Supplement of Atmos. Chem. Phys., 15, 12623–12644, 2015 http://www.atmos-chem-phys.net/15/12623/2015/doi:10.5194/acp-15-12623-2015-supplement © Author(s) 2015. CC Attribution 3.0 License.

Supplement of

Advantages of a city-scale emission inventory for urban air quality research and policy: the case of Nanjing, a typical industrial city in the Yangtze River Delta, China

Y. Zhao et al.

Correspondence to: Y. Zhao (yuzhao@nju.edu.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Number of tables: 5 Number of figures: 10

Table list

Table S1. Summary of activity levels by sector for Nanjing emission inventory

2010-2012.

Table S2. Technology distribution by vehicle type (share of each technology level out

of each vehicle type) in Nanjing, for the year 2012.

Table S3. Annual average vehicle kilometers traveled (VKT), average age and

average accumulated mileage of the fleet in Nanjing, for the year 2012.

Table S4. The unabated emission factors (EF) for power plant and typical industrial

sources. The numbers for BC and OC are the mass fractions of corresponding

carbonaceous aerosol species to PM_{2.5} (dimensionless). The units for other species are

kg/t-coal for coal-fired power plant and cement clinker production, and kg/t-product

for other sources unless specifically noted.

Table S5. The emissions (estimated by this work) and ambient concentrations (Yu et

al., 2014) of SO₂, NO_X/NO₂, PM_{2.5}, PM₁₀ and CO for August 16-24, 2012 and August

16-24, 2013 (the period of Youth Asian Games, 2013) in Nanjing.

Figure list

Figure S1. The location of Nanjing (a), selected emission sources in the city (b) and

(c), and the 9 state-operated observation sites in the city (d).

Figure S2. Source contributions to the total emissions by species and those to coal

consumption in Nanjing from 2010 to 2012. Recall from Section 2.1 of the main text

that CPP represents coal-fired power plants, IND total industry, ISP iron & steel plants,

CEM cement plants, RCP refineries and chemical plants, OIN other industry plants,

SOL solvent use, RES residential & commercial sector, TRA transportation, and FUD

fugitive dust.

S1

Figure S3. (a) Monthly variation of SO_2 emissions by source from MEIC (2010) and our estimates (2012). A and B refer to MEIC and our estimates, respectively. (b) Monthly variation of emissions by species from our estimates (2012).

Figure S4. Diurnal variation of on-road transportation emissions by species for Nanjing, 2012.

Figure S5. The inter-annual trends in meteorological parameters in Nanjing, obtained from China Meteorological Data Sharing Service System (http://cdc.nmic.cn/). All the data are normalized to 2010 level.

Figure S6. Spatial distribution of summer NO_2 vertical column density (VCD) from OMI for Jiangsu, Shanghai, Zhejiang and Anhui provinces, 2010. The resolution is $0.125^{\circ} \times 0.125^{\circ}$.

Figure S7. Time series of ambient OC to EC ratios measured by Li et al. (2015). Every point represents a single sampling day. The red points indicate the observed lowest OC to EC ratios and thereby the (OC/EC)_{pri} for the four seasons.

Figure S8. Cumulative probability distribution of daily CO concentrations in Caochangmen for winter 2012.

Figure S9. Comparisons of histograms of hourly CO concentrations observed at Caochangmen site and Shanxilu site for the year 2012 and 2014.

Figure S10. The penetrations of technologies and inter-annual trends of emission factors for typical sources in Nanjing from 2010 to 2012. In each panel, left-hand vertical axis indicates the percentages of various technologies and right-hand vertical axis indicates the relative changes of emission factors for various species.

Tables

Table S1. Summary of activity levels by sector for Nanjing emission inventory 2010-2012. Unless noted, the data are obtained from the databases of Environmental Statistics and Pollution Source Census, or Nanjing Statistical Yearbook.

