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Abstract. Negative trends of carbon monoxide (CO) concen-

trations are observed in the recent decade by both surface

measurements and satellite retrievals over many regions of

the globe, but they are not well explained by current emis-

sion inventories. Here, we analyse the observed CO concen-

tration decline with an atmospheric inversion that simultane-

ously optimizes the two main CO sources (surface emissions

and atmospheric hydrocarbon oxidations) and the main CO

sink (atmospheric hydroxyl radical OH oxidation). Satellite

CO column retrievals from Measurements of Pollution in the

Troposphere (MOPITT), version 6, and surface observations

of methane and methyl chloroform mole fractions are assim-

ilated jointly for the period covering 2002–2011. Compared

to the model simulation prescribed with prior emission in-

ventories, trends in the optimized CO concentrations show

better agreement with that of independent surface in situ

measurements. At the global scale, the atmospheric inversion

primarily interprets the CO concentration decline as a de-

crease in the CO emissions (−2.3 % yr−1), more than twice

the negative trend estimated by the prior emission invento-

ries (−1.0 % yr−1). The spatial distribution of the inferred

decrease in CO emissions indicates contributions from west-

ern Europe (−4.0 % yr−1), the United States (−4.6 % yr−1)

and East Asia (−1.2 % yr−1), where anthropogenic fuel com-

bustion generally dominates the overall CO emissions, and

also from Australia (−5.3 % yr−1), the Indo-China Peninsula

(−5.6 % yr−1), Indonesia (−6.7 % yr−1), and South America

(−3 % yr−1), where CO emissions are mostly due to biomass

burning. In contradiction with the bottom-up inventories that

report an increase of 2 % yr−1 over China during the study

period, a significant emission decrease of 1.1 % yr−1 is in-

ferred by the inversion. A large decrease in CO emission

factors due to technology improvements would outweigh the

increase in carbon fuel combustions and may explain this de-

crease. Independent satellite formaldehyde (CH2O) column

retrievals confirm the absence of large-scale trends in the at-

mospheric source of CO. However, it should be noted that the

CH2O retrievals are not assimilated and OH concentrations

are optimized at a very large scale in this study.

1 Introduction

Carbon monoxide (CO) is an air pollutant that leads to the

formation of tropospheric ozone (O3) and carbon dioxide

(CO2). It is the major sink of the tropospheric oxidant hy-

droxyl radical (OH), and hence influences concentrations

of methane (CH4) and non-methane volatile organic com-

pounds (NMVOCs) (Logan et al., 1981). It contributes to

an indirect positive radiative forcing of 0.23± 0.07 W m−2

at the global scale (IPCC, 2013). Atmospheric CO has two

main sources: (i) direct surface CO emissions from fuel

combustion and biomass burning, estimated to be ∼ 500–

600 TgCO yr−1 and ∼ 300–600 TgCO yr−1, respectively, by

emission inventories (Granier et al., 2011, and references

herein), and (ii) secondary chemical oxidation of hydrocar-

bons in the troposphere, estimated to be a source of ∼ 1200–

1650 TgCO yr−1 with considerable differences among stud-

ies (Holloway et al., 2000; Pétron et al., 2004; Shindell et al.,

2006; Duncan and Logan, 2008). The sink of CO is mainly

through oxidation by OH (Logan et al., 1981), which defines

an average lifetime of 2 months for CO in the atmosphere.

Surface in situ measurements in Europe (Zellweger et al.,

2009; Angelbratt et al., 2011), over the USA (Novelli et al.,

2003; EPA, 2015), in some large cities in China (Li and

Liu, 2011), and in many other places (Yoon and Pozzer,
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2014), indicate that CO concentrations have been decreas-

ing for more than 10 years. Negative trends have also been

observed by various satellite sensors (MOPITT; the Tropo-

spheric Emission Spectrometer – TES; and the Atmospheric

Infrared Sounder – AIRS) over most of the world (Warner et

al., 2013; Worden et al., 2013). In particular, strong CO con-

centration decreases are seen from these satellite retrievals

over eastern China and India (Worden et al., 2013), where

bottom-up inventories report increasing emissions (Granier

et al., 2011; Kurokawa et al., 2013).

Atmospheric chemistry transport models (ACTMs) pre-

scribed with emission inventories are commonly used to

analyse the role of emissions in the atmospheric concentra-

tion. Most of these simulations tend to underestimate CO

concentrations in the middle to high latitudes of the North-

ern Hemisphere (NH), whereas they overestimate them over

emission hotspots (Shindell et al., 2006; Duncan et al., 2007;

Naik et al., 2013; Stein et al., 2014; Yoon and Pozzer, 2014).

This bias reveals an incorrect balance between CO sources,

at the surface and in the atmosphere, and CO sinks (Naik et

al., 2013). Understanding this model–data misfit is challeng-

ing because surface emissions and chemical production each

account for about half of the total CO sources, and because

the sink term removes an amount of CO equivalent to all the

sources within a few weeks. Changes in each source and sink

term could have contributed to the observed CO concentra-

tion decrease, even though only CO emission trends are usu-

ally discussed (Khalil and Rasmussen, 1988; Novelli et al.,

2003; Duncan and Logan, 2008).

In principle, the attribution of the mean balance between

sources and sinks and of their trends can be made with

Bayesian inversion systems that infer the CO budget terms

based on (i) measurements of CO and species related to the

CO sources and sinks, (ii) some prior information about the

budget terms and spatial distributions, (iii) a CTM model to

link emissions and chemistry to concentrations, and (iv) a

description of the uncertainty in each piece of information.

Various inversion studies have estimated regional or global

CO budgets using CO surface observations (Bergamaschi et

al., 2000; Pétron, 2002; Butler et al., 2005) or satellite re-

trievals (Arellano et al., 2004; Pétron et al., 2004; Stavrakou

and Müller, 2006; Chevallier et al., 2009; Fortems-Cheiney

et al., 2009, 2011, 2012; Kopacz et al., 2010; Hooghiem-

stra et al., 2012; Jiang et al., 2013). Here, we use the Python

Variational – Simplified Atmospheric Chemistry (PYVAR-

SACS) inversion system of Pison et al. (2009), Chevallier et

al. (2009) and Fortems-Cheiney et al. (2009, 2011, 2012) to

infer the most likely origin of the observed CO concentration

decrease over the past decade (2002–2011).

In contrast to most CO inversion systems cited above,

which focused on a single species, PYVAR-SACS simulta-

neously assimilates observations of the main species in the

chemical oxidation chain of CH4–CH2O–CO and methyl

chloroform (MCF), a species that only reacts with OH

and therefore informs about its concentration. The PYVAR-

SACS system optimizes the interconnected sources and sinks

of the four species in a statistically and physically consistent

way at the model resolution of 3.75◦× 2.5◦ (longitude, lati-

tude) on an 8-day basis, therefore being suitable for address-

ing the above-described attribution problem of the CO varia-

tions within the limit of the observation information content.

