

Supplement of

Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China

W. Xu et al.

Correspondence to: X. J. Liu (liu310@cau.edu.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1 **Sect. S1. Social-economical and geo-climatic conditions for six regions of China**

2 In this study, we divided the research area into six typical regions: North China (NC),
3 Northeast (NE), Northwest (NW), Southeast China (SE), Southwest China (SW) and
4 Tibetan Plateau (TP). These regions reflect different social-economical and
5 geo-climatic conditions across China (Liu et al., 2013). Basically, NC, SE and SW
6 represent relatively developed regions, NE and NW represent less developed regions
7 while TP represents the least developed region in China.

8 Statistical data of the gross domestic product (GDP) for the six regions are sourced
9 from the China Statistic Yearbook for the year 2013
10 (<http://www.stats.gov.cn/tjsj/ndsj/2014/indexch.htm>).

11 North China, an intensively managed agricultural region and economically developed
12 area, comprises of Beijing, Tianjin, Hebei, Henan, Shandong, Shanxi and Shaanxi
13 provinces, which is characterized by temperate monsoon climate. The region occupies
14 10% of the total area of China, and contributes 28% of the total national China GDP.
15 Northeast China includes Liaoning, Jilin and Heilongjiang provinces and the northeast
16 area of Inner Mongolia, and is characterized by a temperate monsoon climate. The
17 region accounts for 6% of the China's total area, and contributes 9% of the total
18 national GDP. Northwest China consists of the northwest region of Inner Mongolia,
19 Xinjiang, Ningxia and Gansu provinces, characterizing by a temperate continental
20 climate. The region occupies 35% of the total area of China, but only contributes 5%
21 of China's GDP. Southeast China covers Shanghai, Jiangsu, Zhejiang, Anhui, Hubei,
22 Hunan, Jiangxi, Fujian, Guangdong, Hong Kong, Macau, Taiwan and Hainan
23 provinces: 13% of China's total area. The region contributes 46% of China's GDP and
24 is characterized by a subtropical monsoon climate. Southwest China consists of
25 Sichuan, Chongqing, Guizhou, Yunnan and Guangxi provinces, and is characterized
26 subtropical and plateau monsoon climates. The region accounts for 14% of China's
27 total area and contributes 12% of China's GDP. The Tibetan Plateau is a remote area
28 of China that consists of Tibet and Qinghai provinces. The region is characterized by
29 an alpine mountain climate. The region occupies 20% of the total area of China but
30 only contributes 0.5% of China's GDP.

31

32

33

34

35 **Section S2. Other information of the sampling sites**

36 *S2.1. Sampling sites in north China (NC)*

37 Thirteen sampling sites, including 3 urban sites (NC1, NC2 and NC3), 8 rural sites
38 (NC4, NC5, NC6, NC7, NC8, NC9, NC10, NC11) and 2background sites (NC12 and
39 NC13), are located in north China.

40 NC1, located at the west campus of China Agricultural University (CAU, 40.02°N,
41 116.28°E), is near the fifth ring road in Beijing city. NC2, located at the campus of
42 Beijing Normal University (39.96°N, 116.37°E), is near the third ring road in Beijing
43 city. NC3 is located in the centre of Zhengzhou city, the capital of Henan province and
44 Henan Academy of Agricultural Sciences (34.75°N, 113.63°E). These three urban sites
45 (i.e. NC1, NC2, and NC3) are surrounded by complicated external environments, such
46 as densely occupied residences, industry, small-scale urban agriculture, and roads.
47 NC4 is located at Dongbeiwang village (40.04°N, 116.29°E), Xibeiwang town,
48 Haidian District, about 20 km the northwest of Beijing city. This site could be polluted
49 by ammonia from agricultural fields and domestic animal farms and emissions from
50 motor vehicles on an adjacent road (c. 0.2 km). NC5 is located at Shangzhuang
51 Agricultural Experimental Station (40.11°N, 116.20°E) of CAU, in Shangzhuang town,
52 about 33 km northwest of Beijing city. This site is surrounded by small villages and
53 croplands. NC6 is located at the west campus of Hebei Agricultural University
54 (38.85°N, 115.48°E) in Baoding city, Hebei province, about 8 km southwest of the
55 downtown area. This site is surrounded by small villages and croplands, and is close
56 to a main road (c. 0.5 km). NC7 is located at CAU's Quzhou experimental station
57 (36.78°N, 114.94°E) in Quzhou town, Hebei province. NC7 is a typical rural
58 agriculture dominated site with a recently constructed industrial district. This site is
59 surrounded by croplands and small villages. A north-south main road is located 0.5
60 km west of the sampling site. NC8 is located at Yangqu dry farming water-saving
61 demonstration base (38.05°N, 112.89°E), Shanxi Academy of Agricultural Sciences, in
62 Hecun village, about 30 km northeast of Taiyuan city, Shanxi province. Hecun is a
63 typical rural village with dryland farming. The sampling site is mainly polluted by
64 ammonia from agricultural fields. NC9 is located at Zhumadian Agricultural
65 Experiment Station (33.02°N, 114.05°E), Zhumadian Academy of Agricultural
66 Sciences in Yicheng district of Zhumadian city, Henan province. This site is
67 surrounded by croplands, small villages and small-scale livestock farming. NC10 is
68 located at Wuquan Agricultural Experimental Base (34.31°N, 108.01°E), Northwest

69 Agriculture & Forestry University in Yangling city, Shaanxi province. This site is about
70 8 km northwest of the downtown area, surrounding by croplands and small villages.
71 NC11 is located at Yucheng Experimental Station (36.94°N, 116.63°E), Chinese
72 Academy of Sciences, about 8 km southwest of Yucheng city, Shandong province.
73 This site is surrounded by small villages and croplands. At all the above farmland sites,
74 with the exception of NC8, the dominant cropping system is a winter wheat-summer
75 maize rotation (two crops a year). Farmers usually apply nitrogen (N) fertilizers
76 (mainly as urea and ammonium bicarbonate) in March-April, June-August and
77 October to achieve high yields of maize and wheat. Typical application rates of N
78 fertilizer are 500-600 kg N ha⁻¹ yr⁻¹ at most sites except NC9, where the rate is
79 100-150 kg N ha⁻¹ yr⁻¹. At NC8 site, the dominant cropping system is spring maize
80 (one crop a year). In addition there is small-scale vegetable production (e.g. brussels
81 sprouts, beans and zucchini) throughout the year. Usually, N-fertilizers (compound
82 fertilizer, urea and ammonium bicarbonate) are applied in March-May, with annual
83 application rates of 150-300 kg N ha⁻¹.

84 NC12 is located at Lingshandao (LSD) island (35.77°N, 120.18°E, 514 m a.s.l.) in the
85 Yellow Sea. LSD is the biggest island in north China, about 10 km southeast of
86 Jiaonan city, Shandong province. NC13 is located at Changdao island (37.93°N,
87 120.75°E, 203 m a.s.l.), which is at the join of the Bohai Sea and the Yellow Sea,
88 about 7 km north of Penglai city, Shandong province. There are almost no agricultural
89 and/or industrial activities near these two coastal sampling sites.

90 *S2.2. Sampling sites in northeast China (NE)*

91 Five sampling sites, including 1 urban site (NE1), 2 rural sites (NE2 and NE3), and 2
92 background sites (NE4, and NE5) are located in northeast China.

93 NE1 is located at Dalian Jiaotong University (38.92 °N, 121.58°E) which lies in the
94 Shahekou district of Dalian city, Liaoning province. Dalian is a sea town (near the
95 Bohai Sea) and is famous for business development. The sampling site is polluted by
96 emissions from industry and transportation. NE2 is located at an experimental station
97 of the Soil and Fertilizer Institute (43.53 °N, 124.83°E), Jilin Academy of Agricultural
98 Sciences, in Gongzhuling city, Jilin province. Arable land accounts for 81% of the
99 total land area in Gongzhuling city, and the other 19% is used for residential,
100 commercial buildings and roads. This site is surrounded by farmland and residences.
101 NE3 is located in Sikeshu town (43.36 °N, 124.17°E), Lishu county. This site is about
102 21 km northwest of Siping city, Jilin province. At NE2 and NE3, the sampling sites

103 are both surrounded by agricultural fields with a spring maize (single harvest per year)
104 cropping system. Compound fertilizers are the major N source for the crops, and these
105 are usually applied once in April-May, with an annual application rate of 400 kg
106 $\text{ha}^{-1} \text{yr}^{-1}$ at NE1 and 250 kg $\text{ha}^{-1} \text{yr}^{-1}$ at NE2. NE5 is located in a forested area in
107 Wuying district (48.11 °N, 129.25 °E) of Yichun city, Heilongjiang province, about 50
108 km northeast of downtown. Forest coverage reaches 93% in Wuying district. NE6
109 (50.78°N, 121.52°E) is located in a forested region of Genhe city, Inner Mongolia,
110 where forest cover reaches 92%. Genhe is at the north border of the Greater Hinggan
111 Mountains, and its climate is cold temperate humid monsoon together with the
112 characteristics of continental monsoon, which is similar to that of northeast China, i.e.
113 temperate humid and semi-humid continental monsoon. Given this, NE5 is placed in
114 northeast China in the present study. The forests in Wuyin and Genhe are both natural
115 ecosystems and there are no agricultural and industrial activities near the sampling
116 sites.

