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Abstract. Black carbon aerosol (BC) deposited to the Arc-

tic sea ice or present in the free troposphere can significantly

affect the Earth’s radiation budget at high latitudes yet the

BC burden in these regions and the regional source con-

tributions are poorly constrained. Aircraft measurements of

aerosol composition in the European Arctic were conducted

during the Aerosol–Cloud Coupling And Climate Interac-

tions in the Arctic (ACCACIA) campaign in March 2013.

Pollutant plumes were encountered throughout the lower

to upper Arctic troposphere featuring enhancements in CO

and aerosol mass loadings, which were chemically speci-

ated into BC and non-refractory sulphate and organic matter.

FLEXPART-WRF simulations have been performed to eval-

uate the likely contribution to the pollutants from regional

ground sources. By combining up-to-date anthropogenic and

open fire biomass burning (OBB) inventories, we have been

able to compare the contributions made to the observed pol-

lution layers from the sources of eastern/northern Asia (AS),

Europe (EU) and North America (NA). Over 90 % of the

contribution to the BC was shown to arise from non-OBB

anthropogenic sources.

AS sources were found to be the major contributor to

the BC burden, increasing background BC loadings by a

factor of 3–5 to 100.8± 48.4 ng sm−3 (in standard air m3

at 273.15 K and 1013.25 mbar) and 55.8± 22.4 ng sm−3 in

the middle and upper troposphere respectively. AS plumes

close to the tropopause (about 7.5–8 km) were also observed,

with BC concentrations ranging from 55 to 73 ng sm−3,

which will potentially have a significant radiative impact. EU

sources influenced the middle troposphere with a BC mean

concentration of 70.8± 39.1 ng sm−3 but made a minor con-

tribution to the upper troposphere due to the relatively high

latitude of the source region. The contribution of NA was

shown to be much lower at all altitudes with BC mean con-

centration of 20 ng sm−3. The BC transported to the Arctic

is mixed with a non-BC volume fraction representing be-

tween 90–95 % of the mass, and has a relatively uniform core

size distribution with mass median diameter 190–210 nm and

geometric standard deviation σg = 1.55–1.65 and this varied

little across all source regions. It is estimated that 60–95 %

of BC is scavenged between emission and receptor based on

BC /1CO comparisons between source inventories and mea-

surement.

We show that during the springtime of 2013, the anthro-

pogenic pollution particularly from sources in Asia, con-

tributed significantly to BC across the European Arctic free

troposphere. In contrast to previous studies, the contribution

from open wildfires was minimal. Given that Asian pollution

is likely to continue to rise over the coming years, it is likely
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that the radiative forcing in the Arctic will also continue to

increase.

1 Introduction

The Arctic is one of the most sensitive regions in the world

to climate change (IPCC, 2014). It is warming more rapidly

than anywhere else on Earth and is subject to various forcing

and feedback processes such as black carbon deposition and

albedo reduction (Flanner et al., 2007), increase of low-level

atmospheric heating over high albedo surfaces (Pueschel and

Kinne, 1995) and the increase of cloud longwave emissiv-

ity (Garret and Zhao, 2006). The Arctic Haze phenomenon

in springtime has been regularly reported and is associated

with high levels of gaseous and aerosol air pollutants (e.g.

Greenaway, 1950). The low surface temperature and the di-

abatic cooling in the Arctic region during winter and early

spring can lead to a thermally stable stratification – the so

called Arctic Dome (Klonecki et al., 2003), where the inver-

sion layer tends to trap the pollutants and form a barrier at

the top of the atmospheric surface layer.

Although black carbon (BC) is a relatively small mass

fraction of aerosol in the Arctic compared to organic mat-

ter and sulphate (Quinn et al., 2002), it affects the radia-

tive balance by efficient absorption of shortwave radiation

in the free troposphere (Bond et al., 2013) as well as its

deposition on the snow, which decreases the surface albedo

and promotes melting (Hansen and Nazarenko, 2004). Mea-

surements of BC in the past decade have been intensively

conducted at various Arctic surface stations including many

long-term studies (e.g. Polissar et al., 1999; Sharma et al.,

2004, 2006; Stohl et al., 2007; Shaw et al., 2010; Yttri et al.,

2014). In these studies, BC from polluted regions was consis-

tently observed to be transported from outside of the Arctic

and built up in the Arctic boundary layer during winter and/or

spring time. Anthropogenic fossil fuel (FF) sources have long

been recognized as sources of BC transported to the Arctic

(e.g. Quinn et al., 2002; Koch and Hansen, 2005; Law and

Stohl, 2007), but the important contributions of open biomass

burning (OBB) sources such as agriculture and boreal forest

fires have also been reported (e.g. Reid et al., 2005; Quinn et

al., 2007, and references therein). The overall relative impor-

tance of FF and OBB influences is currently uncertain.