The primary data source about CO in this study is MO-

PITT, a multi-channel thermal infrared (TIR) and near-

infrared (NIR) instrument on board the EOS-Terra satellite

(Deeter, 2003). MOPITT provides the longest consistent time

series of satellite CO retrievals to date. The algorithm has un-

dergone continuous improvements and the archive has been

reprocessed several times (Deeter et al., 2013). Most of the

above-cited satellite-based inversion studies used version 4

or earlier versions of the MOPITT CO retrievals, in which

a noticeable instrumental drift was reported (Deeter et al.,

2010). In version 5, this drift has been corrected together

with other improvements (Deeter et al., 2013; Worden et

al., 2013). Here, we use the further improved version 6 that

has no noticeable bias in the trends of the CO total column

(Deeter et al., 2014), to attribute the CO concentration de-

cline by assimilation in our atmospheric inversion system.

The structure of the paper is as follows. Section 2 describes

the inversion system and the data sets. Section 3 presents the

inversion results on CO concentrations and associated trends.

We show a brief evaluation of the inversion ability to fit the

assimilated data and we cross-evaluate the optimized sur-

face CO concentrations against independent station measure-

ments. Then, we compare the CO concentration trend in the

MOPITT retrievals, in the surface measurements, and in cor-

responding modelling results before and after the inversion.

Section 4 shows the trend analysis of the prior and posterior

simulated CH2O and OH concentrations. CH2O concentra-

tions are representative of the chemical CO sources and we

evaluate the model values against retrievals of its dry air col-

umn (XCH2O)made from observations of the Ozone Monitor-

ing Instrument (OMI) aboard EOS Aura. OH regulates CO

sinks, but is an extremely short-lived compound whose con-

centrations are difficult to measure (Mao et al., 2012). Lack-

ing direct global observation data, we discuss its uncertain-

ties with two contrasting prior OH fields. Section 5 presents

the inverted CO budget, including atmospheric burden, emis-

sion, chemical production and chemical loss. Section 6 sum-

marizes this work, discusses the sources of uncertainties and

provides some perspectives for future works.

2 Method and data

2.1 Inversion system

The PYVAR Bayesian inversion system, initially introduced

by Chevallier et al. (2005), aims at adjusting a series of target

variables (jointly called x), so that they become consistent

with both the atmospheric observations (y) and a priori state
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Figure 1. Schematics of the input information provided to the in-

version and of the inversion state vector.

(xb) given their respective uncertainties, represented by error

covariance matrices R and B. By iteratively minimizing the

following cost function J , PYVAR finds the optimal solution

for x in a statistical sense:

J (x)=
1

2
(x− xb)TB−1(x− xb)

+
1

2
(H(x)− y)TR−1 (H(x)− y) ,

whereH is the combination of a CTM and of an interpolation

operator that includes the combination with the retrieval prior

CO profiles and averaging kernels (AKs) for MOPITT.

Our CTM is the general circulation model of Laboratoire

de Météorologie Dynamique (LMDz) version 4 (Hourdin

et al., 2006), nudged towards winds analysed by the Euro-

pean Centre for Medium-Range Weather Forecasts, run in an

off-line mode with precomputed atmospheric mass fluxes,

and coupled with the SACS chemistry module (Pison et

al., 2009). SACS is a simplification of the Interaction with

Chemistry and Aerosols (INCA, Hauglustaine, 2004) full

chemistry model.

The chemical chain is shown in Fig. 1. It includes surface

emissions of CO, CH4, CH2O and MCF. The 3-D contribu-

tion of NMVOC oxidation to CH2O production has been pre-

calculated by the LMDz-INCA (Folberth et al., 2006). OH

links all the species together. Reaction kinetic and photolysis

rates, as well as fields of species that are not represented as

tracers in PYVAR-SACS (e.g. O1D, O2, Cl), are based on the

LMDz-INCA simulation. The initial states are produced by

LMDz-INCA. The CTM in PYVAR-SACS has a time step

of 15 min for the dynamics (advection) and of 30 min for the

physics (convection, boundary layer turbulence) and chem-

istry, a horizontal resolution of 3.75◦× 2.5◦ (longitude, lati-

tude), and a vertical resolution of 19 eta-pressure levels from

the surface to the top of the atmosphere.

The state vector x contains the following variables as

shown in the grey boxes in Fig. 1: (1) grid-point scaling fac-

tors for the initial mixing ratios of the four trace gas species

(CO, CH4, CH2O, MCF); (2) grid-point 8-day mean surface

emissions of CO, CH4, and MCF; (3) grid-point 8-day scal-

ing factors to adjust the sum of CH2O surface emissions and

CH2O production from NMVOC oxidation; and (4) 8-day

scaling factors to adjust the column-mean OH concentrations

over six big boxes of the atmosphere over the globe: three lat-

itudinal boxes (90–30◦ S, 30◦S–0◦, 0◦–30◦N) and three lon-

gitudinal boxes north of 30◦ N (North America: 180–45◦W;

Europe: 45◦W–60◦ E; Asia: 60–180◦ E). The longitudinal di-

vision of the band north of 30◦ N is an improvement com-

pared to previous PYVAR studies, with four latitudinal bands

in total to optimize OH. As there are available surface sta-

tions with long-term MCF observations within each of the

sub-regions, this allows adjusting of separately continental

differences of OH.

2.2 A priori information

Previous configurations of PYVAR-SACS have been de-

scribed by Chevallier et al. (2009) and Fortems-Cheiney et

al. (2011). We have improved the configuration as described

below.

2.2.1 Prior sources and sinks

For prior anthropogenic fossil fuel and biofuel CO emissions,

we use the monthly MACCity emission inventory of Lamar-

que et al. (2010) that arguably underestimates emissions less

than other global inventories (Granier et al., 2011; Stein et

al., 2014). For biomass burning, we updated the version of

Global Fire Emissions (GFED) from version 2 (van der Werf

et al., 2006) to version 3.1 (Van der Werf et al., 2010). The

latter has various improvements including the definition of

different fire types, with specific consideration for defor-

estation and peatland fires. We also increased the tempo-

ral resolution of biomass burning emissions from monthly

to weekly (aggregated from GFEDv3.1 daily emissions, Mu

et al., 2011). Additionally, we consider in this study bio-

chemical CO emissions from oceans that were neglected

before, based on an ocean biogeochemical model simula-

tion (Aumont and Bopp, 2006). These monthly ocean CO

fluxes add up to a global annual sum of 54 TgCO yr−1 with-

out inter-annual variability. We still consider neither biogenic

CO emissions over land nor surface CO deposition, because

these two terms are relatively small and are of a similar order

of magnitude (Duncan et al., 2007). The prior CO emissions

are summarized in Table 1 and the distribution of the mean

annual prior CO surface emissions is shown in Fig. 2a. The

relative contribution of biomass burning is shown in Fig. 2b.