Sector	Parameter	2010	2011	2012
Darrian alant	Electricity generation/10 ⁷ kWh	3262	4832	5147
Power plant	Coal consumption/Million metric tons (Mt)	18.2	23.0	22.8
	Coke production/Kilo metric tons (kt)	3931	4022	4446
Ivon & stool plant	Iron production/kt	10345	11330	12143
Iron & steel plant	Steel production/kt	10541	11518	12257
	Coal consumption/kt	7748	7856	8074
	Clinker production/kt	9428	8085	9268
Cement	Cement production/kt	9802	9512	10298
	Coal consumption/kt	1264	1200	1536
	Gasoline production/kt	2437	2417	2682
Definaries and chemical plant	Diesel production/kt	6937	6409	5828
Refineries and chemical plant	Kerosene production/kt	1656	2013	2316
	Liquefied petroleum gas production/kt	1013	1096	1077
	Waste incineration/metric tons (t)	20012	19622	19748 ^a
Other industry plant	Municipal solid waste landfill/t	1771700	1963500	1976091 ^a
	Coal consumption/kt	2875	581	1047
Residential & commercial	Coal consumption/kt	298	298	298
Gas station	Gasoline sales/kt	854	953 ^b	1092 ^b
Fugitive dust	Construction site area/10 ⁴ m ^{2 c}	4760	5663	6050

Table S1. Continued.

Sector	Parameter	2010	2011	2012
	Coating-architecture/t d	21115	23962	24224
	Coating-vehicle production/t ^e	7259	6833	7300
Solvent use	Coating-vehicle repair/t f	3604	7338	8547
	Adhesive-architecture/t d	53019	60167	60825
	Adhesive-wood processing/t ^g	46584	49017	62445
Transportation	Gasoline vehicle population	738485	875460	1066010
	Diesel vehicle population	79734	89201	98309
	Motorcycle population	355208	344758	335830
	Railway freight tonnage originated/kt	15936	18205	18058
	Air transportation-total cargo/kt	234	247	248

^a Scaled based on resident population of the city.

^b Scaled based on vehicle population of the city.

^c Internal data from local Environmental Protection Agency

^d Calculated based on the building area of the city.

^e Calculated based on the annual production of vehicles in the city.

^f Calculated based on vehicle population of the city.

^g Downscaled from national level based on gross domestic production (GDP).

Table S2. Technology distribution by vehicle type (share of each technology level out of each vehicle type) in Nanjing, for the year 2012.

Veh	Vehicle type		China I	China II	China III	China IV
	Mini bus	13.39%	54.44%	6.65%	14.63%	10.89%
Passenger	Light-duty	1.61%	8.91%	17.97%	37.43%	34.08%
vehicle	Medium-duty	28.11%	18.94%	32.40%	16.90%	3.65%
	Heavy-duty	6.37%	14.45%	26.27%	42.98%	9.94%
	Mini truck	2.86%	0.00%	57.14%	40.00%	0.00%
Truck	Light-duty	2.33%	22.01%	11.64%	46.24%	17.79%
TTUCK	Medium-duty	15.84%	33.66%	16.87%	28.26%	5.37%
	Heavy-duty	2.57%	12.15%	14.48%	56.39%	14.41%
Motorcycle	-	14.62%	18.43%	44.69%	22.26%	0.00%
Taxi	-	0.06%	0.00%	1.00%	44.49%	54.45%
Bus	Medium-duty	0.00%	1.67%	23.96%	59.61%	14.76%
Dus	Heavy-duty	0.70%	4.36%	35.68%	57.15%	2.11%
Sum		5.16%	12.46%	23.68%	34.10%	24.60%

Table S3. Annual average vehicle kilometers traveled (VKT), average age and average accumulated mileage of the fleet in Nanjing, for the year 2012.

	Annual average	Average age	Average accumulated
	VKT (km)	(year)	mileage (km)
Minibus	25574	3.86	98716
Light-duty passenger vehicle	25574	3.86	98716
Medium-duty passenger vehicle	66400	6.73	446872
Heavy-duty passenger vehicle	66400	6.73	446872
Mini truck	44000	4.4	193600
Light-duty truck	44000	4.4	193600
Medium-duty truck	63300	7.23	457659
Heavy-duty truck	105600	3.93	415008
Motorcycle	7303	6.42	46885
Taxi	138000	2.18	300840
Bus	43940	4.51	198169

Table S4. The unabated emission factors (EF) for power plant and typical industrial sources. The numbers for BC and OC are the mass fractions of corresponding carbonaceous aerosol species to $PM_{2.5}$ (dimensionless). The units for other species are kg/t-coal for coal-fired power plant and cement clinker production, and kg/t-product for other sources unless specifically noted.