Surface measurements of aerosols are however not nec-

essarily representative of the overall troposphere, and this is

particularly the case for the Arctic because of the strong strat-

ification (Klonecki et al., 2003). The BC transported to the

Arctic free troposphere may have been transported through

a different route compared to the BC in the boundary layer

and the high-altitude troposphere is more likely to be influ-

enced by the sources further south (Koch and Hansen, 2005;

Stohl, 2006; Hirdman et al., 2010). The emissions in East-

ern/Northern Asia have grown rapidly in the past 2 decades

and many studies have pointed out that this region may have

a significant impact on the Arctic BC concentration in late

winter and early spring time, especially in the free tropo-

sphere (Koch and Hansen, 2005; Shindell et al., 2008; Wang

et al., 2011; Shaw et al., 2010; Frossard et al., 2011). The

meridional transport to the Arctic during springtime could

also be important (Shaw et al., 2010; Marelle et al., 2015;

Raatikainen et al., 2015). This long-range transport may be

facilitated by warm conveyor belts (WCBs) (Eckhardt et al.,

2004) when air parcels can be vertically uplifted in the free

troposphere before being transported to the Arctic (Koch and

Hansen, 2005; Stohl, 2006).

The impact of open biomass burning sources in BC con-

centrations in the Arctic has been increasingly emphasized

during the recent ARCTAS (Jacob et al., 2010) and AR-

CPAC (Brock et al., 2011) campaigns in springtime 2008.

The intensive agricultural burning in Eastern Europe (Stohl

et al., 2007) as well as the boreal forest fires in Siberia (e.g.

Warneke et al., 2009) largely contributed to the Arctic BC

burden in the 2008 Arctic springtime. These sources are at

high-latitude locations and thus their emissions tend to fol-

low low-level quasi-isentropic transport to the Arctic and in-

fluence the Arctic lower/middle troposphere (Stohl, 2006).

Compared to the lower-latitude sources, these sources had

likely undergone less wet scavenging. The OBB plumes ob-

served in these studies were throughout the lower to higher

Alaskan Arctic troposphere, featuring with higher loadings

of particulate organic matter than sulphate (e.g. Brock et al.,

2011; Warneke et al., 2009; Matsui et al., 2011). These stud-

ies all consistently reported the BC from the remote Asian

fossil fuel sources were significantly scavenged (e.g. Stohl,

2006; Matsui et al., 2011), and hereinafter concluded a more

significant influence of OBB sources than fossil fuel for that

time of the year.

The concentration of BC in the Arctic is poorly repre-

sented by models (Quinn et al., 2007; Koch et al., 2009,

and references therein). It has been widely reported that the

measured vertical BC profiles in the Arctic show large di-

versity among models but almost all models underestimate

BC throughout the lower and middle troposphere (e.g. Lee

et al., 2013, and references therein), whereas some of the

models overestimate BC in the upper troposphere and lower

stratosphere (Koch et al., 2009). Many models show the scav-

enging parametrization could fundamentally lead to model

bias. A seasonal variation in the wet scavenging mecha-

nism (e.g. J. Liu et al., 2011; Bourgeois and Bey, 2011;

Browse et al., 2012; Hodnebrog et al., 2014; Myhre and

Samset, 2015) has shown considerably improved compari-

son with measurements by extending the lifetime of BC in

the spring/wintertime, largely because during the cold sea-

son ice clouds result in a less efficient nucleation scaveng-

ing efficiency compared to warm clouds. An extended BC

lifetime in cold seasons and a seasonally dependent BC re-

moval system are thus suggested for these models. However

to extend the BC lifetime may at the same time exacerbate
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model overestimates of BC mass at higher altitudes (Lund

and Berntsen, 2012). The scavenging mechanism of BC is

source and meteorologically dependent at different levels of

Arctic troposphere and improved understanding of BC scav-

enging efficiency is desired to evaluate model outputs.

Aircraft measurements of aerosol and gaseous pollutants

including BC, sulphate, organic matter and CO were con-

ducted during the Aerosol–Cloud Coupling And Climate In-

teractions in the Arctic (ACCACIA) campaign in spring-

time 2013. Plumes from Eastern/Northern Asia, Europe and

North America were encountered at different levels in the

European Arctic troposphere. Lagrangian dispersion mod-

els combined with up-to-date emission inventories are used

to evaluate the source origins for the observed plumes. The

statistics of plumes and vertical profiles under classified

source regions are analysed to determine the influences of

different source regions as a function of altitude throughout

the Arctic troposphere. Finally, the scavenging efficiency of

BC is estimated by comparing the inventory and measured

BC / excess CO ratio.

2 Measurements

The flights took place during March–April 2013 as part of

the Aerosol–Cloud Coupling And Climate Interactions in

the Arctic (ACCACIA) project. The measurements described

here were made using the UK Facility for Airborne Atmo-

spheric Measurements (FAAM), a BAe-146 aircraft, in the

region between continental Norway and Svalbard. A number

of straight level runs (SLRs) and vertical profiles were per-

formed for each flight. Figure 1 shows the flight tracks during

the campaign.