The prior CH4 and MCF emissions have also been updated

compared to Fortems-Cheiney et al. (2012) and are similar to

that of Cressot et al. (2014). HCHO production prior fields

have been pre-calculated by LMDz-INCA (Folberth et al.,

2006), with prescribed NMVOC emission data sets detailed

in Fortems-Cheiney et al. (2012). The prior distribution of

mean annual CO chemical sources in the troposphere from

the oxidation of both CH4 and NMVOCs is shown vertically

integrated in Fig. 2c.
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Table 1. Prior data sets for the sources and sinks of CO. Mean annual sums are calculated for the period from 2002 to 2011. The global

annual prior error budgets are reported and the TransCom-OH field is used. The sum of surface emissions and chemical sources are shown

in bold.

Sectors Mean annual Data set/ References

sum (Tg yr−1) model

CO Sources:

Biomass burning 327 GFEDv3.1 Van der Werf et al. (2010)

Anthropogenic emissions 588 MACCity Lamarque et al. (2010)

Ocean 54 PISCES Updated from Aumont et al. (2006)

Sum of surface emissions 969± 180a

Oxidation from NMVOC 335± 43b LMDz-INCA Folberth et al. (2006)

Oxidation from CH4 885± 92c

Sum of chemical sources 1220

Sinks:

Oxidation by OH 2197 TransCom-OH Patra et al. (2011)

a The uncertainty represents the SD of the global annual error budgets in the prior CO emissions in the inversion configuration. b The SD is

calculated into the equivalent CO amount from global annual error budgets of the pre-calculated CH2O production fields. c The SD is calculated

into the equivalent CO amount from global annual error budgets of the prior CH4 emissions assuming they are all oxidized into CO in a single

step. The prior CH4 emission (506 TgCO yr−1) data sets are detailed in Cressot et al. (2014).

Figure 2. Distribution of prior budget terms for CO. Annual mean values per each model grid (2.5 latitude× 3.75 longitude) from 2002

to 2011 are shown. (a) Surface CO emissions, (b) relative percentages of CO emissions from biomass burning over land, (c) atmospheric

CO productions from CH4 and NMVOC, and (d) atmospheric CO chemical sinks. The chemical productions and sinks are calculated with

TransCom-OH.

Previous PYVAR-SACS studies used prior OH informa-

tion from a multi-year simulation by LMDz-INCA (Hauglus-

taine, 2004). Here, we use another field that was prepared

for the international TransCom-CH4 experiment of Patra et

al. (2011). The annual mean horizontal and vertical distribu-

tion of OH concentrations for both OH fields and their dif-

ferences are shown in Fig. 3. Compared to the INCA-OH,

the TransCom OH has a lower OH concentration in the NH,

and a lower concentration over the tropics and the South-

ern Hemisphere (SH). Thus, the TransCom-OH has a north–

south inter-hemisphere ratio of around 1, whereas the INCA-

OH has a ratio of 1.2. There are also vertical differences be-

tween these two OH fields: in general, TransCom-OH has

higher OH concentrations in the mid-troposphere over the

tropics and in the top layers above 100 hPa, whereas INCA-

OH has higher OH concentrations in the lower troposphere

below 700 hPa. The prior distribution of the CO sinks sim-

ulated with TransCom-OH is shown vertically integrated in

Fig. 2d.
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Figure 3. Spatial and vertical distribution of OH concentration in TransCom and INCA and their relative differences. The TransCom OH is

interpolated from its original 60 pressure levels into the LMDz 19 eta-pressure levels.

2.2.2 Prior error statistics

The prior flux uncertainty, defined by the standard devia-

tion (SD) of each grid-point 8-day flux, is described below.

For CO emission uncertainties, we define the SD for each

year based on the maximum value of the emission time se-

ries during the corresponding year for each grid point (noted

as fmax), in order to account for the uncertainty of the fire

timing. Then, to account for (i) the possibility of undetected

small fires that can contribute to as much as 35 % of the

global biomass burning carbon emissions (Randerson et al.,

2012), and (ii) potentially higher CO emission factors during

small fires that were not specifically considered in current

fire emission inventories (van Leeuwen et al., 2013), we de-

fine a fire emission threshold of 1.0× 10−10 kg CO m−2 s−1.

If the prior emission is less than the threshold (no fire a

priori, but there could be one in reality), the SD is set as

100 % of fmax; otherwise (fire a priori, but possibly of a too

small magnitude), the SD is set as the maximum value be-

tween 1.0× 10−9 kg CO m−2 s−1 and 50 % of fmax. In such

a way, we allow the system to relax the constraint on the

prior emission to account for undetected small emissions, but

we keep the global uncertainty (∼ 180 TgCO yr−1) consis-

tent with current bottom-up inventories (Granier et al., 2011;

Van der Werf et al., 2010). For simplicity, this error setting

also serves for anthropogenic fuel consumption.

The prior CH4 emission uncertainty is defined as 100 % of

the maximum value of the prior emissions in the grid cell and

its eight neighbours in the corresponding month. The MCF

prior emission uncertainty is set at ±10 % of the flux, as its

emissions are supposed to be well known. The uncertainty

of CH2O production is assumed to be 100 % of its concur-

rent prior CH2O production. The uncertainties of initial con-

centration scaling factors are set at 10 % for the four species

(CO, CH4, CH2O, MCF). Errors in OH 8-day scaling factors

are set at ±10 %.

The spatial error correlations of the a priori are assigned to

all variables following Chevallier et al. (2007), defined by an

e-folding length of 500 km over the land and 1000 km over

the ocean. Temporal error correlations are defined by an e-

folding length of 8 weeks for MCF and 2 weeks for the other

species including OH. No inter-species flux error correlations

are considered.

2.3 Observations for assimilation

2.3.1 Data sets

We assimilate three data streams: (i) MOPITTv6 satellite CO

total column retrievals (noted as XCO hereafter) and surface

in situ measurements of (ii) CH4 and (iii) MCF.

MOPITT retrievals have been available since March 2000,

but the instrument experienced a cooler failure from May to

August 2001, which artificially changed the retrieval mean

level (Deeter et al., 2010). An instrument anomaly also led

to a 2-month lack of data in 2009 from the end of July un-

til September, without any significant change in the retrieval

mean level. For the sake of consistency, given our focus on

trends, we select the measurements for the decade from 2002

to 2011, during which both the MOPITT retrievals and the

prior emission inventories are homogeneous (GFEDv3.1 has

not been publicly updated for the years after 2011).

We use the level 2 “multispectral” near-infrared and ther-

mal infrared (NIR/TIR) CO retrievals of MOPITTv6 that

offer the best description of CO in the lower troposphere

among the MOPITT products (Deeter et al., 2014). The MO-

www.atmos-chem-phys.net/15/13433/2015/ Atmos. Chem. Phys., 15, 13433–13451, 2015
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PITT vertical profiles (prior and retrieved CO profiles and

associated AKs) are defined on ten vertical pressure levels.