117 *S2.3. Sampling sites in northwest China (NW)*

118 Five sampling sites, including 2 urban sites (NW1 and NW2), 1 rural sites (NW3) and
119 2 background sites (NW4 and NW5), are located in northwest China.

120 NW1 is located at Xinjiang Institute of Ecology and Geography (43.87°N, 87.57°E),
121 Chinese Academy of Science, in the urban region of Urumqi city, Xinjiang province.
122 This site may be polluted by emissions from motor vehicles and home heating in
123 winter. NW2 is located at Xinjiang Academy of Agricultural Sciences, about 11 km
124 away from NW1. This site has similar pollution sources as NW1.

125 NW3 is located in Yongchang town (38.07°N, 102.60 °E), Wuwei city, Gansu province.
126 The sampling site is surrounded by agricultural fields, small scale livestock housing
127 and small villages. Maize is the major crop grown. Usually cropland receives
128 chemical N fertilizers (urea, ammonium bicarbonate and compound fertilizers) in
129 April, June and July, with an annual application rate of 350 kg N $\text{ha}^{-1} \text{yr}^{-1}$. NW5 is
130 located at the meteorological observation site belonging to the Chinese Academy of
131 Sciences, which is situated in temperate grassland in Duolun county (42.20°N,
132 116.49°E), Inner Mongolia. NW6 is located at Bayinbuluke Grassland Ecosystem
133 Research Station (42.88 °N, 83.71°E), Chinese Academy of Sciences, in the southern
134 Tian Shan Mountains (3000-4500 m a.s.l.) of central Asia. Those two grassland sites
135 (i.e. NW4 and NW5) are very unlikely to be subjected to influences from
136 anthropogenic activities.

137 *S2.4. Sampling sites in southeast China (SE)*

138 Eleven sampling sites, including 2 urban sites (SE1 and SE2), 6 rural sites (SE3, SE4,
139 SE5, SE6, SE7 and SE8), and 3 background sites (SE9, SE10 and SE11), are located
140 in southeast China.

141 SE1 is located in the southern urban area of Nanjing city (31.84°N, 118.85°E). The
142 sampling site is surrounded by complicated external environments, such as housing,
143 industry, small-scale urban agriculture, and is close to a highway (c. 0.5 km). SE2 is
144 located at Baiyun Experimental Station (23.20°N, 113.31°E), Guangdong Academy of
145 Agricultural Sciences, in Guangzhou city, Guangdong province. This site is
146 surrounded by densely occupied housing and traffic roads. SE3 is located at Wuxue
147 Modern Agricultural Demonstration Base (30.01°N, 115.79°E) in Huaqiao town,
148 about 28 km northeast of Wuxue city, Hubei province. The sampling site is
149 surrounded by residential land and paddy fields, where the cropping system is double
150 rice harvests per year. Compound fertilizer and urea are the major N nutrient sources
151 for rice, and these are usually applied in May-July, at a rate of about 180 kg ha⁻¹ yr⁻¹.
152 SE4 is located in Santangjie town (28.61°N, 111.97°E), which is a remote rural site in
153 Taojiang county, Hunan province. The sampling site is surrounded by mountains and
154 paddy fields. The paddy fields are cultivated with a double rice rotation system, which
155 receives compound fertilizer and urea twice per year (in May, June or July) at about
156 150 kg N ha⁻¹ yr⁻¹. SE5 is located at Anhui Tobacco Institute (32.88°N, 117.56°E),
157 Anhui Academy of Agricultural Sciences in Fengyang county, Anhui province. The
158 sampling site is surrounded by croplands and residences. In the croplands, the major
159 annual cropping system is a winter wheat-summer maize rotation (two crops per year).
160 Compound fertilizer and urea are the major N nutrient sources for the croplands, and
161 these are usually applied in April, June and October, at a rate of 380-500 kg N ha⁻¹ yr⁻¹.
162 SE6 is located in Leizhou peninsula, Zhanjiang city (21.26°N, 110.33°E), Guangdong
163 province. This area grows tropical fruit and farmers use urea at a rate of 400 kg N ha⁻¹
164 yr⁻¹ for fruit production. SE7 is located on a mountain in the remote rural region of
165 Fuzhou city (26.17°N, 119.36°E), Fujian province. This site is surrounded by some
166 agricultural land growing tobacco and paddy rice. Usually, about 200 kg N ha⁻¹ yr⁻¹
167 compound fertilizers are used as the major nitrogen source for the crops, applied in
168 January-March, and July and August. SE8 is located in Chunhu town (29.61°N
169 121.53°E), Fenghua city, Zhejiang province. The sampling site is surrounded by a
170 residential area, a very small amount of agricultural land and mountains. SE9, located

171 in Huinong village (28.52°N, 113.41°E), Hunan province, is a rural background site.
172 In a 2-km radius around the sampling site, there is forest and a reservoir, which
173 contribute little to anthropogenic NH₃ and NO_x emissions. SE10, a rural background
174 site is located in Feiyue village (28.56°N, 113.34°E), Hunan province. There were no
175 typical emission sources around the site in a 2 km radius except forest and a
176 residential area. SE11 is located at the centre of a 3 km² forest in Xishan village
177 (28.61°N, 113.31°E), Hunan province. The forest has an average elevation of 250 m
178 and is composed of masson pine, fir and shrubs. For convenience of access (e.g., the
179 accessibility to road and the availability of main power), N deposition monitoring was
180 conducted in the valley between two small hills in the forest. The valley is 100 m
181 wide and 2000 m long in the main wind direction. The sampling site was selected in
182 the centre of the valley, without human activity and anthropogenic emission sources
183 of NH₃ and NO_x. The nearest N_r emission sources are more than 2 km away from the
184 monitoring site, and consist of some small paddy fields distributed at the edge of the
185 forest, accounting for no more than 5% of the total forest area.

186 *S2.5. Sampling sites in southwest China (SW)*

187 Seven sampling sites, including 1 urban site (SW1), 5 rural sites (SW2, SW3, SW4,
188 SW5 and SW6) and 1 background site (SW7), are located in southwest China.
189 SW1 is located in a residential area (30.55°N, 103.84°E) which lies in the Wenjiang
190 district of Chengdu city, Sichuan province. The sampling site is surrounded densely
191 occupied housing, roads and small-scale urban agriculture. SW2 is located at
192 Xiangshui village (30.13°N, 104.63°E), Ziyang city, Sichuan province. This site is
193 surrounded by paddy fields with a single rice cropping system (single harvest per year)
194 and mountains. N fertilizers (urea and compound fertilizer) are applied mainly in June
195 and July, at a rate of 270 kg N ha⁻¹ yr⁻¹. SW3 is located at the Purple Soil Ecological
196 Experiment Station (31.28°N, 105.47°E), Chinese Academy of Sciences, in Yanting
197 county, Sichuan province. Agriculture is the dominant source of N at this site. In the
198 agricultural fields, rice-wheat and maize-oilseed rape (canola) are the major double
199 cropping systems for the paddy and upland fields in conventional farming practice,
200 respectively. Ammonium bicarbonate is the major N nutrient sources for the croplands,
201 usually applied at about 300 kg N ha⁻¹ yr⁻¹ for summer and winter crops together.
202 SW4 is located in Huangzhuang village (29.06°N, 106.18°E) in Jiangjin district of
203 Chongqing, a city characterized by heavy industry production. The sampling site is
204 surrounded by paddy fields and dry farmland with sorghum or oilseed rape. Farmers

205 apply N fertilizers mainly in April-July, October and November. Paddy fields at this
206 site usually receive compound fertilizers including $180 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, whereas the
207 dryland areas planted with sorghum usually receive ammonium phosphate and
208 ammonium bicarbonate (altogether adding about $200 \text{ kg N ha}^{-1} \text{ yr}^{-1}$), and the drylands
209 used for oilseed rape production usually receive compound fertilizers at 135 kg N ha^{-1}
210 yr^{-1} . SW5 is located in the suburbs of Kunming, a city characterized by flower and
211 vegetable production, and about 500 m away from the Dian Lake (24.97°N , 102.67°E).
212 This site is surrounded by agricultural fields and small villages, and is near a road (c.
213 0.2 km) with few vehicles. Leek is the most important cash crop in the region, and N
214 fertilizer (urea) is usually applied every two months, at a rate of $300\text{-}400 \text{ kg N ha}^{-1}$
215 yr^{-1} . SW6, located at the campus of Yunnan Agricultural University (25.13°N ,
216 102.75°E), is in the northern rural area of Kunming city. This site is surrounded by
217 housing, commercial buildings and roads without large agricultural sources. SW7 is a
218 typical rural background site located in Kunyang town (24.67°N , 102.61°E), and is
219 surrounded by small agricultural land (c. 62 ha), phosphate fertilizer plants and
220 mountains.

221 *S2.6. Sampling sites in the Tibetan plateau (TP)*

222 Two sampling sites, including 1 urban site (TP1) and 1background site (TP2), are
223 located in the Tibetan plateau.

224 TP1, located at a meteorological station belonging to Xining Weather Bureau, is in the
225 northern suburbs of Xining city, Qinghai province. Surrounding this site are schools,
226 housing and commercial buildings. TP2 is located at an ecological experimental
227 station belonging to the Agricultural and Animal Husbandry College of Tibet
228 University, which lies in the wide valley area of the middle and lower reaches of the
229 Nyi River in Linzhi county, Tibet province. TP2 (Linzhi site) is relatively
230 undisturbed remote site, surrounded by grassland free from human activity.