The physical properties of individual refractory BC parti-

cles (rBC, as defined by Petzold et al., 2013) were charac-

terized using a single particle soot photometer (SP2) man-

ufactured by DMT Inc (Boulder, CO, USA). The instru-

ment operation and data interpretation procedures of the

specific Manchester SP2 instrument have been described

elsewhere (Liu et al., 2010; McMeeking et al., 2010). The

SP2 incandescence signal was calibrated for BC mass using

Aquadag® black carbon particle standards (Aqueous Defloc-

culated Acheson Graphite, manufactured by Acheson Inc.,

USA) and corrected for ambient BC with a factor of 0.75

(Baumgardner et al., 2012). An rBC spherical equivalent core

diameter (Dc) can be derived from the rBC mass and a coat-

ing thickness (the ratio of the particle diameter, Dp, to the

core diameter, Dp/Dc) may be estimated for each particle

containing BC assuming a complete and concentric cover-

ing of the core. The methodology to determine the Dp/Dc is

detailed in Taylor et al. (2015) and Liu et al. (2014): the mea-

sured scattering cross section of coated BC was derived using

a prescribed Mie look up table at the SP2 operational wave-

length λ= 1064 nm using a core refractive index 2.26−1.26i

and coating refractive index 1.50+0i, and the uncertainty of
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Figure 1. Flight tracks during ACCACIA spring campaign.

the derived Dp/Dc due to particle geometry is < 6 % (Liu et

al., 2015).

The chemical composition of non-refractory PM1 was

measured by an Aerodyne C-ToF aerosol mass spectrometer

(AMS). A detailed description of the instrument can be found

elsewhere (Drewnick et al., 2005). A time- and composition-

dependent collection efficiency (CE) was applied to the data

based on the algorithm by Middlebrook et al. (2012). It

is noted that most atmospheric BC particles contain non-

absorbing material as a result of co-emission of either the

particulate matter or its precursors. This additional material

will be observed by the AMS. BC particles with little asso-

ciated non-absorbing material may bounce and result in a re-

duced CE but the fraction of the non-refractory mass mixed

with BC is small relative to the total non-refractory mass,

and is therefore unlikely to affect the reported AMS mass

loadings. An AMS-SMPS volume comparison could not be

performed as we have found that the SMPS concentrations

at altitude are incorrect, possibly due to an inaccuracy in the

assumed charge distribution during inversion (Sakamoto et

al., 2015; López-Yglesiasand and Flagan, 2013). The AMS

was calibrated using mono-disperse ammonium nitrate par-

ticles. All of the SP2 and AMS measured concentrations

are reported as mass concentrations at standard temperature

and pressure (STP, 273.15 K and 1013.25 mbar), denoted by

sm−3. Data are missing from some flights due to a malfunc-

tion of the logging computer.

Carbon monoxide was measured by an Aero-

Laser AL5002 VUV resonance fluorescence gas analyser,

and TECO 49 UV photometric ozone instrument measured

O3. In-flight CO calibrations were applied to the raw CO

www.atmos-chem-phys.net/15/11537/2015/ Atmos. Chem. Phys., 15, 11537–11555, 2015
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Figure 2. A typical example of (a) PES and (b) FPES from FLEXPART simulation from flight B759.

data. The background concentrations of CO were defined

as the lowest 5th percentiles (Koike et al., 2003) for all of

the data collected during the campaign. Because some of

the flights in this study had reached high altitudes close to

the tropopause, the CO background concentrations were

derived as a function of altitude, as shown in the Supplement

(Fig. S1). The significantly lower CO background corre-

sponding with an enhancement of O3 at about 6 km may

suggest a stratospheric intrusion (Thomas et al., 2013). The

altitude-dependent CO background (Fig. S1d) is therefore

used to calculate the excess CO relative to the background

(1CO). This method produces consistent 1CO among

flights when the sampled air masses were not significantly

influenced by recognized source regions (Fig. S4b1). A

background concentration of zero was assumed for BC

(Matsui et al., 2011).

3 Model simulations

In this study, a Lagrangian particle dispersion model (FLEX-

PART) is applied to characterize the origin of the sampled

air masses up to 12 days backward. In addition, the HYS-

PLIT backward trajectory model was used to interrogate

the meteorological history through the pollutant transporta-

tion pathways. The back trajectories will be subject to in-

creased model integration error when backward modelling

time exceeds 5–6 days, leading to uncertainties when as-

signing the meteorological information to the back trajectory

path, meaning that sources can only be assigned on continen-

tal scales.

3.1 FLEXPART-WRF

The Lagrangian particle dispersion model FLEXPART-WRF

(Brioude et al., 2013), adapted from the FLEXPART model

(version 6.2, Stohl et al., 2005) was used in a back-

ward mode to characterize the origin of the sampled air

masses. FLEXPART-WRF was driven by WRF meteoro-

Figure 3. Source regions defined in this study.

logical forecasts and a new simulation was initialized each

time the aircraft position changed by more than 0.20◦ in

latitude/longitude or 250 m vertically. For each simulation,

20 000 particles were released in a volume 50× 50 km (hor-

izontally) and 500 m (vertically), particles were tracked

12 days backward in time. The primary output of FLEX-

PART backward calculations is the potential emission sen-

sitivity (PES) which expresses the residence time of parti-

cles at a given location and is used to characterize the trans-

port pathways of the sampled air masses. A further extrac-

tion of the lowest model layer, i.e. integrated on the 0–500 m

layer, termed as the footprint PES (FPES), is used to evaluate

the air mass potential sensitivity to ground sources. Figure 2

gives a typical example of the FLEXPART outputs of PES

and FPES.
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The relative contributions to the sampled air masses from

different ground sources can be attributed by multiplying

the FPES values with the source-specified inventory emis-

sions (in kg m−2 s−1). This study will focus on the BC and

CO source evaluations from both anthropogenic and open

biomass burning (OBB) sources.

