includes the competition between NO and

HO2 to react with RO2, its substantial influence on atmo-

spheric oxidation capacity, and the nighttime NO3 direct ox-

idation of isoprene and monoterpenes. In this study, we have

updated the SOA scheme in the global chemistry–climate

model CAM4-chem to include a 4-product VBS scheme that

has a broader representation of volatility distribution and

quantitatively evaluated and explained the multiple impacts

of anthropogenic NOx on SOA at global scale.

We updated the SOA scheme in CAM4-chem to a 4-

product VBS scheme. Compared to the default 2-product

model, the VBS scheme has 11 % higher surface SOA

concentration. While the total annual mean SOA bur-

den is 19 % smaller (0.69± 0.03 Tg[C] as compared to

0.85± 0.04 Tg[C]) and has a lifetime that is shorter

(8.9± 0.2 days as compared to 11.4± 0.4 days). Due to

the different volatility and higher yields of SOA in the

VBS, more VOC is oxidized near the surface and less

is transported to higher levels, and more SOA is washed

out near the surface. We explored an aging parameter-

ization with a constant reaction rate with OH (kOH =

4× 10−11 cm3 molec−1 s−1, the higher-limit in previous
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Figure 9. Changes in SOAM concentration (µg m−3) in the sensitivity run with 50 % reductions in anthropogenic NO emissions compared to

the control run using the VBS_agHigh scheme. The total SOAM change is shown in (a). The SOAM change in each formation branch is de-

noted as (b1) MTP+OH(HO2) (low-NOx OH-photooxidation), (b2) MTP+OH(NO) (high-NOx OH-photooxidation), (b3) MTP+O3(HO2)

(low-NOx ozonolysis), (b4) MTP+O3(NO) (high-NOx ozonolysis), and (b4) MTP+NO3 (NO3-initiated oxidation).

studies), which almost doubles the net annual SOA pro-

duction and significantly increases the SOA concentration

both at the surface and in the lower free troposphere. The

global SOA burden with aging considered (i.e., VBS_agHigh

scheme) increases to 1.08± 0.06 Tg[C] and the correspond-

ing lifetime is 6.7± 0.1 days. By applying a lower aging re-

action rate (kOH = 5.2× 10−12 cm3 molec−1 s−1, the lower-

limit in previous studies), we found that the simulation of

SOA is quite sensitive to the assumed kOH. Despite the sig-

nificance to SOA formation and properties, the aging effect

is still poorly understood at the global scale. Further labora-

tory and process-modeling constraints at different conditions

are needed.

The simulated total OC concentrations in the 2-product

and the VBS models without aging are similar, and they cap-

ture the magnitude and distribution of annual mean surface

OC concentrations in the US from the IMPROVE network,

by 45–47 %, but overestimate OC in the polluted northeast

US and western coastal regions. The model with an im-

plementation of aging (VBS_agHigh) slightly improves the

replication of annual mean spatial distribution (r2
= 53 %)

but overestimates the magnitude. All three models perform

poorly in summertime. Compared to AMS measurements

from 13 aircraft-based field campaigns, the simulations of

OA vertical profiles are within a factor of 2 across different

regions and seasons. The VBS_agHigh scheme performs bet-

ter than the two no-aging models to reproduce these observed

OA concentrations (r2
= 56 %, rmsd= 1.45). Further clima-

tological comparisons with surface AMS observations indi-

cate reasonable simulated total OA concentrations but over-

estimation of POA in some polluted regions, which is con-

sistent with the comparison to the IMPROVE network. This

overestimation of POA may come from a higher biased POC

from the emissions inventory in certain regions (e.g., the

northeast US). If so, it would partially conceal the fact that

the current parameterized SOA yields and overlooking of ag-
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Figure 10. Annual mean surface SOA concentration (µg m−3) in the control runs and the sensitivity runs (with 50 % anthropogenic NO

emission off) from different pathways, averaged over the southeast US (32–40◦ N, 95–77◦W) and the Amazon (17◦ S–5◦ N, 77–55◦W).

ing in the two no-aging models actually lead to the SOA un-

derestimation. Another possible explanation might be POA

re-evaporation and subsequent conversion to SOA (Robinson

et al., 2007), indicated by the lower fraction of the SOA-to-

OA ratio in simulations than in the AMS observations. Gen-

erally, the intermodel differences are smaller than the model–

observation differences. We believe that the updated SOA

model (e.g., VBS, VBS_agHigh) is superior to the default

one because we implemented the NOx-dependent SOA for-

mation of monoterpenes, whose absence is a major drawback

of the default model. The VBS framework also facilitates

inclusion of important processes like aging and the future

implementation of size-resolved calculations. The model–

observation discrepancies have several reasons: (1) potential

loss of POA due to evaporation and subsequent SOA forma-

tion, which is currently not considered in this study; (2) un-

certainties in chamber-derived SOA yields due to wall losses

(Zhang et al., 2014); and (3) lack of constraints on dry de-

position of organic gases (Hodzic et al., 2015; Knote et al.,

2015) or unaccounted photolysis reactions during aging of

organics (Hodzic et al., 2015). Other non-chemistry reasons

include (1) the site-level measurement versus coarse model

grid (1.9◦× 2.5◦), (2) specific observation time period (days

to weeks) versus simulated monthly mean values, (3) subgrid

meteorology (e.g., convection events) that the model can-

not capture, and (4) large uncertainties related to fire activity

(e.g., biomass burning plumes).

Finally, we performed sensitivity experiments to examine

how the SOA loading responds to a 50 % reduction in an-

thropogenic NO emissions in different regions. The BSOA

generally decreases due to the reduction in NO3-initiated re-

action and the reduced atmospheric oxidation capacity, while

the ASOA increases in the two no-aging models mainly be-

cause of the increased partitioning to the low NOx path-

way; more AVOCs are oxidized through the low-NOx path-

way that has higher yields. In the aging model, ASOA de-

creases due to the more important effect of reduced oxida-

tion capacity. Decreases in the total surface SOA concentra-
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tions are 6.4–12.0, 0.9–2.8 and 0.9–5.6 % for the southeast

US, the Amazon and global NOx perturbations, respectively,

which, however, are not significant. The fact that SOA for-

mation is stable to changes in NOx can be largely attributed

to limited shift in low- and high-NOx regimes, to buffering

in chemical pathways (e.g., O3 versus NO3-initiated oxida-

tion), and to offsetting tendencies in the biogenic versus an-

thropogenic SOA responses. Our results, based on the global

chemistry–climate model CAM4-chem with simplified SOA

schemes, indicate that air quality control on anthropogenic

NOx may not have substantial impacts on organic aerosol

loadings at large regional scales. Further modeling studies in-

cluding both process-based and parameterized schemes need

to be done to carefully examine the NOx impact on SOA for-

mation.

The Supplement related to this article is available online

at doi:10.5194/acp-15-13487-2015-supplement.
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