231

232 **Sect. S3. Information on measuring methods, sample replications and collection**

233 *S3.1. Description of the DELTA system and the ALPHA and Gradko passive samplers*

234 The DELTA system comprises a denuder filter sampling train, a low-volume pump
235 (D210, TCP Micropumps Ltd., UK) and a high sensitivity dry gas meter (SK25,
236 Kimmon Manufacturing Co., Ltd., Japan). Briefly, the sampling train consists of two
237 potassium carbonate plus glycerol (1 % (m/v) K_2CO_3 + 1 % (m/v) glycerol in
238 methanol) coated denuders in series for the simultaneous collection of HNO_3 ,

239 followed by two citric acid (5% (m/v) citric acid in methanol) coated denuders for
240 NH_3 and finally by a filter-pack assembly with a first K_2CO_3 /glycerol impregnated
241 filter to capture particle phase anions (NO_3^- , SO_4^{2-} , Cl^-) and cations (NH_4^+ , Na^+ , Mg^{2+} ,
242 Ca^{2+}), and a second filter coated with citric acid to collect any volatilized particulate
243 NH_4^+ . The empirically determined effective size cut-off for particle sampling is of the
244 order of 4.5 μm (E. Nemitz, personal communication). The air was drawn through the
245 sampling train at a rate of 0.2-0.4 L min^{-1} and directly into the first denuder with no
246 inlet line to avoid sampling losses. The total sampled air volume of the DELTA
247 system was recorded by the gas meter which was checked every month for data
248 reading, performance and maintenance.

249 The ALPHA passive sampler, described in detail by [Puchalski et al. \(2011\)](#) is made up
250 of a 26 mm long, 27 mm outer diameter polyethylene tube with one open end. The
251 open end contains a 5 μm PTFE membrane allowing gaseous NH_3 to diffuse through,
252 which is then absorbed onto a citric acid-coated collection filter located at the other
253 end of the diffusion path. The Gradko passive sampler consists of a 71.0 mm long \times
254 11.0 mm internal diameter acrylic tube with coloured and white thermoplastic rubber
255 caps. NO_2 is absorbed into a 20% triethanolamine/deionised-water solution coated
256 onto two stainless steel wire meshes within the coloured cap. Both types of passive
257 samplers at each site were installed at 2 m height above the ground and deployed as
258 three replicates for monthly sampling. For the ALPHA passive sampler, the NH_3
259 concentration was calculated by considering a temperature dependent diffusion
260 coefficient ([Puchalski et al., 2011; Xu et al., 2014](#)), while a constant gas diffusion
261 coefficient based on an assumption of 25 $^{\circ}\text{C}$ was used for the calculation of NO_2
262 concentration, in accordance with the Gradko introduction manual and previous
263 studies ([Luo et al., 2013; Shen et al., 2013](#)).

264 The DELTA sampling trains and all the passive samplers were prepared and measured
265 in the laboratory at China Agricultural University (CAU), Beijing. The prepared
266 samplers were sealed in individual airtight storage bags and shipped in cool boxes,
267 sent out to the monitoring sites for monthly field exposure, then sent back in the same
268 bags and boxes to the laboratory for extraction and analysis. All the samplers were
269 exposed to ambient air for one month at each site and thus provided monthly mean
270 ambient N_r concentrations. Laboratory and field (travel) blanks were prepared and
271 transported together with the field-exposed samples. Three laboratory blanks were
272 prepared for each batch of field exposed samples and represent extracts from samples

273 prepared in the laboratory. Three field blanks were prepared for each batch of field
274 exposed samples and represent extracts from unexposed samplers that were
275 transported to and from the monitoring sites with the field exposed samplers.

276 *S3.2. Description of particulate sampler*

277 For pNH₄⁺ and pNO₃⁻ sampling, particulate samplers equipped with solar panels were
278 used to collect 7-10 days of PM₁₀ samples per month. The average of these 7-10
279 samples is assumed to represent the monthly average concentration. The sampler was
280 placed about 2 m above the ground and ran for 24h to obtain a particulate matter
281 sample on 47 mm quartz filters (Whatman, Maidstone, UK). Each filter was
282 equilibrated for 24-h in a room at 40 % relative humidity and 25 °C and then weighed
283 on an electronic balance (Satorius, GÖTTINGEN, Germany, precision: 10 µg) before
284 and after sampling. After collection, the loaded quartz filters were sealed in aluminum
285 foil and stored in on-site refrigerators at about 3 °C until analysis in the coordinating
286 laboratories of local universities or institutes. Field blank measurements were made
287 each month at the corresponding sites.

288

289 **References**

- 290 Liu, X. J., Zhang, Y., Han, W. X., Tang, A. H., Shen, J. L., Cui, Z. L., Vitousek, P. M.,
291 Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F. S.:
292 Enhanced nitrogen deposition over China, *Nature*, 494, 459-462,
293 doi:10.1038/nature11917, 2013.
- 294 Luo, X. S., Liu, P., Tang, A. H., Liu, J. Y., Zong, X. Y., Zhang, Q., Kou, C. L., Zhang,
295 L. J., Fowler, D., Fangmeier, A., Christie, P., Zhang, F. S., and Liu, X. J.: An
296 evaluation of atmospheric N_r pollution and deposition in North China after the
297 Beijing Olympics, *Atmos. Environ.*, 74, 209–216,
298 doi:10.1016/j.atmosenv.2013.03.054, 2013.
- 299 Puchalski, M. A., Sather, M. E., Walker, J. T., Lehmann, C. M. B., Gay, D. A., Mathew,
300 J., and Robarge, W. P.: Passive ammonia monitoring in the United States:
301 Comparing three different sampling devices, *J. Environ. Monit.*, 13, 3156–3167,
302 doi: 10.1039/c1em10553a, 2011.
- 303 Shen, J. L., Li, Y., Liu, X. J., Luo, X. S., Tang, A. H., Zhang, Y. Z., and Wu, J. S.:
304 Atmospheric dry and wet nitrogen deposition on three contrasting land use types of
305 an agricultural catchment in subtropical central China, *Atmos. Environ.*, 67, 415–
306 424, doi:10.1016/j.atmosenv.2012.10.068, 2013.

307 Xu, W., Zheng, K., Liu, X.J., Meng, L.M., Huaitalla, R.M., Shen, J.L., Hartang, E.,
308 Gallmann, E., Roelcke, M., and Zhang, F.S.: Atmospheric NH₃ dynamics at a
309 typical pig farm in China and their implications. *Atmos. Pollut. Res.*, 5, 455–463,
310 doi:10.5094/APR.2014.053, 2014.

311

312 **Sect. S4. Validation of ALPHA passive sampler**

313 The ALPHA passive samplers were used to monitor atmospheric concentrations of
314 NH₃ at seven sites (NC2, NE4, NE5, SW5, SW7, TP1 and TP2) of the network at
315 which the DELTA systems could not be used due to absence of an external power
316 supply. To ensure that differences across sites are due to the pollution climate rather
317 than an artifact caused by methodological choices, we performed simultaneous and
318 continuous 1-month measurements of NH₃ concentrations by using ALPHA passive
319 samplers and the active DELTA denuders at three urban (NC1, NC3 and NE1) and
320 three rural (NC8, SE3 and SE7) sites from Nov. 2013 to Oct. 2014.

321 Monthly mean concentrations of NH₃ provided by ALPHA passive samplers and the
322 DELTA denuders were reasonably comparable at all site (**Fig S1a-f**), with overall
323 averaged values of 6.7 ± 5.0 (standard deviation) and $7.0 \pm 5.1 \mu\text{g N m}^{-3}$, respectively.
324 In addition, the correlation between the two methodologies was highly significant
325 ($R^2=0.919$, $p<0.001$). Thus any differences in the data can be ascribed to the pollution
326 climate.

327

328 **Sect. S5. Introduction to the calculation of V_d for all N_r species as well as the 329 estimation of dry deposition**

330 The model calculation of dry deposition of N_r species follows a standard big-leaf
331 resistance-in-series model as described by Wesely (1989) for gases and Zhang et al.
332 (2001) for aerosol. V_d is calculated as the function $V_d=(R_a+R_b+R_c)^{-1}$ determined by
333 local meteorological condition and surface type as described in [Zhang et al. \(2012\)](#).
334 Here R_a is the aerodynamic resistance to turbulent transfer from the lowest model
335 layer (70 m above the surface) to the roughness height, R_b is the boundary layer
336 resistance to molecular diffusion, and R_c is the canopy or surface uptake resistance. In
337 the present study we have run the model calculation of dry deposition velocities for
338 the whole of 2012 and archived the hourly values for both gases and aerosols over the
339 model domain. Then, the monthly V_d at each site was averaged based on the hourly
340 dataset for further estimation of dry deposition flux of each N_r species during the

341 observation, which was statistically summarized according to land use type and is
342 presented in **Table S3**. Annual mean dry deposition velocities of N_r species for six
343 land use types in this study, averaged from monthly mean values, were fit well into
344 range of annual values calculated and used for similar land use types in other studies
345 (**Table S4** of Supplement).