We have classified the major recognized ground source re-

gions in the following way: Asia (RAS), Europe (REU), North

America (RNA), Siberia (RSI) and Background Air (RBG), as

shown in Fig. 3. The extent of each region is detailed as fol-

lows:

i. Asia (RAS, 20–50◦ N, 30–145◦ E), including north-

ern/eastern China, Japan and Mongolia.

ii. Europe (REU, 35–70◦ N, 10◦W–30◦ E), corresponding

to the whole of Europe.

iii. North America (RNA, 20–50◦ N, 60–160◦W), including

USA, Canada and Mexico.

iv. Siberia (RSI, 50–70◦ N, 30–180◦ E).

v. The Artic Background air (RBG, 70–90◦ N), which is

without significant continental source contact.

3.2 HYSPLIT backward trajectories

The HYSPLIT 4.0 model (Draxler and Hess, 1998) back tra-

jectories were initiated from the latitude, longitude and alti-

tude of the aircraft every 30 s along the flight path and cal-

culated 14 days backward in time. Horizontal and vertical

wind fields for trajectory calculations were provided by the

1◦× 1◦, 3-hourly GDAS1 reanalysis meteorology (Global

Data Assimilation System; NOAA Air Resources Labora-

tory, Boulder, CO, USA). This also allows retrieval of poten-

tial temperature (θ ) and precipitation rate along each trajec-

tory path. The reported meteorological information extracted

along the trajectory path is averaged over all of the trajecto-

ries along the flight track for the targeting time period.

4 Results

4.1 Air mass origins of pollution plumes

Plumes were encountered at various levels throughout the

Arctic troposphere from 300–8000 m and all plumes were

characterized by enhancements over the average, altitude re-

solved background values of BC, CO, sulphate and organic

matter. The sulphate content was found to be significantly

higher than the organic matter by a factor of 1.5–4. Fig-

ure 4 shows the measurement results and the FPES-derived

air mass origins for the flight B763 (identical information

for the other flights can be found in Fig. S2). Note that the

plumes observed during straight and level runs (SLRs) for

each flight are marked with Roman numerals (as shown on

the flight altitude track in Fig. 4) and were analysed sepa-

rately from the vertical profiles sampled during aircraft as-

cent and descent.

For each FLEXPART-WRF simulation, the FPES was

gridded into the defined source regions (Fig. 3) along each

flight track (Fig. 4a). For each FPES calculation, the air

masses may have passed over multiple source regions (RBG,

RAS, REU, RNA and RSI) as defined in Fig. 3. The air mass

origin is classified as BG when the RBG contributes more

www.atmos-chem-phys.net/15/11537/2015/ Atmos. Chem. Phys., 15, 11537–11555, 2015
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Figure 5.

than 80 % of the grid-integrated total FPES. For the rest of

the cases when RBG contributes less than 80 %, the air mass

origin is then classified according to the relative contribu-

tions of RAS, REU and RNA. The air mass will be classi-

fied as the specified source region if the relative contribution

of any corresponding source region is greater than 60 % of

the total polluted source region contribution, for example if

RAS/(RAS+REU+RNA) is >60 %, the air mass is classified

as AS. In some cases REU and RNA both contributed more

than 40 %, where the air mass was classified as EU+NA.

The RSI is excluded from the air mass classification because

this region was found to make a minor contribution to the

Atmos. Chem. Phys., 15, 11537–11555, 2015 www.atmos-chem-phys.net/15/11537/2015/



D. Liu et al.: The importance of Asia as a source of black carbon to the European Arctic 11543

0.5

0.0

-0.5

0.50.0-0.5

N

30ºN

60ºN

90ºE

0.4

0.3

0.2

0.1

Precipitation(m
m

)
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

N

30ºN

60ºN

90ºE

0.4

0.3

0.2

0.1

Precipitation(m
m

)

-1.0

-0.5

0.0

0.5

1.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

N

60ºN

30ºN

90ºE

10
8
6
4
2
0

FPES(s m
3 kg

-1)

-1.0

-0.5

0.0

0.5

1.0

1.00.50.0-0.5-1.0

N

60ºN

30ºN

90ºE

10
8
6
4
2
0

FPES(s m
3 kg

-1)

D1 D2

E1 E2
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B759 15:15–15:45 respectively. Each backward trajectory is coloured by precipitation along the pathway and the open circles with numbers

in panels (a2), (b2) and (c2) mark the time backwards along the trajectory in 1-day intervals.

ground sources during the time of the year according to the

inventories (Sect. 4.2). This is supported by the observation

that for most of the flights the contribution of RSI to total

FPES is not important (top panels in Fig. S2).