Given the limited vertical resolution of the retrievals and the

focus on surface emissions, it has been common practice in

previous inversion studies starting from Pétron et al. (2004)

to assimilate the 700 hPa pressure level retrievals only, as a

good compromise between proximity to the surface and lim-

ited noise. However, Deeter et al. (2014) noted that the re-

trievals at some individual vertical levels still suffered from

small bias drifts, while such drifts were not seen in the re-

trieved integrated columns. Furthermore, the interpretation

of vertically integrated columns in the inversion is less ham-

pered by flaws in CTM vertical mixing and vertical sink dis-

tribution than for level retrievals (Rayner and O’Brien, 2001).

For these two reasons, we assimilate the column retrievals

rather than level retrievals. Night-time observations, observa-

tions with a solar zenith angle larger than 70◦, with latitudes

within 25◦ from the poles, or with surface pressures less than

900 hPa, are excluded, since they may be of lower quality

or more difficult to model (Fortems-Cheiney et al., 2011).

We average the 22× 22 km2 retrievals at the 3.75◦× 2.5◦

model resolution within 30 min time steps. The model XCO

retrievals are calculated in a consistent way as in the MO-

PITT XCO retrievals with their original prior CO profiles and

AKs averaged for each model grid.

Surface measurements of CH4 and MCF from various

networks are assimilated together with MOPITT XCO. The

data sets are downloaded from the World Data Centre for

Greenhouse Gases (WDCGG, http://ds.data.jma.go.jp/gmd/

wdcgg/). Stations that recorded more than 6 years of data

without gaps larger than 1 year are included. The list of sta-

tions is given in Tables S1 and S2 in the Supplement. For the

surface measurements, a data filtering process is conducted

in order to remove outliers that the global model may not

be able to capture. We exclude (i) observations exceeding

3σ of the de-trended and de-seasonalized daily time series

and (ii) observations whose misfit against the prior simula-

tion exceeds 3σ of the de-trended and de-seasonalized misfit

between observations and forward modelling values.

2.3.2 Observation error statistics

The observation error covariance matrix R is diagonal in

order to simplify calculations. Observation errors are com-

binations of measurement errors (quantified by the data

providers), representativeness errors and CTM errors. For

XCO, as we have averaged a large number of observations in

each grid box (see Sect. 2.3.1), the representativeness error is

effectively much reduced and is not considered specifically.

The CTM error is set at 30 % (SD) of the modelled values for

XCO. For CH4 and MCF, synoptic variability (estimated from

the residues of de-trended and de-seasonalized data) is used

as a proxy for the CTM and representativeness errors, which

largely dominate the observation error. The global mean

measurement error for Xco is around 6.4± 2.9 ppb, which

is approximately 8.2± 1.9 % of the corresponding XCO ob-

servations. The measurement errors are set as 3 ppb for CH4

and 1.2 ppt for MCF if not explicitly provided by the surface

observation data sets.

2.4 Observations for cross-evaluation

We use two data sets for independent evaluation of the inver-

sion results.

The first one is made of CO surface observations archived

at the WDCGG. The same site selection and data filtering

process as for CH4 and MCF surface measurements are ap-

plied (see the list of stations in Table S3).

The second evaluation data set gathers CH2O total

columns retrieved from OMI by the Smithsonian Astrophys-

ical Observatory (SAO). We use version 3, release 2, of this

product (González Abad et al., 2015). Since these data are

not available before mid-2004, they do not cover our study

period completely: for the sake of consistency, we do not as-

similate them (in contrast to Fortems-Cheiney et al., 2012)

and we keep them for evaluation. We select observations that

are tagged as “good” by the provider’s quality flag, which

have a solar zenith angle less than 70◦ and a cloud cover be-

low 20 %, and are not affected by the “row anomaly”.

2.5 Trend analysis

The long-term trend in this study is estimated by least-square

curve fitting of the following function, which includes a

constant, a linear component, and seasonal variations repre-

sented by four harmonics:

f (t)= a0+ a1t +

4∑
n=1

cn [sin(2nπt +ϕn)] .

If not particularly specified, all the trends mentioned in this

paper refer to a1.

3 CO concentrations and associated trends

3.1 Evaluation of the inversion framework’s ability to

fit the data

Figure 4a shows the time series of the global mean mole frac-

tion of the MOPITT XCO retrievals (black), and the prior

(blue) and the posterior (red) XCO retrievals (calculated from

model simulations with the MOPITT prior profiles and av-

eraging kernels). Compared to the MOPITT XCO, the prior

XCO simulation is on average 15 % lower when modelled

with TransCom-OH and 17 % lower when modelled with

INCA-OH. The global mean posterior XCO fits the observa-

tion irrespective of the OH field used.

The spatial distribution of the multiyear mean XCO ob-

served by MOPITT (2002–2011) shows a latitudinal gradient

from north to south, with some high values over East Asia,
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Table 2. Summary of CO model–data comparison and trend analysis for MOPITT satellite retrievals, surface station observations and

corresponding prior/posterior modelling. Trends for each region (in the unit of ppb yr−1) are the mean values for all the grids whose trends

are significant at the 95 % confidence level. The percentages of significant trends (shown in italic) are also given per model grid for positive

(+) and negative (−) respectively.

Regions MOPITT Surface MOPITT column trends Surface station trends

Prior Post Prior Post N Observation Prior mod Posterior mod N Observation Prior mod Posterior mod

bias bias bias bias Trend + − Trend + − Trend + − Trend + − Trend + − Trend + −

(ppb) % % % % % % % % % % % %

BONA −14.1 0.7 −20.8 20.5 210 −0.84 99 −0.46 95 −0.88 99 2 −2.51 100 −1.46 100 −2.96 100

USA −16.7 −3.1 −20.4 20.1 108 −0.82 97 −0.41 96 −1.08 100 3 −1.67 67 −1.13 100 −3.30 100

NHSA −10.0 −3.0 74 −0.61 84 −0.19 8 53 −0.68 100 0

SHSA −14.2 0.2 160 −0.59 58 0.38 41 −0.56 67 0

NHAF −15.0 −2.0 −20.0 6.8 211 −0.45 7 55 −0.38 85 −0.73 95 1 −0.90 100 −0.73 100 −1.04 100

SHAF −16.5 0.5 −1.5 13.6 96 −0.57 75 0.07 27 11 −0.64 96 1 −0.78 100 0.42 100 −0.48 100

WSEU −16.1 0.3 −36.7 18.7 106 −1.00 100 −0.49 100 −1.12 100 6 −2.73 100 −2.05 100 −3.51 100

ESEU −16.8 0.4 108 −0.77 100 −0.40 100 −0.93 100 0

BOAS −17.3 1.0 227 −0.92 99 −0.51 92 −1.02 99 0

MIDE −16.5 −2.9 64 −0.57 100 −0.30 100 −0.88 100 0

SCAS −12.0 −0.3 80 −0.65 63 −0.30 4 38 −0.92 100 0

SEAS −20.1 −3.6 −30.6 22.6 129 −1.23 97 0.13 19 24 −1.35 99 3 −1.76 100 −1.83 100 −3.78 100

AUST −15.5 −1.7 −6.4 15.4 105 −0.62 100 0.17 28 −0.78 100 3 −0.34 67 – −1.18 67

INDO −3.8 0.2 64 −1.20 98 −0.84 28 −1.03 98 0

OCEAN −11.9 −0.2 −15.1 9.6 3092 −0.72 96 −0.07 22 25 −0.67 97 27 −1.23 4 89 −1.00 7 59 −1.46 89

 