346

347 **References**

- 348 Wesely, M. L.: Parameterization of surface resistance to gaseous dry deposition in
349 regional-scale numerical models. *Atmos. Environ.*, 23, 1293-1304, 1989.
- 350 Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C. C.,
351 van Donkelaar, A., Wang, Y. X., and Chen, D.: Nitrogen Deposition to the United
352 States: Distribution, Sources, and Processes, *Atmos. Chem. Phys.*, 12, 4539-4554,
353 doi:10.5194/acp-12-4539-2012, 2012.
- 354 Zhang, L. M., Gong, S. L., Padro, J., and Barrie, L.: A size-segregated particle dry
355 deposition scheme for an atmospheric aerosol module, *Atmos. Environ.*, 35 (3),
356 549-560, doi:10.1016/s1352-2310(00)00326-5, 2001.

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375 **Figure captions**

376 **Fig. S1.** Comparison between simultaneous measurements of NH_3 concentrations by
377 ALPHA passive samplers and the DELTA systems at six sampling sites in the network
378 (a. NC1, b. NC3, c. NE1, d. NC8, e. SE3, f. SE7, g. ALPHA_NH₃ vs. DELTA_NH₃
379 across all sites). Site names for codes can be found in Table S1.

380 **Fig. S2.** Monthly mean atmospheric concentrations of N_r species (a. NH₃, b. NO₂, c.
381 HNO₃, d. pNH₄⁺ and e. pNO₃⁻) at the forty-three monitoring sites in China. The
382 boundary of the box indicates the 25th and 75th percentile. The black lines and red
383 squares within the box mark the median and the mean, respectively. Whiskers above
384 and below the box indicate the maximum and minimum values. Site names for codes
385 can be found in Table S1.

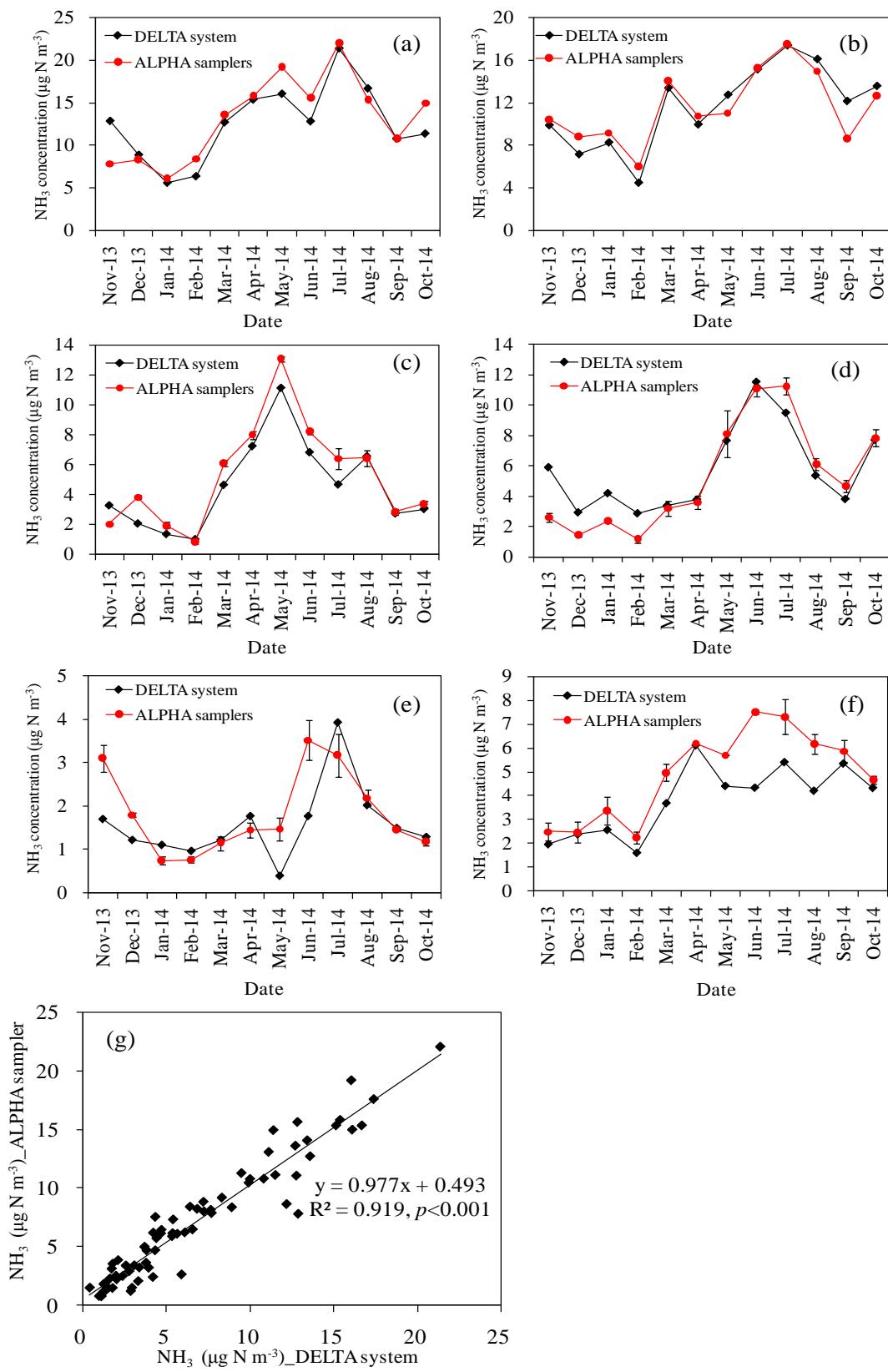
386 **Fig. S3.** Monthly volume-weighted N_r concentrations in precipitation at the
387 forty-three monitoring sites in China (a. NH₄⁺-N, b. NO₃⁻-N). The black lines within
388 the box denote the median. The blue circles denote the volume-weighted mean
389 concentrations of N_r species in rainwater, calculating from the water amount and
390 deposition fluxes of all precipitation events at each site during the sampling period.
391 Whiskers above and below the box indicates the maximum and minimum values. Site
392 names for codes can be found in Table S1.

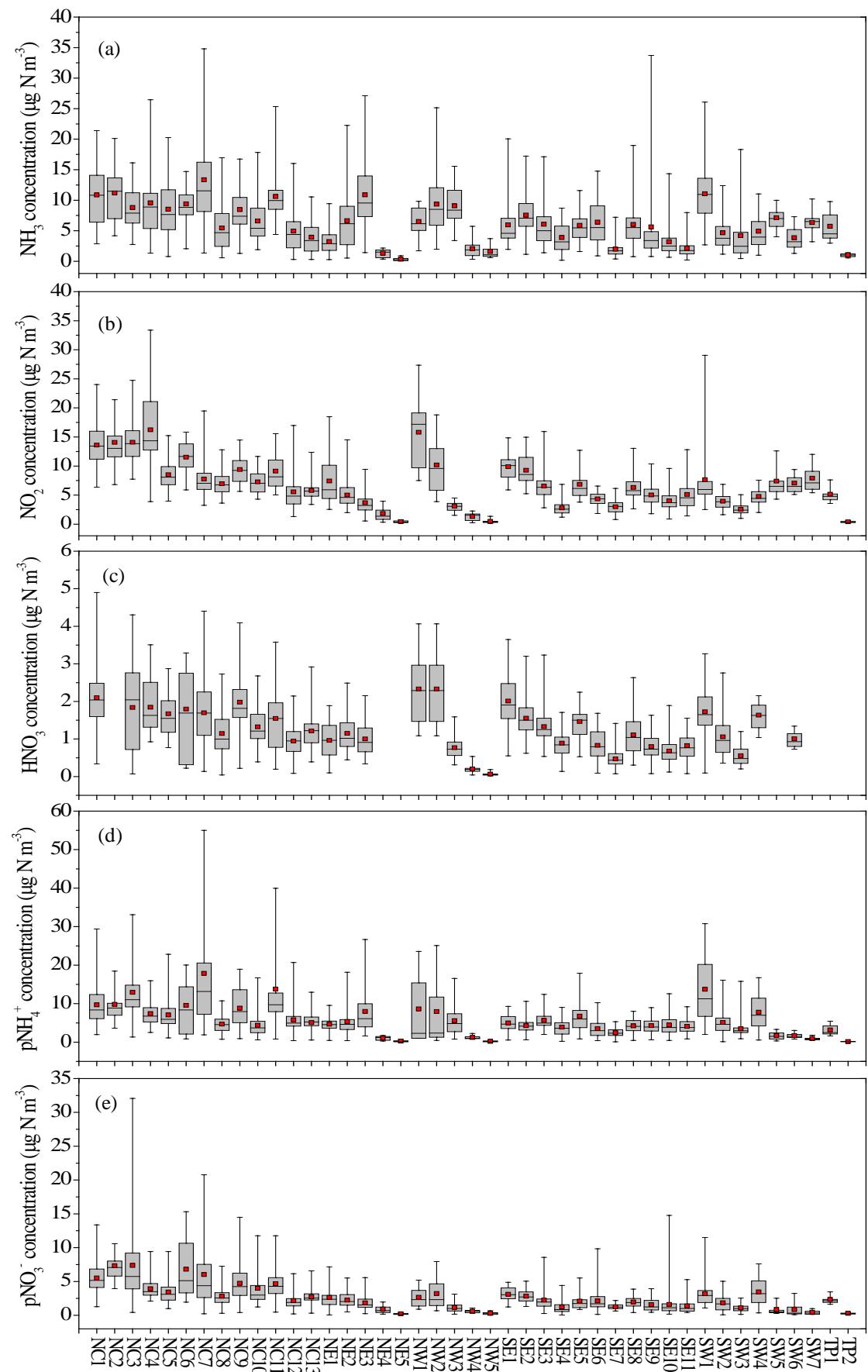
393 **Fig. S4.** Relationships between monthly precipitation and volume-weighted
394 concentrations of NH₄⁺ and NO₃⁻ in precipitation at the sampling sites in the six
395 regions. NC, NE, NW, SE, SW, and TP are the region codes and denote North China,
396 Northeast China, Northwest China, Southeast China, Southwest China, and the
397 Tibetan Plateau, respectively.