Figure 5 shows typical examples of FLEXPART-WRF

FPES and the corresponding HYSPLIT backward trajecto-

ries for the plumes with each defined air mass origin. Be-

cause of the good consistency between FLEXPART and

HYSPLIT model outputs, the plume age since emission can

be estimated by locating the trajectories on the FPES map:

the source emission starts from the backward time when the

trajectories for that particular plume passed over the region

that is most sensitive to the recognized ground sources, i.e.

with the largest FPES values. The number of plumes and ver-

tical profiles for each flight is summarized in Table 1.

4.2 Attribution of plume sources

Figure 6 shows the BC emission inventories as used in this

study. The anthropogenic sources are classified to occur from

the following sectors (Fig. S3): residential (RE), transport

(TR), industry (IN), energy (EN) and Flaring (FL). The RE,

TR, IN and EN are taken from the HTAPv2 0.1◦× 0.1◦ in-

ventory for March 2010, which is the most recent available

anthropogenic inventory, and the FL is from the ECLIPSE

(Evaluating the CLimate and Air Quality ImPacts of Short-

livEd Pollutants) global emission inventory (Stohl et al.,

2015). Comparison between the emissions inventory in 2010

and 2005 shows the BC emissions increase by less than 30 %.

It is to be expected that any differences between 2010 and

2013 will be less than this amount.

The open biomass burning (OBB) inventory is from

FINN v1 (http://bai.acd.ucar.edu/Data/fire/) (Wiedinmyer et

al., 2006) for March 2013. Because the OBB emissions are

based on observed fires, these have significant time variation

and have been computed at 1 hour time resolution. CO emis-

sions are also taken from the equivalent inventories as BC.

The total BC emissions from each region are shown in

Fig. 7. AS is the largest source region for both anthropogenic

and OBB emissions, whereas SI emissions are relatively low

during that time of the year. The residential sector, largely

www.atmos-chem-phys.net/15/11537/2015/ Atmos. Chem. Phys., 15, 11537–11555, 2015
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Table 1. The number of vertical profiles and plumes observed for each flight.

Number of profiles Number of plumes

B759 (20 March 2013) 7AS; 1NA 5AS; 1NA

B760 (21 March 2013) 3AS; 2NA 2AS; 2NA

B761 (22 March 2013) 3EU; 1EU+NA; 1AS 3EU; 1EU+NA; 1NA

B762 (23 March 2013) 6NA 3NA; 1EU

B763 (26 March 2013) 2NA 2AS;1NA

Figure 6. The BC anthropogenic (a) in March 2010 and open fire

(b) emission inventories in March 2013, from HTAPv2 and the

FINN open fire biomass burning inventory respectively. The speci-

fied sectors for anthropogenic sources, i.e. residential activity, trans-

port, industry, energy and flaring are shown in Fig. S3.

domestic solid fuel burning, is the most important contribu-

tor to the total anthropogenic emissions. OBB sources show

significant time variations, with higher OBB emissions from

AS dominating in the first half of the month, and those from

NA increasing during three short periods with high loadings

of enhanced emissions, though these are approximately an
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Figure 7. BC emissions characterized by source region (as defined

in Fig. 2). (a) comparison between different source sectors; (b) the

temporal evolution of OBB sources throughout the experimental pe-

riod. Note for AS, the right axis is used.

order of magnitude smaller than the OBB emissions from

NA.

The anthropogenic and OBB source contributions to the

BC or CO within an air parcel were determined by multi-

plying the FPES by the BC or CO emission inventories at

the same grid resolution (Quennehen et al., 2011, 2012). The

grid-integrated FPES× inventory is interpreted as the total

ground source contributions to the observed plume in the

12 days prior to measurement. The modelled source attribu-

tions (from RE, TR, IN, EN and OBB) of BC and CO for

each plume are summarized in Table S1. The resulting con-

tributing fractions of OBB sources to the total BC and CO are

shown in the 4th and 5th column of Table 2. The plumes with

sources originating from Eastern AS and NA in the first half

of the month had more OBB contributions (Figs. 6b and 7b)

whereas the OBB contribution was weaker when the source

origins were located towards higher latitudes. The overall

Atmos. Chem. Phys., 15, 11537–11555, 2015 www.atmos-chem-phys.net/15/11537/2015/
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Figure 8. Vertical profiles (binned in 200 m altitude) and plumes

classified by air mass origin: the lines show the mean values and+σ

(standard deviation) for data obtained during vertical profiles; the

filled markers denote values derived during plume intercepts along

straight and level runs for (a) rBC mass loading; (b) 1CO; (c) sul-

phate and organic matter. Note there were no sulphate or organic

data available for AS vertical profiles therefore only AS plume in-

formation is shown in panel (c). The horizontal dash lines on each

graph show the bounds of LT/MT/UT.

OBB contribution to BC is 0.2–10 and 0.2–16 % for CO. An-

thropogenic contributions therefore dominate during the ex-

perimental period, which is consistent with the observation

that the particulate sulphate mass was significantly higher

than that of organic matter for all plumes. In particular, flar-

ing sources make a negligible contribution to the BC and CO

loadings (of the order of 102 or 103 magnitude lower than

the other anthropogenic contributions as shown in Table S1).