 

Figure 4. Time series and spatial distributions of the CO total column (XCO). (a) Time series of the global monthly mean mole fraction

in the CO column. The black line represents satellite observation of MOPITTv6 XCO; the blue (red) lines represent the prior (posterior)

simulations. Solid lines represent the control version with TransCom-OH, and dotted lines represent the test with INCA-OH. (b) Distribution

of multiyear mean annual XCO of MOPITTv6 retrieval. (c) Mean annual difference between the prior simulation and MOPITT. (d) Mean

annual difference between the posterior simulation and MOPITT. Simulations shown in (c) and (d) used TransCom-OH. The results with

INCA-OH show similar spatial distributions and are not shown here.

Africa and central South America (Fig. 4b). The regional

mean bias of XCO in the prior and the posterior modelling

compared to the MOPITT data is summarized in Table 2.

The prior simulation is generally lower than the observations

except in parts of Indonesia and India (Fig. 4c). This nega-

tive bias agrees with previous studies (Arellano et al., 2004;

Fortems-Cheiney et al., 2011; Hooghiemstra et al., 2012;

Naik et al., 2013; Shindell et al., 2006), and thus calls atten-

tion to understanding and correcting it appropriately (Stein et

al., 2014). The optimized CO concentrations fit the measure-

ments quite well (Fig. 4d), illustrating the inversion’s ability

to fit the data.

Similarly for CH4 and MCF, Table 3 summarizes the mean

biases and residual root mean squares (rms) of the prior and

posterior modelling values compared to the station observa-

tions that are assimilated in the system over four latitudinal

bands. The inversion fits the assimilated data fairly well, with

a considerable decrease in both the mean biases and the rms

(Table 3).

The mean biases of the prior and posterior simulations

compared to independent surface in situ CO measurements

are also summarized for each region in Table 2. For the

oceanic background stations (over 27 model grid cells), the

magnitude of the model–data misfits decreased considerably
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Figure 5. Distribution of CO column mixing ratio trends from 2002 to 2011 in (a) MOPITTv6 retrievals, (b) the prior simulation and (c) the

posterior simulation. Black crosses indicate significance at the 95 % confidence level.

after inversion. Over land, the changes in model–data mis-

fit after inversion are more heterogeneous. The prior bias is

in general negative, whereas the sign changed from negative

to positive for the posterior. The magnitude of the posterior

bias (also the rms, not shown in the table) decreased signifi-

cantly in western Europe (WSEU), South-east Asia (SEAS)

and Northern Hemisphere Africa (NHAF), and they are of

similar magnitudes in boreal North America (BONA) and the

USA. However, the mean bias and rms increased in Southern

Hemisphere Africa (SHAF) and Australia (AUST).

This seeming deterioration of the modelled surface con-

centrations could be explained by several reasons: first, sur-

face station measurements and model grids (2.5× 3.75◦)

have different spatial representativeness. In fact, at most

background oceanic stations, the model–data misfit sug-

gests an overall improvement after inversion. Second, the

vertical sensitivities are different between satellite column

retrievals and surface observations (Hooghiemstra et al.,

2012). Over regions where fire emission injection heights

are sometimes above the boundary layer (Cammas et al.,

2009) or where chemical CO sources in the mid-troposphere

contributes significantly to the CO column (Fisher et al.,

2015), the surface CO concentrations are less influenced

by these sources, but the model may not capture this ver-

tical distribution of sources. Third, there might be a model

bias in modelling the vertical CO profiles in the CTM

(Jiang et al., 2013); for instance, when the vertical mix-

ing in the model is too conservative, it could lead to a

positive bias at the surface, because the sources are ad-

justed to fit the satellite data. Nevertheless, such discrep-

ancies between XCO column and surface concentration do

not seem to bear a significant trend. For instance, signif-

icant trends in the prior misfits were found in the NH

(0.67± 0.24 ppb yr−1), NH tropics (0.77± 0.16 ppb yr−1)

and SH tropics (−0.42± 0.14 ppb yr−1), and they are cor-

rected in the posterior misfits to non-significant after assimi-

lation.

3.2 Distribution of trends in CO concentrations

The spatial distributions of trends in the MOPITT XCO and in

the prior and the posterior XCO over the period from 2002 to

2011 are shown successively in Fig. 5. Regional mean trends

in both the XCO and surface CO concentrations are summa-

rized in Table 2.

MOPITT XCO retrievals show negative trends in most re-

gions of the world except for the Sahel region in Africa and

some areas of central South America and India (Fig. 5a).

In the MOPITT retrievals, the negative trends are particu-

larly large over Indonesia (−1.20 ppb yr−1), South-east Asia

(−1.23 ppb yr−1) and the North Pacific and Atlantic oceans

(−1.15 ppb yr−1). The global average trend in the MOPITT

XCO is −0.67 ppb yr−1, accounting for a decrease of around

0.91 % yr−1 over the globe, and the trends in the prior and

posterior XCO retrievals are −0.12 ppb yr−1 (−0.28 % yr−1)

and−0.70 ppb yr−1 (−0.93 % yr−1) respectively. The spatial

correlations between the trends of the MOPITT XCO and the

prior/posterior XCO are 0.55 and 0.81 respectively, showing

considerable improvements after inversion.

In general, negative trends in the prior XCO are underesti-

mated (Fig. 5b and Table 2), and positive trends are simulated

over South-east Asia (19 %), Southern Hemisphere South

America (41 %), South Africa (27 %), Australia (28 %), with

percentages of model grid cells that have significant positive

trends noted in the brackets. In addition, 22 % of the oceanic

grid cells are modelled with positive trends in the prior simu-

lation, but none is noticed in the MOPITT column retrievals

(Deeter et al., 2014). Trends in the posterior XCO generally

agree with the MOPITT XCO, and the positive trends in the

prior XCO are corrected (Fig. 5c and Table 2).