398 **Fig. S5.** Annual mean precipitation amounts at the forty-three sites in China. Site
399 names for codes can be found in Table S1.

400 **Fig. S6.** Relationship between total annual dry N deposition fluxes and total annual
401 atmospheric N_r concentrations across all forty-three sites. The plots with same color
402 denote the same land use type.

403


404


405

406

407

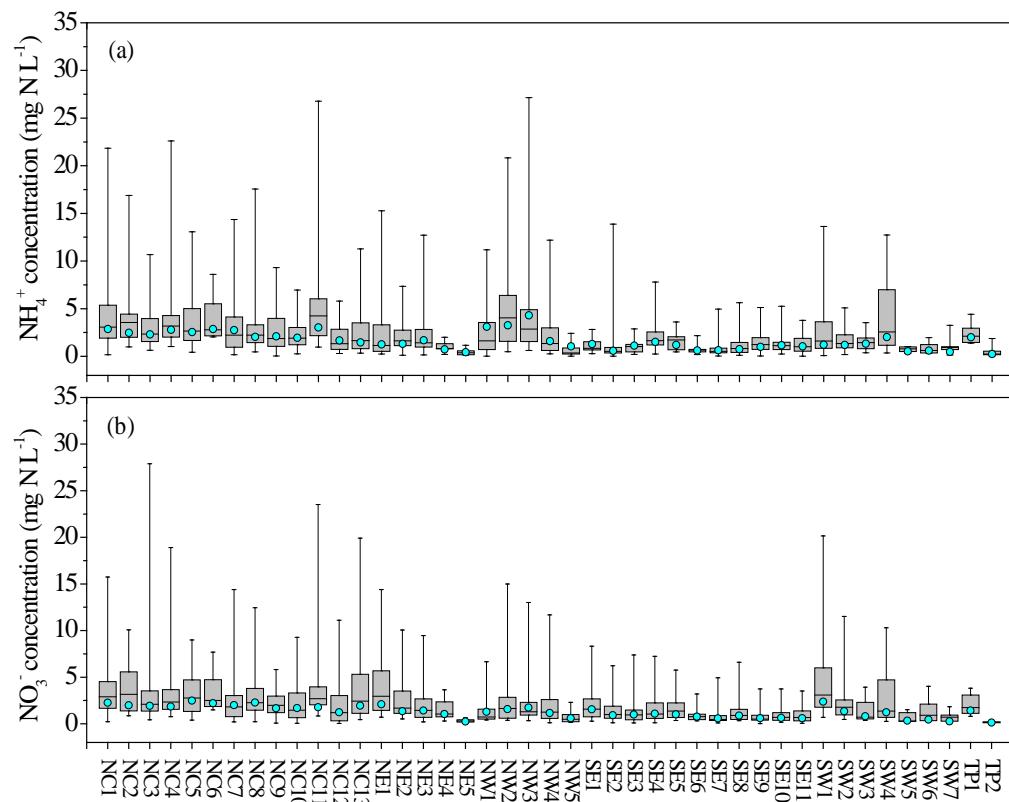

408

Fig. S1

Fig. S2

416

417 Fig. S3

418

419

420

421

422

423

424

425

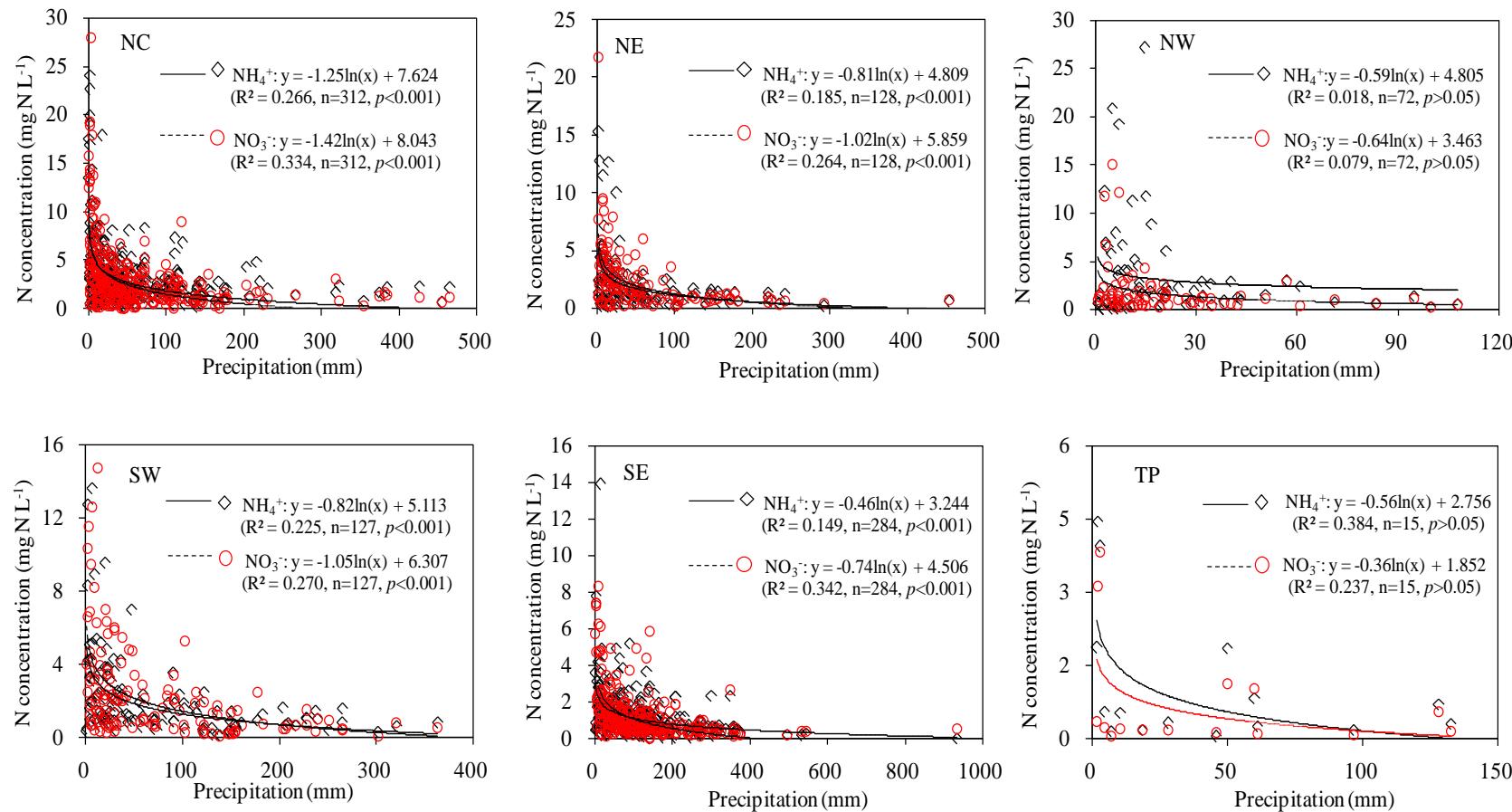
426

427

428

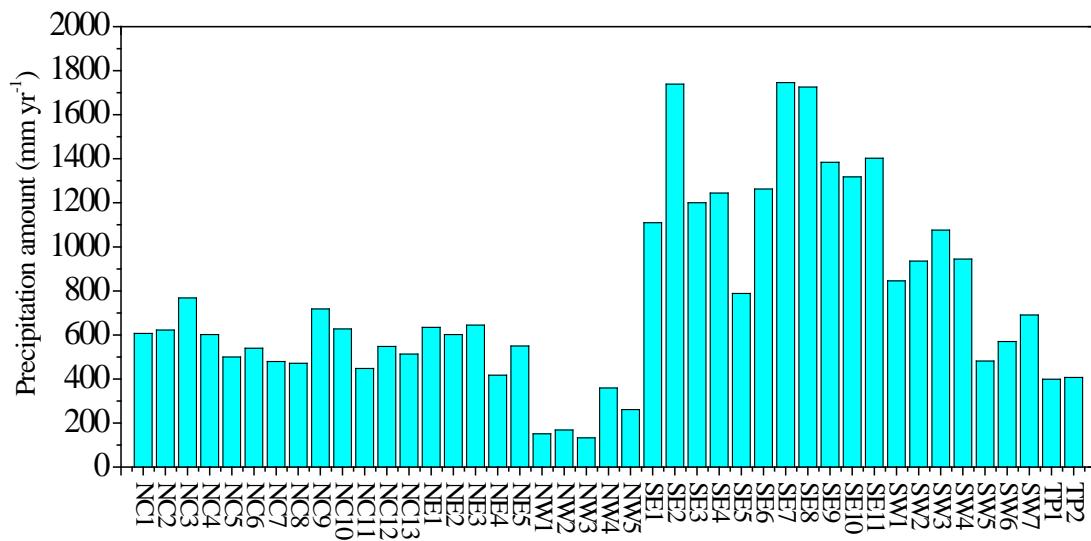
429

430


431

432

433


434

435

436 **Fig. S4**

437

Fig. S5

439

440

441

442

443

444

445

446

33

10

۷۷۹

450

451

452

453

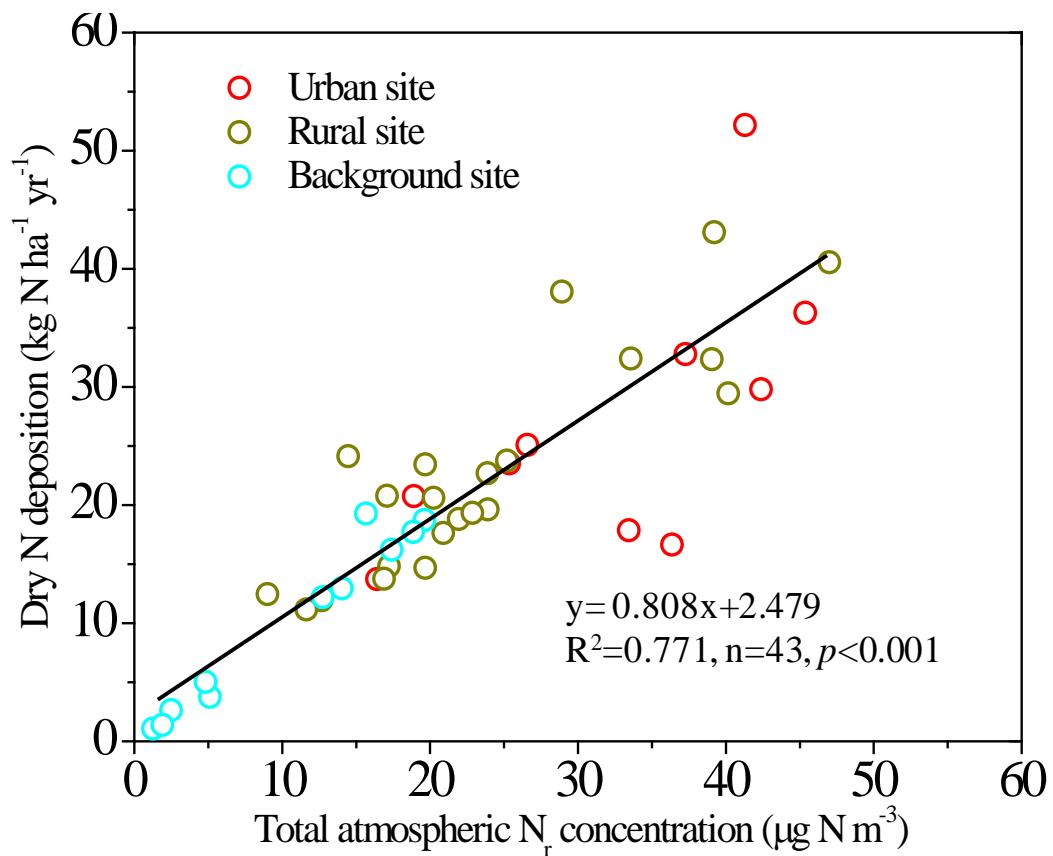
454

455

456

457

458


459

460

161

462 **Fig. S6**

463

Table S1. Descriptions of the forty-tree sampling sites in the Nationwide Nitrogen Deposition Monitoring Network (NNDMN)^a

Site Code	Site Name	Region	Coordinate	Meteorological parameters ^b				Population density (persons km ⁻²)	Land use type
				Wind speed (m s ⁻¹)	Rainfall (mm)	Temp. (°C)	RH (%)		
NC1	China Agric. University	NC	116.28 ° E, 40.02 ° N	2.5	556	12.4	56	7616	Urban
NC2	Beijing Normal University	NC	116.37 ° E, 39.96 ° N	2.5	556	12.4	56	7616	Urban
NC3	Zhengzhou	NC	113.63 ° E, 34.75 ° N	2.5	641	14.6	65	17069	Urban
NC4	Dongbeiwang	NC	116.29 ° E, 40.04 ° N	2.5	556	12.4	56	587	Rural
NC5	Shangzhuang	NC	116.20 ° E, 40.11 ° N	2.5	556	12.4	56	327	Rural
NC6	Baoding	NC	115.48 ° E, 38.85 ° N	2.0	519	12.9	61	3029	Rural
NC7	Quzhou	NC	114.94 ° E, 36.78 ° N	1.8	517	13.9	61	606	Rural
NC8	Yangqu	NC	112.89 ° E, 38.05 ° N	2.1	443	10.1	59	58	Rural
NC9	Zhumadian	NC	114.05 ° E, 33.02 ° N	2.3	958	15.0	72	815	Rural
NC10	Yangling	NC	108.01 ° E, 34.31 ° N	1.6	599	13.3	71	1763	Rural
NC11	Yucheng	NC	116.63 ° E, 36.94 ° N	2.5	567	13.1	64	495	Rural
NC12	Lingshandao	NC	120.18 ° E, 35.77 ° N	4.9	712	12.7	71	482	Background
NC13	Changdao	NC	120.75 ° E, 37.93 ° N	5.5	562	12.2	68	786	Background