This is because the plumes in this study were mainly encoun-

tered in the middle or upper troposphere and the resulting

back trajectories show that there was little land contact over

the high-latitude regions where flaring sources are present.

Figure S4 summarizes the plume characteristics and verti-

cal profiles classified by air mass origin, with the mean value

presented in Fig. 8 and Table 2. The data from the plumes

and vertical profiles compare well for the concentrations of

all aerosol and gaseous species, indicating a high level of

consistency between different flights and aircraft locations.

Three altitude ranges have been used to represent the broad

vertical distribution of the pollution layers. These are de-

fined as lower, middle and upper troposphere (LT, MT, UT)

and cover the altitudes 0–2500 m (750–1000 mbar), 2500–

5500 m (500–75 mbar) and 5500–8000 m (350–500 mbar;

Fig. 8). The height of the Arctic boundary layer (ABL) is

determined to be about 200–400 m, based on the lowest po-

tential temperature inversion derived from the aircraft pro-

files. The Arctic tropopause in this study was observed to

be around 7500–8000 m based on analysis of ozone pro-

files. Compared to the BG background air (Table 3), AS

sources show the largest perturbation to the vertical profiles

of BC and 1CO at levels above 2000 m. The AS contribu-

tion to the BC profile was largest in the MT with a value
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Figure 9. Average characteristics of sampled air parcel plumes ar-

riving at receptor locations along 12-day backward trajectory path-

ways. Panels (a) and (b) show the cases for AS plume in the UT

(corresponding to B759 i plume in Table 2) and LT (B760 ii in Ta-

ble 2) respectively. All parameters shown are mean values averaged

over all back trajectories sampled throughout the specified plume.

The bars on the precipitation and potential temperature (θ ) data de-

note the stand deviation±σ of the ensemble of all back trajectories,

and the grey markers on precipitation show the median value. The

grey bars mark the time when the air masses passed over the source

regions according to FPES. The identical plots for the other air mass

regions are shown in Fig. S5.

of 100.8± 48.4 ng sm−3; AS-derived BC plumes close to the

tropopause (at ∼ 7.5–8 km) were also observed with concen-

trations of 55 to 73 ng sm−3. EU air masses significantly in-

fluenced the MT, whereas air masses from the EU region

made only a minor contribution to the UT. NA appears to

only dominate 1CO for altitudes < 2000 m and rBC for a

fraction of the LT. The sulphate concentration was 2–4 times

higher than organic matter, which is consistent with the dom-

inance of anthropogenic sources, though there are other pos-

sible natural sources contributing the Arctic sulphate burden

that may contribute (Fisher et al., 2011).

BC particles show relatively consistent coating thickness

(within 10 %) for different air mass origins (Table 2) with av-

erage Dp/Dc 2.25± 0.55, equivalent to 90–95 % of the vol-

ume of BC containing particles being due to non-refectory

material associated with the BC-core. Although during the

AS-dominated air masses, a slight vertical dependence of

the BC coating thickness was observed with reduced coat-

ing thicknesses occurring at lower altitudes (Fig. S4). Com-

pared to previous observations of lowerDp/Dc in close prox-

imity of sources (1.28–1.65, Liu et al., 2014; D. Liu et al.,

2011), this suggests that the observed BC has been signifi-

cantly aged. The BC size distribution is almost uniform for

AS, EU, and NA influenced air masses with mass median

diameter of 190–210, 190–200, and 180–190 nm with geo-

metric standard deviation σg = 1.55–1.65. The NA showed a

slightly smaller BC MMD.
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Table 3. Average statistics for BC, 1CO, BC Dp/Dc, sulphate, organic mass, and BC /1CO in the lower (LT), middle (MT), and upper

(UT) troposphere during periods when the different source regions dominated. For BC /1CO, both units ng sm−3 ppbv−1 and mg g−1 (in

branket) are presented.

Troposphere Asia Europe North America Background

Levels

BC (ng sm−3)

LTa 32.1± 26.2 21.8± 14.0 13.3± 8.5

MTb 100.8± 48.4 70.8± 39.1 19.9± 13.3

UTc 55.8± 22.4 12.6± 7.0 23.6± 16.7

1CO (ppbv)

LT 14.6± 12.1 17.0± 6.6 10.4± 4.3

MT 28.8± 17.4 24.3± 12.7 16.8± 6.9

UT 32.4± 14.7 25.3± 9.9 19.8± 7.4

BC Dp/Dc

LT 2.03± 0.24 2.25± 0.24 2.21± 0.29

MT 2.16± 0.13 2.21± 0.20 2.33± 0.29

UT 2.21± 0.20 2.28± 0.40 2.24± 0.30

Sulphate (ng sm−3)

LT 870± 255 336± 173

MT 905± 479 445± 213

UT 108± 50 280± 121

Organic (ng sm−3)

LT 235± 83 94.5± 73.0

MT 210± 94 129± 92

UT 97± 53 176± 130

Measured BC /1CO (ng sm−3 ppbv−1) (mg g−1 in branket)

LT 2.25± 0.69 (1.80) 1.16± 0.36 (0.93) 1.82± 0.98 (1.46)

MT 4.22± 1.50 (3.38) 2.79± 1.23 (2.23) 1.26± 0.30 (1.01)

UT 2.01± 1.49 (1.61) 1.03± 0.08 (0.82) 1.33± 0.67 (1.06)

a LT: 0–2500 m, 750–1000 hpa; b MT: 2500–5500 m, 500–750 hpa; c UT: 5500–8000 m, 350–500 hpa.