Sector	Process/source	SO_2	NO_X	PM _{2.5}	PM _{2.5-10}	PM _{>10}	BC	OC	VOCs	СО	CO ₂
Coal-fired	Pulverized combustion	19S/18S ^a	4.8/5.4/4.2/6.2/9.2 ^b	0.4A ^c	1.1A ^c	5.4A ^c	0.01 ^c	0^{c}	0.15 ^d	$0.7/2^{e}$	2058/1358/2320 ^f
power plant	Grate stoker	17S ^a		0.10A ^c	$0.17A^{c}$	1.24A ^c	0.20^{c}	0.04 ^c		2.6 ^e	
	Circulating fluidized bed	12S ^a		$0.45A^{c}$	1.09A ^c	3.26A ^c	0.01^{c}	0^{c}		2.1 ^e	
Cement	Clinker production	5.1S ^g	13 ^g	21 ^h	28 ^h	69 ^h	0.01 ^h	0.02 ^h	1.4 ^d	12 ^e	1731 ^f
production	Process			10 ^h	24 ^h	106 ^h	0.01^{h}	0.02^{h}			
Iron & steel	Machinery coking	1.35 ⁱ	1.70 ^j	1.3 ^h	0.8 ^h	2.9 ^h	0.40^{h}	0.35 ^h	2.40^{k}	0.10^{1}	
production	Sintering	2.82^{g}	0.64 ^g	3.29^{h}	3.76 ^h	39.95 ^h	0.01^{h}	0.05^{h}	0.25^{g}	11 ^e	20.c z f
	Pig iron	$0.11/0.10^{\rm m}$	0.17^{g}	7.32^{h}	5.86 ^h	35.6 ^h	0.19^{h}	0.04^{h}		4.20^{1}	2067 ^f
	Steel			$17.6/5.4^{h}$	$5.2/1.6^{h}$	$17.2/5.2^{h}$		$0.2/0.02^{h}$	0.06^{g}	$22^{l}/9^{e}$	
Non-ferrous	Aluminum	6 ^m		17.1 ^h	8.6 ^h	19.4 ^h					
metal smelting	Lead	$80^{\rm h}$		205 ^h	25 ^h	$20^{\rm h}$					
	Copper	212^{h}		211 ^h	25.8 ^h	20.6 ^h					520^{f}
	Zinc	$80^{\rm h}$		161 ^h	19.6 ^h	15.7 ^h					1720 ^f
Other	Brick	0.53 ^m	0.13 ^m	0.27 ^h	0.44 ^h	2.99 ^h	0.40^{h}	0.35 ^h	0.20^{k}	150 ^e	1731 ^f
production	Lime	1.0^{h}	1.6 ^h	1.8 ^h	9^{h}	79.2 ^h	0.02^{h}	0.04^{h}		115 ^e	$750/1731^{\rm f}$
	Glass			9.65 ^h	0.42^{h}	0.53 ^h			4.4 ^k		200^{f}
	Sulfuric acid	3.4 ^h									

Table S4. Continued

Sector	Process/source	SO_2	NO_X	PM _{2.5}	PM _{2.5-10}	$PM_{>10}$	BC	OC	VOCs	СО	CO ₂
Other	Nitric acid		7.1 ^h								_
production	Ammonia	3.0^{h}	0.9 ^h						4.7 ^k	142 ^e	$4582/3273/2104^{\rm f}$
	Refinery	0.9^{h}	0.3 ^h	0.10^{h}	0.02^{h}				-	10 ^e	

^a Zhao et al. (2010). S represents the sulfur content, in percent, of the coal as fired. Numbers for pulverized combustion indicate EFs for anthracite and bituminous combustion, respectively.