NE1	Dalian	NE	121.58 ° E, 38.92 ° N	4.6	623	10.8	65	14280	Urban
NE2	Gongzhuling	NE	124.83 ° E, 43.53 ° N	3.8	573	5.7	63	271	Rural
NE3	Lishu	NE	124.17 ° E, 43.36 ° N	2.8	611	6.7	64	221	Rural
NE4	Wuyin	NE	129.25 ° E, 48.11 ° N	2.1	628	1.1	69	33	Background
NE5	Genhe	NE	121.52 ° E, 50.78 ° N	2.2	518	-6.2	67	5	Background
NW1	Shengdisuo	NW	87.57 ° E, 43.87 ° N	2.5	265	7.2	57	5122	Urban

NW2	Tufaisuo	NW	87.58 ° E, 43.82 ° N	2.5	265	7.2	57	236	Urban
NW3	Wuwei	NW	102.60 ° E, 38.07 ° N	1.8	170	8.2	52	58	Rural
NW4	Duolun	NW	116.49 ° E, 42.20 ° N	3.4	374	2.4	60	5	Background
NW5	Bayinbuluke	NW	83.71 ° E, 42.88 ° N	2.7	272	-4.3	70	26	Background
SE1	Nanjing	SE	118.85 ° E, 31.84 ° N	2.5	1062	15.7	75	729	Urban
SE2	Baiyun	SE	113.27 ° E, 23.16 ° N	1.8	1748	22.1	77	322	Urban
SE3	Wuxue	SE	115.79 ° E, 30.01 ° N	2.0	1418	17.3	77	469	Rural
SE4	Taojiang	SE	111.97 ° E, 28.61 ° N	1.8	1332	17.1	78	372	Rural
SE5	Fengyang	SE	117.56 ° E, 32.88 ° N	2.6	935	15.4	73	331	Rural
SE6	Zhanjiang	SE	110.33 ° E, 21.26 ° N	2.9	1678	23.2	82	639	Rural
SE7	Fuzhou	SE	119.36 ° E, 26.17 ° N	2.6	1374	20	75	97	Rural
SE8	Fenghua	SE	121.53 ° E, 29.61 ° N	2.4	1408	16.8	79	413	Rural
SE9	Feiyue	SE	113.34 ° E, 28.56 ° N	1.3	1502	16.9	81	228	Background
SE10	Huinong	SE	113.41 ° E, 28.52 ° N	1.3	1502	16.9	81	313	Background
SE11	Xishan	SE	113.31 ° E, 28.61 ° N	1.3	1502	16.9	81	313	Background
SW1	Wenjiang	SW	103.84 ° E, 30.55 ° N	1.4	939	18.6	80	1650	Urban
SW2	Ziyang	SW	104.63 ° E, 30.13 ° N	1.1	945	17.3	80	555	Rural
SW3	Yanting	SW	105.47 ° E, 31.28 ° N	1.2	879	16.4	77	253	Rural
SW4	Jiangjin	SW	106.18 ° E, 29.06 ° N	1.3	855	16.4	77	383	Rural
SW5	Dianchi	SW	102.67 ° E, 24.97 ° N	2.1	991	15.1	72	858	Rural
SW6	Yunnan Agric. University	SW	102.75 ° E, 25.13 ° N	2.1	991	15.1	72	2384	Rural
SW7	Kunyang	SW	102.61 ° E, 24.67 ° N	2.3	903	16.3	75	204	Background
TP1	Xining	TP	101.79 ° E, 36.62 ° N	1.5	387	6	56	2167	Urban
TP2	Linzhi	TP	94.36 ° E, 29.65 ° N	1.7	673	8.9	63	5	Background

481 ^aSee Sect. S2 in the online supplement for the details of all the sampling sites in the network.