4.3 The transport mechanisms of air parcels

The transport pathways of pollutants to different Arctic al-

titudes may vary. To investigate this, HYSPLIT back trajec-

tories from plumes intercepted within the Arctic LT and the

UT are investigated separately, as shown in Fig. 9. For each

plume, physical properties including altitude, ambient pres-

sure, latitude, precipitation, potential temperature (θ ), are

averaged over all back trajectories during the plume dura-

tion. The light-grey shading in Fig. 9 marks the region along

the trajectory when trajectories passed over the region with

the most sensitivity to the ground sources as derived from

the FPES. The total precipitation experienced by an average

plume (as given in Table 2) is the accumulated average pre-

cipitation along the trajectory pathway from the source emis-

sion to when the plume was observed, and the uncertainty is

given by the propagation of the uncertainties of average pre-

cipitation along the trajectory pathway.

As Figs. 9 and S5 show, the sources of the UT plumes were

located between 30–40◦ N whereas the sources of LT plumes

were at 50–60◦ N. The lower-latitude source regions have po-

tential temperatures that are 15–20 K higher than those of the

plumes from higher-latitude sources. The pollution plumes

observed in the Arctic UT had experienced rapid vertical as-

cent, for example, plumes from AS and EU experienced ver-

tical ascent of 4–5 km within 1–2 days; similar ascents rates

were also observed for NA-influenced air masses but the as-

cent was typically over a lower altitude (∼ 2 km vertically).

Ascent of sampled polluted air masses which arrived in the

Arctic LT also occurred, however to a much lesser extent

and on a longer timescale. Due to the close proximity of the

Arctic for the higher-latitude source, the air parcel has been
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transported on a shorter timescale compared to lower-latitude

sources.

Back trajectories of air masses from lower-latitude sources

arriving as plumes in the UT show an increase of θ at the

source during ascent of the air shortly after passing over the

source region. This increase of θ is about 5 K for all air

parcels arriving in the Arctic UT from all source regions,

however there are increased uncertainties in determining θ

from the model when the trajectory extends further back-

ward in time. The increase of θ along with rapid, eastward

and poleward ascent of air masses in the mid-latitudes in-

dicates ascent to be associated with warm conveyor belts

(WCBs) (Eckhardt et al., 2004), although the vertical in-

creases in θ in our study are lower than previous work

(30–40 K, Matsui et al., 2011) investigating mid-latitude air

masses transported to the Arctic. In contrast to the transport

of UT plume sources, the observed plumes arriving in the

Arctic LT arising from high-latitude pollution sources have

a lower latitudinal θ gradient and there was no obvious ver-

tical increase of θ observed for these sources. For plumes

arriving in both LT and UT, the air mass ascent was fol-

lowed by a smooth decrease in potential temperature. For

EU-influenced air masses, which represent the highest lati-

tude anthropogenic sources, the change of θ was minor, sug-

gesting the transport tends to be quasi-isentropic. The rapid

ascent of lower-latitude sources was shown to be associated

with heavier precipitation and increased relative humidity,

compared to air parcels from higher-latitude source regions

with lower precipitations.

4.4 The scavenging of BC particles

During transport, particularly during uplift, it can be ex-

pected that a significant fraction of particles are removed

through scavenging and subsequent precipitation. This is an

important process to quantify, as models show high sensi-

tivity to this (e.g. Mann et al., 2014). The extent of this is

estimated by comparing the particle concentrations with CO.

CO is not removed by precipitation and is not significantly

removed by gas phase oxidation on timescales equivalent

to transport from the source regions to the Arctic (within

12 days) (Forster et al., 2001). The ratio of BC /1CO can

therefore be used to estimate the extent to which BC is re-

moved from the air mass between the source region and the

receptor (Park et al., 2005). For a specified plume, the scav-

enged fraction of BC (SFBC) can be estimated according to

Eq. (1):

SFBC = 1−
BC/1COmeasured

BC/1COsource

(1)

The BC /1COmeasured and BC /1COsource represent the ra-

tio as measured at the receptor and determined at the emis-

sion source respectively. To obtain the SFBC requires an ex-

plicit determination of the BC /1COsource. However, values

obtained from measurements in the literature are subject to
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Figure 10. BC /1CO measured during ACCACIA for different air

mass origins, with the lines and square markers showing the ratio for

vertical profiles and plumes respectively. The bars show the +σ .

different ageing time of samples, various source character-

istics, variations in emissions throughout the year and influ-

ences on particular experimental locations, which leads to

significant variations in reported BC /1CO. For example a

BC /1CO (in ng sm−3 ppbv−1) of 6.5–8.8 was obtained in

the south-east Asian boundary layer (Pan et al., 2011), in

the European boundary layer BC /1CO could range from

0.8–2.3 (McMeeking et al., 2010), whereas Baumgardner et

al. (2007) observed a value of 1.4 for the Mexico city ur-

ban environment. Spackman et al. (2008) report 6.8 for the

Houston region and 3.8–9.4 for boreal fires in North America

(Petzold et al., 2007). It is therefore more appropriate to use

values of BC and CO from emission inventories as a “best es-

timate” to consistently evaluate the scavenging on BC since

emission, recognizing that there is uncertainty in these val-

ues. The FPES× inventory modelled BC and1CO attributed

to anthropogenic and OBB sources (Table S1) are used to

represent the ratio of BC /1COsource. The SFBC calculated

by Eq. (1) can therefore be considered as the integrated scav-

enged fraction from emission to receptor.