^b Zhao et al. (2010). Numbers indicate EFs for tangentially-fired low NO_X burner burning bituminous (≥300MW), swirl low NO_X burner burning bituminous (≥300MW), low NO_X burner burning bituminous (<300MW), burner without low NO_X combustion burning bituminous (<300MW), respectively.

^c Zhao et al. (2010). A represents the ash content, in percent, of the coal as fired.

^d Bo et al. (2008).

^e Zhao et al. (2012a). Numbers for pulverized combustion indicate EFs for units (≥200MW)/units (<200MW), respectively. The unit for brick and lime production is kg/t-coal.

^f Zhao et al. (2012b). Numbers for coal-fired power plant indicate EFs for bituminous/lignite/anthracite combustion, respectively. Numbers for ammonia production indicate EFs for processes using coal/oil/gas as energy, respectively. Numbers for lime production indicate EFs for calcinations of carbonates (kg/t-lime) and combustion processes (kg/t-coal), respectively. The unit for brick production is kg/t-coal.

^g Lei (2008).

^h Zhao et al. (2013). The unit for cement is kg/t-production. Numbers for steel production indicate EFs for basic oxygen furnace/electric arc furnace, respectively.

ⁱ He (2006)

^j Huo et al. (2012)

^k Wei (2009)

¹ From onsite investigations in Nanjing.

^m MEP (2010). Numbers for SO₂ from pig iron production indicate EFs for blast furnaces with gas volume over 2000 m³/350-2000 m³, respectively.

Table S5. The emissions (estimated by this work) and ambient concentrations (Yu et al., 2014) of SO_2 , NO_X/NO_2 , $PM_{2.5}$, PM_{10} and CO for August 16-24, 2012 and August 16-24, 2013 (the period of Youth Asian Games, 2013) in Nanjing.

		SO_2	NO _X /NO ₂	PM _{2.5}	PM_{10}	CO
Emissions (metric tons)	Aug 16-24, 2012	3387	5073	1814	2365	21087
	Aug 16-24, 2013	2608	3501	1433	2034	14128
	Reduction rate	23%	31%	21%	14%	33%
Concentrations (ug/m ³)	Aug 16-24, 2012	27	41	43	89	896
	Aug 16-24, 2013	21	30	38	73	699
	Reduction rate	22%	27%	18%	12%	22%

Figures

Figure S1.

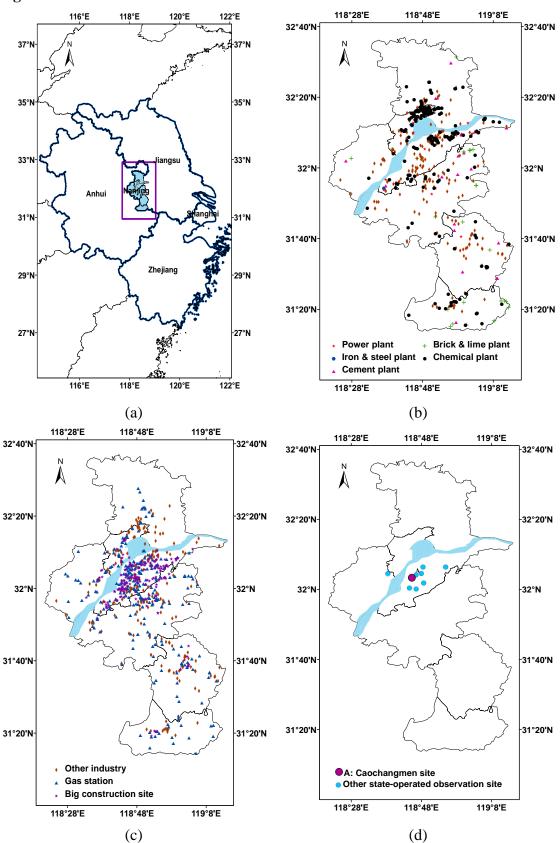


Figure S2.