482 ^bThere were no mean annual meteorological data for the forty-three monitoring sites; the surface climate parameters presented (1961-2012) were
483 obtained from the nearest meteorological observation stations available on the China Meteorological Data Sharing Services website
484 (<http://cdc.gov.cn/>).

485 ^c The population density was estimated by dividing population by area of the town/district/county where the monitoring site is located.

486 Population data were sourced from the sixth census of China in 2010 and can be accessed online (<http://www.stats.gov.cn>).

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

Table S2. Monitoring periods for atmospheric N deposition and types of underlying surface at the forty-three sites in China.

Site Code	Site Name	Monitoring period		Underlying surface
		Dry deposition	Wet deposition	
NC1	China Agric. University	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
NC2	Beijing Normal University	Oct. 2013-Sep. 2014	Jan. 2012-Sep. 2014	Roof
NC3	Zhengzhou	May. 2010-Sep. 2014	Jan. 2010-Dec. 2011	Vegetations
NC4	Dongbeiwang	Aug. 2006-Sep. 2008	Aug. 2006-Sep. 2008	Vegetations
NC5	Shangzhuang	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
NC6	Baoding	Jan. 2011-Dec. 2011	Jan. 2011-Dec. 2011	Vegetations
NC7	Quzhou	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
NC8	Yangqu	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
NC9	Zhumadian	Apr. 2010-Sep. 2014	Jan. 2011-Sep. 2014	Vegetations
NC10	Yangling	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
NC11	Yucheng	Sep. 2012-Sep. 2014	Jan. 2013-Sep. 2014	Vegetations
NC12	Lingshandao	Feb. 2011-Sep. 2014	Feb. 2011-Sep. 2014	Vegetations
NC13	Changdao	Sep. 2010-Sep. 2014	Sep. 2010-Sep. 2014	Vegetations
NE1	Dalian	Sep. 2010-Sep. 2014	Sep. 2010-Sep. 2014	Vegetations
NE2	Gongzhuling	Jul. 2010-Sep. 2014	Jul. 2010-Sep. 2014	Vegetations
NE3	Lishu	Jul. 2010-Sep. 2014	Jul. 2010-Sep. 2014	Vegetations
NE4	Wuyin	Oct. 2010-Sep. 2011	Oct. 2010-Sep. 2011	Vegetations
NE5	Genhe	Oct. 2010-Sep. 2011	Oct. 2010-Sep. 2011	Vegetations
NW1	Shengdisuo	Sep. 2009-Dec. 2011	Sep. 2009-Aug. 2010	Vegetations

NW2	Tufaisuo	Sep. 2009-Dec. 2011	Sep. 2009-Aug. 2010	Vegetations
NW3	Wuwei	Oct. 2010-Sep. 2014	Oct. 2010-Sep. 2014	Vegetations
NW4	Duolun	Jul. 2013-Sep. 2014	Jan. 2010-Sep. 2014	Grass
NW5	Bayinbuluke	May. 2010-Aug. 2011	Nov. 2010-Jun. 2012	Grass
SE1	Nanjing	Sep. 2010-Feb. 2012	Sep. 2010-Feb. 2012	Vegetations
SE2	Baiyun	May. 2010-Sep. 2014	May. 2010-Sep. 2014	Roof
SE3	Wuxue	Aug. 2011-Sep. 2014	Aug. 2011-Sep. 2014	Roof
SE4	Taojiang	Oct. 2010-Sep. 2014	Jan. 2011-Sep. 2014	Roof
SE5	Fengyang	Feb. 2013-Sep. 2014	Oct. 2013-Sep. 2014	Vegetations
SE6	Zhanjiang	Aug. 2010-Sep. 2014	Jan. 2013-Sep. 2014	Vegetations
SE7	Fuzhou	Apr. 2010-Sep. 2014	Apr. 2010-Sep. 2014	Vegetations
SE8	Fenghua	Aug. 2010-Sep. 2014	Jan. 2011-Sep. 2014	Vegetations
SE9	Feiyue	Sep. 2010-Sep. 2014	Sep. 2010-Sep. 2014	Vegetations
SE10	Huinong	Sep. 2010-Sep. 2014	Sep. 2010-Sep. 2014	Vegetations
SE11	Xishan	Sep. 2010-Sep. 2014	Sep. 2010-Sep. 2014	Vegetations
SW1	Wenjiang	Oct. 2010-Sep. 2014	Jan. 2011-Sep. 2014	Vegetations
SW2	Ziyang	Jul. 2010-Sep. 2014	Jan. 2011-Sep. 2014	Vegetations
SW3	Yanting	May. 2011-Oct. 2013	May. 2011-Dec. 2012	Vegetations
SW4	Jiangjin	Jan. 2013-Sep. 2014	Jan. 2013-Sep. 2014	Vegetations
SW5	Dianchi	Apr. 2009-Mar. 2010	Apr. 2009-Mar. 2010	Vegetations
SW6	Yunnan Agric. University	Apr. 2009-Mar. 2010	Apr. 2010-Mar. 2010	Vegetations
SW7	Kunyang	Apr. 2009-Mar. 2010	Apr. 2009-Mar. 2010	Vegetations
TP1	Xining	Dec. 2013-Nov. 2014	Dec. 2013-Nov. 2014	Vegetations

TP2	Linzhi	Jan. 2009-Dec. 2009	Jan. 2009-Dec. 2009	Vegetations
505				
506				
507				
508				
509				
510				
511				
512				
513				
514				
515				

516 **Table S3.** Statistics of monthly mean dry deposition velocities of N_r species for the
 517 three land use types, basing on the modeled hourly values at the forty-three sites from
 518 January 2010 to May 2013^a.

Land use type		Monthly mean deposition velocities (cm s ⁻¹)				
		NH ₃	NO ₂	HNO ₃	pNH ₄ ⁺	pNO ₃ ⁻
Urban	N	410	410	410	410	410
	Min	0.30	0.01	0.12	0.06	0.06
	Max	1.63	0.44	5.78	0.35	0.35
	Mean	0.45	0.12	1.22	0.17	0.17
	Median	0.34	0.10	1.15	0.17	0.17
	SD	0.29	0.10	1.00	0.07	0.07
Rural	N	902	902	902	902	902
	Min	0.09	0.01	0.05	0.07	0.07
	Max	1.10	0.46	5.78	0.37	0.37
	Mean	0.40	0.17	1.49	0.18	0.18
	Median	0.35	0.16	1.49	0.18	0.18
	SD	0.16	0.12	1.10	0.06	0.06
Background	N	451	451	451	451	451
	Min	0.20	0.01	0.06	0.05	0.05
	Max	1.48	0.57	8.88	0.31	0.31
	Mean	0.47	0.17	1.78	0.16	0.16
	Median	0.43	0.13	1.48	0.16	0.16
	SD	0.22	0.15	1.66	0.06	0.06

519 ^a The forty-three sites consist of 10 urban, 22 rural and 11 background sites. Among
 520 the forty-three monitoring sites, 20 farmland, 5 coastal, 6 forest and 2 grassland sites
 521 were included in the rural and background sites.

522

523

524

525

526

527

528

529

530

531

532

Table S4. Comparison of annual deposition velocities of nitrogen compounds on different land use types in this study with literature.

Land use type	Country	Deposition velocity (cm s ⁻¹)					References
		NH ₃	NO ₂	HNO ₃	pNH ₄ ⁺	pNO ₃ ⁻	
Farmland	China	0.40 (0.06)	0.18 (0.08)	1.52 (0.72)	0.19 (0.03)	0.19 (0.03)	This study
		0.26	0.12	0.81	0.16	0.16	Zhu et al. (2010)
		0.74	0.59	2	0.24	0.24	Shen et al. (2009)
		0.13	0.23	—	—	—	Yang et al. (2010)
		0.18	0.10	0.76	—	0.25	Zhang et al. (2004)
		0.71	0.05	—	—	—	Pan et al. (2012)
	West Africa	0.23-0.42	0.20-0.35	0.63-0.73	—	—	Delon et al. (2012)
	Britain	—	0.16	2.06	0.10	0.26	Marner and Harrison. (2004)
	Europe	0.35-0.75	0.05-0.20	0.8-1.0	0.11-0.20	0.10-0.25	Flechard et al. (2011)
Urban	China	0.45 (0.27)	0.12 (0.06)	1.25 (0.57)	0.17 (0.04)	0.17 (0.04)	This study
		0.78	0.06	—	—	—	Pan et al. (2012)
		0.28	0.07	1.77	0.44	0.44	Li et al. (2013)
		0.50	0.60	1.1	0.24	0.24	Luo et al. (2013)
	Greece	0.81	0.26	2.4	0.1	0.2	Anatolaki et al. (2007)
	Britain	—	0.08	7.27	1.02	1.78	Marner and Harrison. (2004)
	China	0.65 (0.26)	0.16 (0.11)	1.56 (0.54)	0.13 (0.03)	0.13 (0.03)	This study
		—	—	—	0.6	1.15	Zhang et al. (2007)
		0.63	0.00534	0.63	—	—	Zhang et al. (2010)
		0.55	0.01	0.84	0.27	0.27	Zhang et al. (2004)
		—	—	—	0.019	0.088	Qi et al. (2013)