Surface in situ measurements also show a general nega-

tive trend in CO concentration (Table 2). The negative trends

from in situ CO stations have the largest magnitude in the NH

mid-latitudes over western Europe (−2.7± 1.7 ppb yr−1)

and the USA (−1.6± 0.9 ppb yr−1). Smaller trends are

found in the SH in situ sites (−0.32± 0.14 ppb yr−1).

The trends over Asia indicate large spatial heterogeneity

(−1.6± 1.3 ppb yr−1) and the trends over the tropics show

a small but insignificant increase (0.3± 1.6 ppb yr−1), but

these regions are represented by a limited number of stations.

Compared to these surface in situ measurements,

the prior simulation generally tends to underestimate

the magnitude of the negative ones, and the posterior

slightly overestimate them. The global mean trends

are −1.3 ppb yr−1 (−1.1 % yr−1) in the observation,

Atmos. Chem. Phys., 15, 13433–13451, 2015 www.atmos-chem-phys.net/15/13433/2015/



Y. Yin et al.: Decadal trends in global CO emissions as seen by MOPITT 13441

Table 3. Fitness of CH4 and MCF observations assimilated in the inversion.

Region OH type CH4 (ppb) MCF (ppt)

Mean bias Residual square Mean bias Residual square

Prior Posterior Prior Posterior Prior Posterior Prior Posterior

NH(30–90) TransCom 20.6 2.4 749.6 22.2 1.02 −0.02 1.14 0.05

INCA −21.0 2.5 658.1 20.1 0.44 −0.09 0.28 0.07

NH(0–30) TransCom 15.8 1.5 452.6 19.1 0.90 −0.20 0.91 0.16

INCA −21.1 −0.1 564.9 13.9 0.40 −0.20 0.21 0.11

SH(0–30) TransCom 10.9 −2.4 222.1 20.1 1.19 0.09 1.61 0.13

INCA −14.3 −4.0 264.9 29.5 0.88 0.23 0.94 0.15

SH(30–90) TransCom 14.4 0.2 308.3 4.7 0.88 −0.24 0.90 0.17

INCA −7.9 −0.4 96.6 5.7 0.60 −0.06 0.46 0.07

−0.87 ppb yr−1 (−0.75 % yr−1) in the prior simulations, and

−1.9 ppb yr−1 (−1.2 % yr−1) in the posterior simulations.

However, it is noted that the global mean trends are only

represented by 72 stations that are not evenly distributed

over the globe. Positive trends in the prior simulated surface

CO are less visible compared to the total column as shown in

Fig. 5b and Table 2. It could be explained by the respective

vertical weighting of these two observation types, but the

difference may also be enhanced by changes in the MOPITT

AKs if the retrieval prior is biased (Yoon et al., 2013). How-

ever, this comparison is limited by the representativeness of

a few sites.

4 Concentrations of CH2O and OH

4.1 CH2O columns

The mean time series of CH2O total columns for four latitu-

dinal zones are shown in Fig. 6. XCH2O retrievals were not

assimilated (contrary to the CH4 and MCF surface measure-

ments that affect the sources and sinks of CH2O in the in-

version), and the inversion actually does not change XCH2O

much. This suggests that the differences between simulated

and satellite-retrieved XCH2O are mainly caused by the prior

NMVOC emissions used in the full chemistry run of LMDz-

INCA. The latitudinal mean values of prior/posterior mod-

elled XCH2O agree fairly well with the OMI retrievals with-

out any obvious bias, but the seasonal cycle is different, es-

pecially in the northern mid–high latitudes both in phase

and in amplitude (Fig. 6a). The OMI XCH2O retrievals, and

the prior and the posterior simulations, all agree about the

absence of a significant trend in the latitudinal average of

XCH2O for the period from 2005 to 2011, which is consis-

tent with the hypothesis that the equilibrium between the ox-

idation of hydrocarbons into CH2O and the sink of CH2O

into CO has not significantly changed, at least at continental

scales. We note that the OMI XCH2O retrievals describe some

trends at smaller scales, like positive trends of 3± 0.8 % yr−1

over East Asia (De Smedt et al., 2010) and negative trends

of −1.9± 0.6 % yr−1 over the Amazon, but they are not sig-

nificant for the mean values of large latitudinal bands and

are thus considered large enough to influence the global CO

budget.

4.2 OH concentrations

Figure 7 shows the latitudinal average of the prior (blue) and

posterior (red) OH concentrations for the six big regions over

which OH is optimized (see Sect. 2.1). This figure reports the

two inversions that use either TransCom-OH (solid lines) or

INCA-OH (dashed lines; see Sect. 2.2.1). INCA has higher

OH concentrations than TransCom in the NH, in particular

during summer, but lower OH concentrations in the SH trop-

ics all year long and slightly lower concentrations in the SH

mid-high latitudes (south of 30◦ S) during summer peaks.

In general, larger corrections are applied by the inversion

to INCA-OH than to TransCom-OH. The inversion system

adjusts the INCA-OH concentrations towards TransCom-OH

by downscaling the OH concentrations in the NH during

summers, especially over Asia, where INCA-OH is consider-

ably higher than the TransCom-OH (Fig. 3). A small reduc-

tion of the TransCom-OH concentrations is also seen in the

SH.

The two inversions do not produce significant trends in

OH during the study period for most regions, except for a

very small positive trend in the SH tropics (+0.2 % yr−1 with

TransCom-OH and+0.7 % yr−1 with INCA-OH) and a small

negative trend in the SH mid–high latitudes (−0.4 % yr−1 in

TransCom-OH and −0.3 % yr−1 in INCA-OH). Such small

and insignificant trends are considered to be of minor impor-

tance for the CO trends. The OH scaling is addressed in more

detail in Sect. 5.1 when discussing CO sinks.
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Figure 6. Time series of the CH2O total column averaged by latitudinal bands. The black lines indicate the CH2O total column from SAO

OMI retrievals, green lines indicate prior simulations, and red lines indicate posterior simulations. Shading areas show the standard deviation

within a latitudinal band. The forward and posterior simulations nearly overlay each other.

5 Optimized sources and sinks of CO

After having documented the prior and posterior misfits with

MOPITTv6 and with cross-validation data for the latitudinal

mean values and for the trends, which lends support to the

consistency of the inversion results with these data streams,

we now turn to the implications for CO sources and sinks.