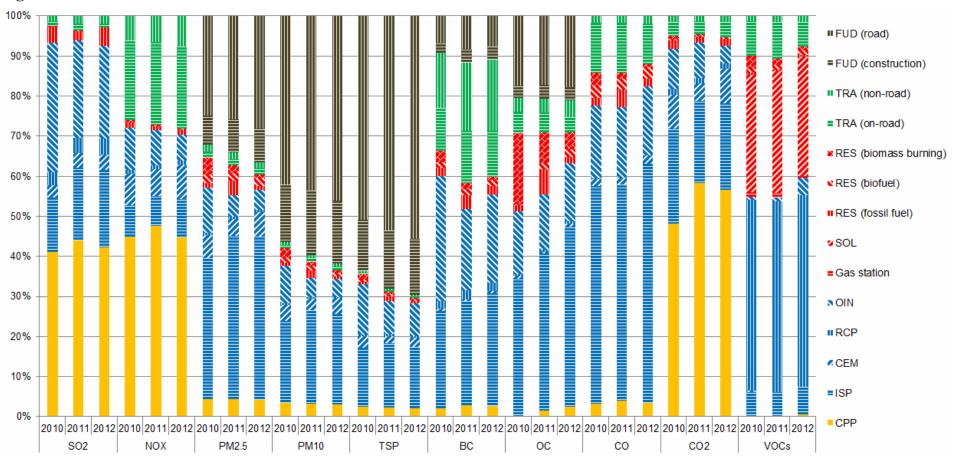


Figure S3.

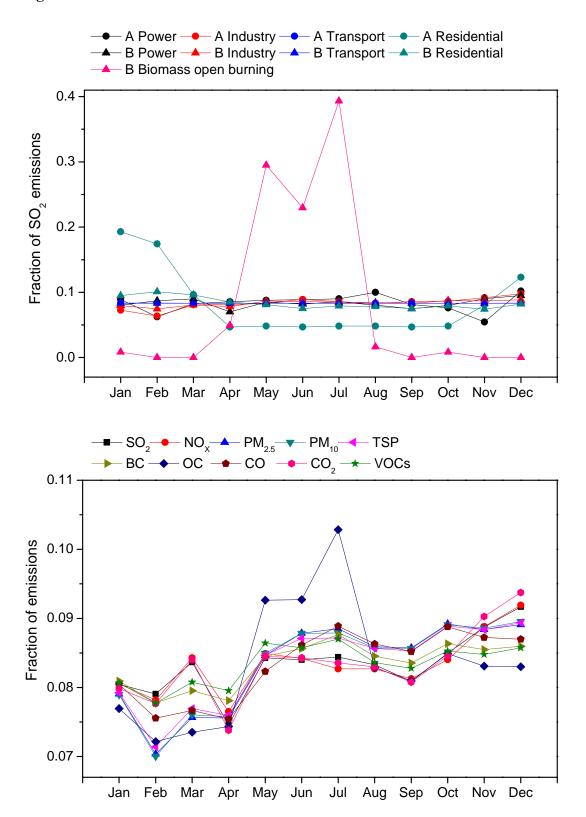


Figure S4.

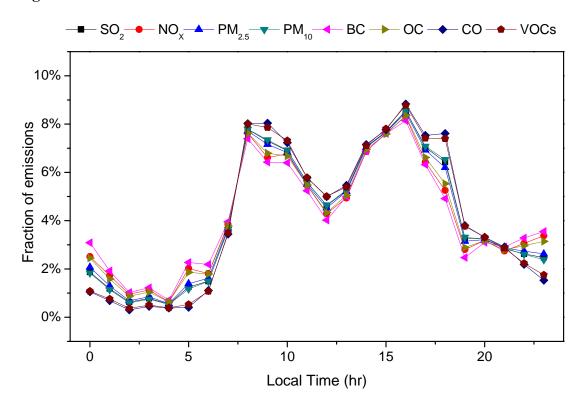


Figure S5.