536

537 **Table S4 (continued)**

Land use type	Country	Deposition velocity (cm s ⁻¹)					References
		NH ₃	NO ₂	HNO ₃	pNH ₄ ⁺	pNO ₃ ⁻	
Forest	China	0.41 (0.05)	0.19 (0.05)	2.23 (1.28)	0.16 (0.01)	0.16 (0.01)	This study
		0.1	0.05	—	—	—	Pan et al. (2012)
		0.20	0.09-0.11	2.43-2.46	0.27-0.33	0.27-0.33	Zhang et al. (2004)
	Belgium	1.1-2.9	0.25	—	—	—	Staelen et al. (2012)
	Switzerland	2.2-3.0	0.3-0.4	1.5	0.2-0.4	0.2-0.4	Schmitt et al. (2005)
	Britain	—	0.26	7.27	1.02	1.78	Marner and Harrison. (2004)
Grassland	Europe	0.75-2.4	0.06-0.28	2.3-4.4	0.2-2.0	0.2-2.5	Flechard et al. (2011)
		0.78 (0.002)	0.15 (0.01)	1.09 (0.26)	0.194 (0.002)	0.194 (0.002)	This study
		0.23	0.13	1.16	0.28	0.28	Zhang et al. (2004)
	China	1.1	0.25	—	—	—	Staelen et al. (2012)
		—	0.16	1.39	0.06	0.15	Marner and Harrison. (2004)
		—	0.05-0.25	1.1-1.2	0.12-0.14	0.11-0.19	Flechard et al. (2011)
All land uses	The United States	0.65	0.36	2.70	0.15	0.15	Zhang et al. (2012)

538 Values in the parentheses are standard deviations of annual mean deposition velocities at sampling sites with the same land use type.

539 **References**

- 540 Anatolaki, Ch. and Tsitouridou, R.: Atmospheric deposition of nitrogen, sulfur and chloride in Thessaloniki, Greece, *Atmos. Res.*, 85, 413–428,
541 doi:10.1016/j.atmosres.2007.02.010, 2007.
- 542 Delon, C., Galy-Lacaux, C., Adon, M., Lioussse, C., Serca, D., Diop, B., and Akpo, A.: Nitrogen compounds emission and deposition in West

- 543 African ecosystems: comparison between wet and dry savanna, *Biogeosciences.*, 9, 385–402, doi:10.5194/bg-9-385-2012, 2012.
- 544 Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A.T., Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and
545 Sutton, M. A.: Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope
546 network, *Atmos. Chem. Phys.*, 11, 2703–2728, doi:10.5194/acp-11-2703-2011, 2011.
- 547 Li, K. H., Liu, X. J., Song, W., Chang, Y. H., Hu, Y. K., and Tian, C. Y.: Atmospheric Nitrogen Deposition at Two Sites in an Arid Environment
548 of Central Asia, *PloS ONE*, 8, e67018, doi: 10.1371/journal.pone.0067018, 2013.
- 549 Luo, X. S., Liu, P., Tang, A. H., Liu, J. Y., Zong, X. Y., Zhang, Q., Kou, C. L., Zhang, L. J., Fowler, D., Fangmeier, A., Christie, P., Zhang, F. S.,
550 and Liu, X. J.: An evaluation of atmospheric N_r pollution and deposition in North China after the Beijing Olympics, *Atmos. Environ.*, 74,
551 209–216, doi:10.1016/j.atmosenv.2013.03.054, 2013.
- 552 Marner, B. B. and Harrison, R. M.: A spatially refined monitoring based study of atmospheric nitrogen deposition, *Atmos. Environ.*, 38,
553 5045–5056, doi:10.1016/j.atmosenv.2004.06.016, 2004.
- 554 Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China, *Atmos. Chem.*
555 *Phys.*, 12, 6515–6535, doi:10.5194/acp-12-6515-2012, 2012.
- 556 Qi, J. H., Shi, J. H., and Gao, H. W.: Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in
557 coastal region of the Yellow Sea, China, *Atmos. Environ.*, 81, 600–608, doi:10.1016/j.atmosenv.2013.08.022, 2013.
- 558 Schmitt, M., Thöni, L., Waldner, P., and Thimonier, A.: Total deposition of nitrogen on Swiss long-term forest ecosystem research (LWF) plots:
559 comparison of the throughfall and the inferential method, *Atmos. Environ.*, 39, 1079–1091, doi:10.1016/j.atmosenv.2004.09.075, 2005.
- 560 Shen, J. L., Tang, A. H., Liu, X. J., Fangmeier, A., Goulding, K. T. W., and Zhang, F. S.: High concentrations and dry deposition of reactive
561 nitrogen species at two sites in the North China Plain, *Environ. Pollut.*, 157, 3106–3113, doi:10.1016/j.envpol.2009.05.016, 2009.
- 562 Staelens, J., Wuyts, K., Adriaenssens, S., Avermaet, P. V., Buysse, H., den Bril, B. V., Roeken, E., Ottoy, J. P., Verheyen, K., Thas, O., and

- 563 Deschepper, E.: Trends in atmospheric nitrogen and sulphur deposition in northern Belgium, *Atmos. Environ.*, 49, 186–196, doi:
564 10.1016/j.atmosenv.2011.11.065, 2012.
- 565 Yang, R., Hayashi, K., Zhu, B., Li, F., and Yan, X.: Atmospheric NH₃ and NO₂ concentration and nitrogen deposition in an agricultural
566 catchment of Eastern China, *Sci. Total. Environ.*, 408, 4624–4632, doi:10.1016/j.scitotenv.2010.06.006, 2010.
- 567 Zhang, L., Jacob, D. J., Knipping, E.M., Kumar, N., Munger, J. W., Carouge, C. C., van Donkelaar, A., Wang, Y. X., and Chen, D.: Nitrogen
568 deposition to the United States: distribution, sources, and processes, *Atmos. Chem. Phys.*, 12, 4539–4554, doi:10.5194/acp-12-4539-2012,
569 2012.
- 570 Zhang, G., Zhang, J., and Liu, S. M.: Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring
571 sites over Yellow Sea and East China Sea, *J. Atmos. Chem.*, 57, 41–57, doi:10.1007/s10874-007-9060-3, 2007.
- 572 Zhang, Y., Wang, T. J., Hu, Z. Y., and Xu, C. K.: Temporal variety and spatial distribution of dry deposition velocities of typical air pollutants
573 over different landuse types, *Climatic Environ. Res.*, 9, 591–604, 2004 (in Chinese with English abstract).
- 574 Zhang, Y., Yu, Q., Ma, W. C., and Chen, L. M.: Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to
575 marine biogeochemistry, *J. Geophys. Res.*, 115, 1-10, doi:10.1029/2009JD012814, 2010.
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584

585

586

587

Table S5. Emission inventory of NH₃ and NO_x for thirty-three provinces as well as the six regions of China in 2010 (kt)

Region	Site	Area ($\times 10^3 \text{km}^2$)	NH ₃ (kt)	NO _x (kt)
North China	Beijing	16.4	61.5	389.2
	Tianjin	11.9	48.4	731.3
	Hebei	188.8	904.1	1685.2
	Shandong	187.1	1027.2	1941.8
	Shanxi	156.7	322.5	779.7
	Henan	167.0	1165.4	1140.0
	Shaanxi	205.8	281.5	452.1
	Total	933.8	3810.5	7120.2
Northeast China	Liaoning	148.0	340.4	1021.6
	Jilin	190.2	329.4	474.5
	Heilongjiang	437.0	465.9	716.5
	Total	612.1	1135.8	2212.6
Northwest China	Xinjiang	1660	374.2	308.9
	Inner Mongolia	1183	380.2	660.0

	Ningxia	66.4	73.9	177.0
	Gansu	453.7	199.0	374.4
	Total	3363.1	1027.2	1520.3
Southeast China	Shanghai	6.3	55.0	1091.2
	Jiangsu	102.6	806.3	1557.0
	Zhejiang	101.8	346.6	1199.8
	Anhui	140.3	631.9	768.1
	Hubei	185.9	668.2	783.5
	Hunan	211.8	742.6	566.2
	Jiangxi	166.9	461.3	439.7
	Fujian	124.0	288.9	439.4
	Guangdong	179.8	618.1	1382.1
	Hong Kong & Macau	1.1	6.7	251.2
	Taiwan	36.2	120.0	431.9
	Hainan	35.4	92.0	89.7
	Total	1254.8	4838.8	8962.7
Southwest China	Sichuan	485.0	925.4	650.1

	Chongqing	82.4	254.3	296.4
	Guizhou	176.2	465.5	312.9
	Yunan	390.0	700.0	453.1
	Guangxi	236.7	547.8	399.5
	Total	1370.3	2893.1	2112.0
Tibetan plateau	Tibet	1200.0	172.2	85.2
	Qinghai	722.3	121.6	85.0
	Total	1922.3	293.8	170.2

588 The emission data of NO_x and NH₃ for the year 2010 are from the **GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies)**
 589 Model (available online: <http://www.iiasa.ac.at/>)

590

591

592