5.1 Inverted CO budget

The global annual CO atmospheric burden, surface emis-

sions, chemical production, and chemical loss of the prior

and the posteriors with the two OH experiments from 2002

to 2011 are shown in Fig. 8. Averaging over the 10 years,

a considerable increase in the mean CO atmospheric bur-

den (+23 %, in dark green) is seen in the posterior compared

to the prior simulation. Accordingly, increases in CO emis-

sions (+50 %, in red) and chemical sinks with OH (+23 %,

in purple) are produced in the posterior, whereas only a very

small change is noticed for the CO chemical sources (+1 %,

in blue). The magnitude of the increment in the global CO

emissions is larger compared to previous studies that assim-

ilate the 700 hPa retrieval levels of MOPITT using a similar

inversion set-up (Fortems-Cheiney et al., 2011, 2012). The

cross-evaluation against surface station measurements also

shows a considerable positive bias in the posterior CO con-

centration (Sect. 3.1), which implies a potential bias in the

modelling of vertical CO profiles. Nevertheless, for our study

here focusing on trends, such systematic model error does

not seem to harm the robustness of the trends as shown in

Sects. 3 and 4. The chemical sink of CO is a function of both

CO and OH. Given the results for OH adjustments shown in

Sect. 4.2 (generally a small reduction from the prior OH), the

increase in the CO sink in the posterior is thus mainly due to

the increase in CO concentrations after assimilation.

The inversion produces a negative trend of around

10 % per decade in the global atmospheric burden

of CO (−5.1± 0.9 TgCO yr−1 with TransCom-OH and

−4.6± 0.8 TgCO yr−1 with INCA-OH), which is twice the

negative trend of the CO atmospheric burden produced by

the prior emissions (−1.6± 0.6 TgCO yr−1, i.e. a decrease

of 5 % per decade in the simulated CO burden).

For CO sources, the trend of prior CO emissions

is of −11.1± 4.4 TgCO yr−1 (equivalent to a decrease

of 10 % per decade). This is mostly contributed by

the negative trend in biomass burning emissions in

GFEDv3.1 (−10.6± 3.7 TgCO yr−1) and by a very

small decrease in anthropogenic emissions in MACCity

(−0.68± 0.4 TgCO yr−1) from 2002 to 2011. Compared to

the prior emissions, a 2-fold steeper negative trend in terms

of percentages is found in the posterior CO emissions, 24 %

per decade with TransCom-OH (−40± 7.2 TgCO yr−1) and

22 % per decade with INCA-OH (−37± 7.1 TgCO yr−1).

A small positive trend (2.8± 7.1 TgCO yr−1, equivalent to

an increase of 2 % per decade) is produced in the prior CO

chemical production, mostly contributed by the increase in

methane oxidation. The posterior CO chemical production

shows a small negative trend. Yet, as CH2O concentrations

are not constrained by observations, this small trend may

result from the system’s inability to differentiate the two CO

sources between surface emissions and chemical oxidations.

For the CO sink, a larger trend in the posterior

(−46.3± 8.3 TgCO yr−1, 16 % per decade) with TransCom-
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Figure 7. Regional volume-weighted monthly mean OH concentrations in the prior and posterior. The results are shown for the six big

regions in which OH is optimized.

OH and −39.3± 8.0 TgCO yr−1, 13 % per decade with

INCA-OH is found, while there is no significant trend in the

prior chemical sink. This negative trend in the posterior is

mostly due to the decrease in CO concentrations in the atmo-

sphere that change the amount of CO oxidized by OH, and

only very small trends in the OH concentrations are found

by the inversion. Such small trends are considered to have a

very small effect on the CO trends. The OH concentrations

are optimized for six big regions over the globe and the MCF

concentrations are monitored at background sites only, which

allows a coarse zonal estimate of OH but leaves spatially het-

erogeneous land areas unconstrained, e.g. polluted areas near

cities (Hofzumahaus et al., 2009), forests with high NMVOC

emissions (Lelieveld et al., 2008) or biomass burning plumes

(Folkins et al., 1997; Rohrer et al., 2014). Therefore, sub-

regional trends in OH, if they exist, are not necessarily cap-

tured in this study. In addition, with the exponential decrease

of MCF concentrations in recent years (only a few parts per

trillion, ppt, at the current level), the constraining strength of

MCF on OH in the inversion system may not be even from

2002 to 2011, even though the same sites and a similar num-

ber of observations were assimilated. Nevertheless, the zonal

trend of OH should still be constrained throughout most of

the period and previous studies suggest that the inter-annual

change of global OH concentration is within 5 % (Montzka

et al., 2011).

5.2 Regional distribution of trends in CO emissions

The distributions of trends in CO emissions after optimiza-

tion are very consistent using either TransCom-OH or INCA-

OH (Fig. 9); therefore, only trends of TransCom-OH ex-

periments are discussed here. The relative contribution of

biomass burning to the total land surface emissions estimated

in the prior emission is shown in Fig. 2b. The time series

of the prior and the two posterior annual CO emissions us-

ing two different OH fields are shown for each sub-region in

Fig. 10. The division in sub-regions is illustrated in Fig. A1 in

the Appendix. As shown in Fig. 10, the choice of prior OH

concentrations could potentially have a large impact on the

regional CO emission estimates; nevertheless, the inverted

emission trends are quite robust and we do not discuss fur-

ther in this paper the regional emission increments and the

sensitivities of inverted fluxes to prior OH or chemical CO

productions.

For the boreal regions where CO emissions are mainly due

to biomass burning (boreal Asia – BOAS – and boreal North

America – BONA), the same sign of the trends in CO emis-

sions is mostly kept between the prior and the posterior, but

the amplitudes of the trends are updated into larger values, as

are the emission amounts. It should be noted that MOPITT

CO retrievals over high latitudes beyond 65◦ are not included

in the assimilation.

For the NH mid-latitudes where CO emissions are mainly

due to fossil fuel and biofuel burning emissions (USA; west-

ern Europe – WSEU; eastern Europe – ESEU; Middle East

– MIDE; South–Central Asia – SCAS; South-east Asia –

SEAS), consistencies between the trends in the prior and

posterior CO emissions are found in the developed countries

(Fig. 9). For example, in the USA and WSEU regions, de-

creasing trends produced by the emission inventories gen-

erally agree with the atmospheric signals (Lamarque et al.,
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Figure 8. Time series of global mean annual CO budget changes

from 2002 to 2011. Solid lines indicate the prior values (mean val-

ues of the two OH fields are shown for the prior chemical CO pro-

duction and sink). Dash-dot lines indicate posterior with TransCom

OH and dotted lines represent posterior with INCA-OH. Beside

each line, the linear slopes are denoted if the trend is statistically

significant, ∗ denotes the 95 % confidence level and ∗∗ denotes the

99 % confidence level.