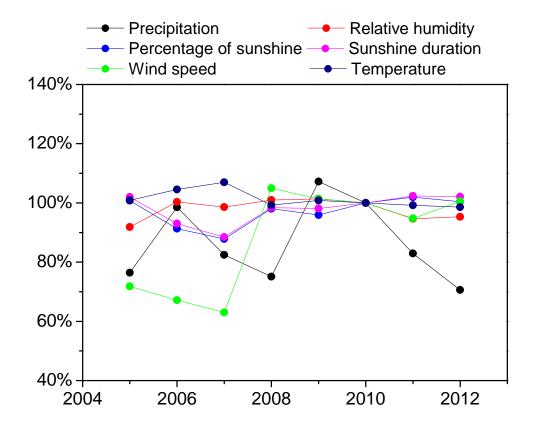


Figure S6.

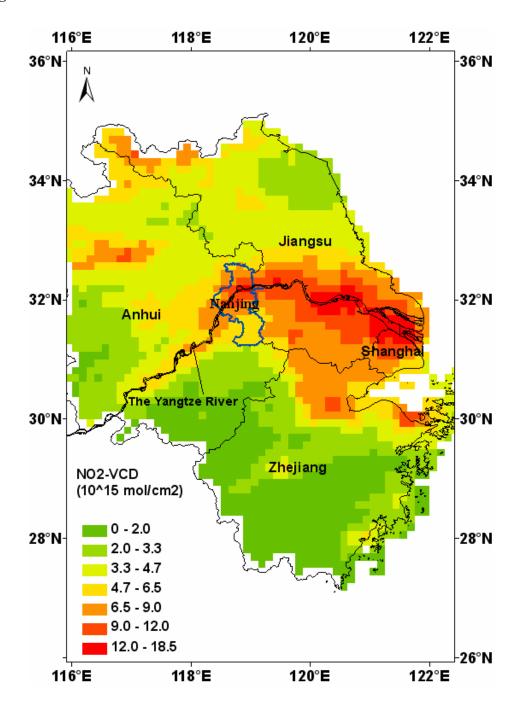


Figure S7.

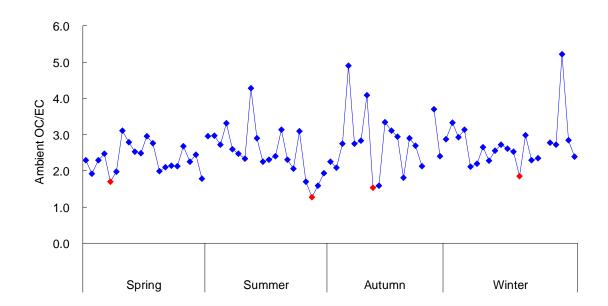


Figure S8.

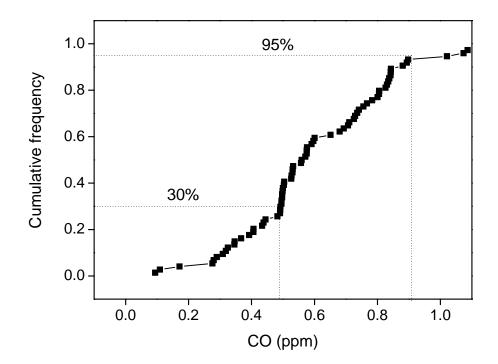


Figure S9.