2010). On the contrary, the inversion changes the sign of the

CO trend over SEAS (including China) and SCAS (includ-

ing India), where the prior emissions suggested a significant

increase. Consistent with our posterior emissions, a grad-

ual decrease in CO emissions in China after the year 2005

was actually deduced from CH4 /CO2 and CO /CO2 corre-

lations observed off the coast of East Asia from 1999 to 2010

(Tohjima et al., 2014). A decrease in the emission factors

of other co-emitted species of CO during fossil fuel or bio-

fuel combustion has also been noted: for instance, a decrease

in black carbon emission factors in China and India was re-

ported by Wang et al. (2014), and a decrease in the relative

ratio of NOx to CO2 from 2003 to 2011 was observed from

satellite retrievals over East Asia (Reuter et al., 2014). These

studies and our results suggest that combustion technology

improvements in East Asia resulted in emission factor reduc-

tion to an extent that outweighs the impact of increasing fos-

sil fuel burning. In this scenario, emission inventories would

well report the latter but not the former, which is more dif-

ficult to quantify. In addition, trends of fossil fuel emissions

are updated (Lamarque et al., 2010), but not trends of bio-

fuel burning, especially for traditional biofuels (Yevich and

Logan, 2003). A small difference in the trend of CO emis-

sions in eastern Europe (ESEU) is also noticed (not signifi-

Figure 9. Trends distributions of CO surface emissions in the prior

and in the posterior from 2002 to 2011.

cant though); an emission peak in the year 2010 is inferred

from the inversion.

For the tropical and sub-tropical regions, where CO emis-

sions are mainly attributed to biomass burning, the inversion

does not change the sign of trends over Indonesia (INDO).

The positive trends of the prior emissions over the Indo-

China Peninsula (2 % yr−1) are updated into negative ones

(−5.6 % yr−1) by the inversion. Negative trends over Aus-

tralia except for the central area (on average −5.3 % yr−1),

and over SHSA (−3 % yr−1, but not significant for the re-

gional mean) are largely enhanced compared to the prior

trends (Fig. 9). The spatial distribution of this negative trend

is consistent with the new version of GFEDv4 burned area

(not used in this study) (Giglio et al., 2013), which accounts

for small fires that were not explicitly included in GFEDv3.1

used here as the prior. In Australia, the decrease of CO emis-

sions might be explained by decreased fire emissions (Poulter

et al., 2014). The decrease in SHSA could be attributed to a

decrease in deforestation fires in recent years, especially af-

ter 2005 (Meyfroidt and Lambin, 2011), although there are
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Figure 10. Annual prior (blue) and posterior (red) CO emissions in each sub-region from 2002 to 2011. The dash lines represent linear

regressions if the trend is statistically significant. The slopes are denoted beside the linear trends; ∗ and ∗∗ represent significance at the

95 and 99 % confidence levels respectively. The notation for the sub-regions is listed as follows and the extent of each region is shown in

Fig. A1. BOAS – boreal Asia; BONA – boreal North America; USA – USA; WSEU – western Europe; ESEU – eastern Europe; MIDE –

Middle East; SCAS – South–Central Asia; SEAS – South-east Asia; INDO – Indonesia; AUST – Australia; NHSA – Northern Hemisphere

South America; SHSA – Southern Hemisphere South America; NHAF – Northern Hemisphere Africa; SHAF – Southern Hemisphere Africa;

OCEAN – all ocean emissions, both biogenic and anthropogenic emissions.

uncertainties in the overall deforestation rates (Kim et al.,

2015).

The change in trends between the prior and posterior

CO emissions is more heterogeneous over Africa (North-

ern Hemisphere Africa – NHAF – and Southern Hemisphere

Africa – SHAF). Decreases in the burned area have been

observed over the NHAF Sahel region, as are decreases in

the prior CO emissions, which are explained by changes in

both precipitation and the conversion of savannah into crop-

land (Andela and van der Werf, 2014). But positive trends in

CO emissions are inferred by the atmospheric inversion es-

pecially since 2006, except for some small areas. The differ-

ent signs of the trend in burned areas (or the prior CO emis-

sions) and the posterior CO emissions may be explained by

the change in CO emission factors that could vary a lot with

the conversion of fire type from savannah fire to agricultural

burning and also with precipitation change (van Leeuwen

et al., 2013). In addition, increases in anthropogenic fossil

fuel and biofuel emission in the NHAF region could also

contribute to some of the differences (Al-mulali and Binti

Che Sab, 2012). Differences between the prior and poste-

rior CO emissions are also noticed for the central part of

the SHAF. The increase in the GFED4 burned area is ex-

plained by the increase in precipitation that allows more fuel

accumulation, as driven by the El Niño–Southern Oscillation

(ENSO) changes from El Niño to La Niña dominance over

the recent decade (Andela and van der Werf, 2014). The op-

posite negative trend of CO emissions in the posterior could

be explained by a decrease in CO emission factors when the

fuel load and combustion completeness are high, so that less

carbon is emitted in the form of CO, but the dynamics of

emission factors are not modelled in the bottom-up estima-

tion (van Leeuwen et al., 2013). In addition, small fires that

are not considered in our prior biomass emissions could also

contribute to such differences (Randerson et al., 2012).

6 Conclusion

CO concentrations observed by both MOPITTv6 satellite

XCO retrievals and surface in situ measurements show sig-

nificant negative trends over most of the world from 2002

to 2011. The CO concentration trends in the forward CTM

simulations prescribed with CO emission inventories show

considerable inconsistency with the observed MOPITT XCO

from 2002 to 2011. By assimilating MOPITTv6 XCO and

surface measurements of CH4 and MCF, the inversion sys-

tem suggests that the decrease in the atmospheric CO con-

centrations is mainly attributable to a decrease of 23 % in

surface emissions during the study period at the global scale.

The trends in the prior and posterior CO emissions agree

well with each other over the USA and western Europe. The

largest differences between the prior and the posterior CO
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emission trends are noticed for South-east Asia, Australia

and parts of South America and Africa. Decreases in CO

emissions are found in central China, while the prior emis-

sion inventories suggest increases. This emission decrease

is probably caused by a large decrease in emission factors

due to technology improvements that outweigh the increase

in emission activities. CO emissions from biomass burn-

ing decreased considerably in Indonesia and Australia. For

Africa, the contrasts of trends between the prior and the pos-

terior likely reflect different trends between satellite-detected

burned area and CO emissions due to changes in combustion

completeness, CO emission factors, and the relative contri-

bution of small fires. The amplitude of the trends also differs

in many other regions, illustrating the original information

brought by atmospheric inversions about CO emissions.

No significant trend is found in the latitudinal-mean OH

concentrations, and a sensitivity test made with two differ-

ent OH fields suggests consistent results in the OH trend. It

is however noted that we optimized OH over six big regions

globally, and sub-regional trends in the OH concentrations,

if they exist, are not accounted for in this study. We also ac-

knowledge the limited information content of MCF to con-

strain OH in recent years over the study period. For chemical

CH2O production from NMVOC oxidation, the system has

the potential to generate regional increments, but CH2O is

not assimilated here due to limited temporal coverage of the

OMI data from 2005 to 2011. Assimilating observations of

CH2O and other chemically connected species could inform

more about regional CO budgets, in particular the chemical

sources and sinks, and therefore could further improve the

top-down estimation of CO budgets for each region in future

studies.
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Appendix A

Figure A1. Sub-region extent.
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