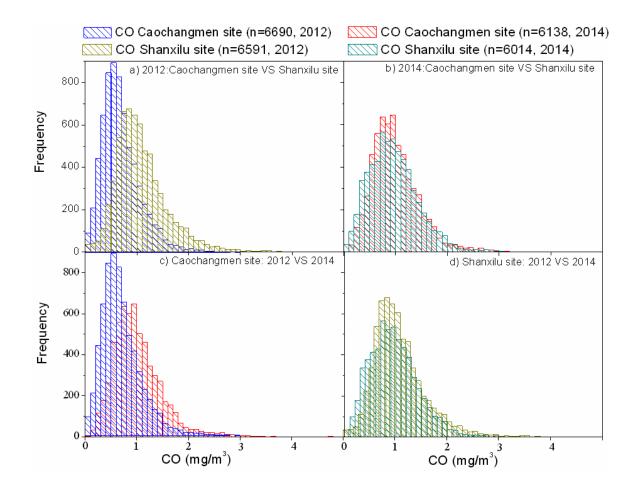
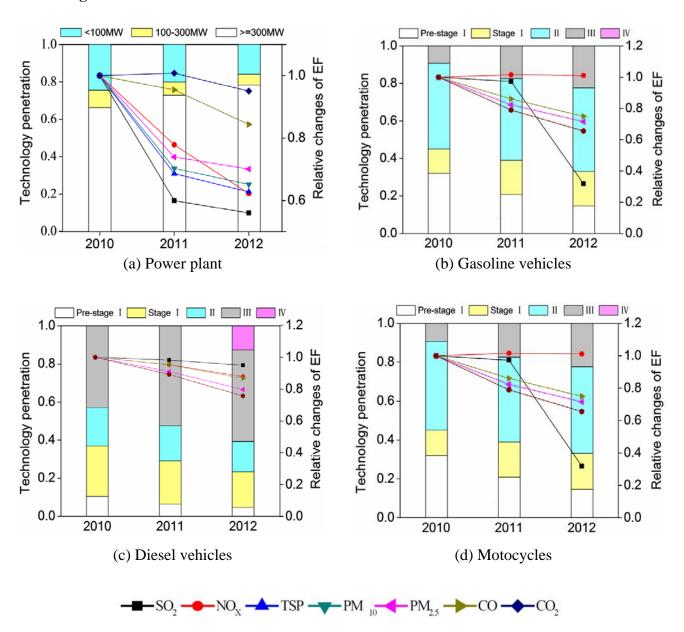



Figure S10.

References

- Bo, Y., Cai, H., and Xie, S.: Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China. Atmos. Chem. Phys., 8, 7297-7316, 2008.
- He, Q.: Composite Characteristics, Emission Factors, and Emission Estimates of Particulates and Volatile Organic Compound from Coke Making in China, Ph. D thesis, Chinese Academy of Sciences, Beijing, 2006 (in Chinese).
- Huo, H., Lei, Y., Zhang, Q., Zhao, L., and He, K.: China's coke industry: Recent policies, technology shift, and implication for energy and the environment, Energ. Policy, 51, 397-404, 2012.
- Lei, Y.: Research on Anthropogenic Emissions and Control of Primary Particles and Its Key Chemical Components, Ph. D thesis, Tsinghua University, Beijing, 2008 (in Chinese).
- Li, B., Zhang, J., Zhao, Y., Yuan, S. Y., Zhao, Q. Y., Shen. G. F., and Wu, H. S.: Seasonal variation of urban carbonaceous aerosols in a typical city Nanjing in Yangtze River Delta, China, Atmos. Environ., 106, 223-231, 2015.
- Ministry of Environmental Protection of the People's Republic of China (MEP): Discharge coefficients of industrial pollutants in the First National General Survey of Pollution Sources (Survey Handbook). Office of Leading Group of the State Council on the First National Census on Pollution Sources, Beijing, 2010 (in Chinese).
- Wei, W.: Research and Forecast on Chinese Anthropogenic Emissions of Volatile Organic Compounds, Ph. D thesis, Tsinghua University, Beijing, 2009(in Chinese).
- Yu, Y. Y., Xie, F. J., Lu, X. B., Zhu, Z. F., and Shu, Y.: The environmental air quality condition and the reason analysis during the Asian Youth Games of Nanjing, Environmental Monitoring and Forewarning, 6, 5-17, 2014 (in Chinese).
- Zhao, Y., Wang, S. X., Nielsen, C. P., Li, X. H., and Hao, J. M.: Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants, Atmos. Environ., 44, 1515-1523, 2010.
- Zhao, Y., Nielsen, C. P., McElroy, M. B., Zhang, L., and Zhang, J.: CO emissions in China: uncertainties and implications of improved energy efficiency and emission control, Atmos. Environ., 49, 103-113, 2012a.
- Zhao, Y., Nielsen, C. P., and McElroy, M. B.: China's CO₂ emissions estimated from the bottom up: Recent trends, spatial distributions, and quantification of uncertainties, Atmos. Environ., 59, 214-223, 2012b.
- Zhao, Y., Zhang, J., and Nielsen, C. P.: The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO₂ in China. Atmos. Chem. Phys., 13, 487-508, 2013.