The BC /1COmeasured for vertical profiles and plumes is

shown in Fig. 10. The average BC /1COmeasured ranged 0.4–

3 for the plumes (Table 3) and 0.1–4.8 for vertical profiles,

and these values are of a comparable magnitude to those re-

ported by Matsui et al. (2011). As shown in Fig. 10, AS air

masses significantly increased the BC /1CO throughout the

Arctic troposphere at all altitudes; NA sources also increased
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the ratio but to a considerably lesser extent; EU influenced

air masses showed a BC /1COmeasured that was enhanced by

a similar order of magnitude as that in the AS-influenced air

masses in the mid troposphere, but a lack of available data

for LT prevented a similar comparison being made for EU.

The plumes in the UT experienced heavier precipitation for

both AS- and EU-influenced plumes (Table 2).

The SFBC was calculated for each intercepted plume and

ranges from 0.6–0.95 (Table S2). The dependence of SFBC

for each plume on precipitation integrated along the trajec-

tory is shown in Fig. 11. In contrast to the previous obser-

vation by Matsui et al. (2011), where the BC removal was

observed to be significantly correlated to the precipitation in-

tensity, in this study no obvious correlation between precipi-

tation and SFBC was observed. This may be due to the uncer-

tainties of modelled precipitation along the back trajectories,

or the scavenging of BC via precipitation was subject to a

complex mechanism not well represented by the total precip-

itation. The main contrast between this study and Matsui et

al. (2011) is the significantly higher BC /1CO for air masses

influenced by Asia; BC /1CO was most elevated (3–8) in the

mid troposphere at altitudes of 4–6 km, influenced mainly by

mid-latitude Asian sources, indicating that the lowest scav-

enging efficiencies were observed in these regions.

5 Discussion

In this study, Asian sources were observed to influence all

levels of the troposphere (400–8000 m): the source origins

include higher-latitude northern China (∼ 40–60◦ N) and a

mid-latitude (∼ 30–40◦ N) region including eastern China

and Japan. The influences on the Arctic MT/UT were mainly

from the mid-latitude sources, for which the air parcel could

be rapidly uplifted by WCBs to the free troposphere and

then followed by a long-range northeastward transport to the

Arctic MT/UT. These observations are consistent with pre-

vious studies that indicate long-range transported fossil fuel

sources from Northern Hemisphere mid-latitude affect the

Arctic MT/UT (Stohl, 2006; Quinn et al., 2007, and refer-

ences therein).

Air masses influenced by northern European sources may

follow various pathways to reach the Arctic (Stohl, 2006).

Transport of these air masses to high altitudes within the Arc-

tic atmosphere has previously been shown to arise via WCBs

(Marelle et al., 2015), however this was only clearly the

case for southern European influenced air masses. In several

cases both uplift through WCBs and quasi-isentropic trans-

port may operate in combination during transport to the Arc-

tic region. However, consistent with previous studies (Stohl,

2006; Marelle et al., 2014), we show that the influence of

European sources on the Arctic UT is low.

Air masses influenced by North American sources were

generally observed to be lifted to a lower altitude, followed

by a longer transport time. The influence of NA sources in
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Figure 11. The calculated scavenged fraction of BC (SFBC) vs. ac-

cumulated precipitation, with the bars showing the ± propagated

uncertainties for both precipitation and SFBC.

the Arctic free troposphere in the vicinity of Greenland were

previously reported (Quennehen et al., 2011), however most

of the previous studies have reported weak or occasional in-

fluence of NA sources on the Arctic (e.g. Stohl, 2006; Mc-

Connell et al., 2007; Brock et al., 2011), which is to be ex-

pected as the main industrial sources in NA lie southward

of the mean position of the Arctic front, and since advection

from these sources to the Arctic involves transport through

the meteorologically active North Atlantic region. This study

is consistent with those previous results in that the observed

NA influences were close to, or only slightly higher than the

background conditions.

The main contrast between this study and those conducted

previously is that high-latitude OBB sources from Eastern

Europe and Siberia did not make a significant contribution to

BC in the Arctic atmosphere; whereas in springtime of 2008,

OBB sources were prevalent in these regions (e.g. Brock et

al., 2011; Warneke et al., 2009). As a result, our results show

that during spring 2013, the OBB contribution to the Arctic

BC burden was less than 10 %, a result that is consistent with

the high relative sulphate concentrations observed in all sam-

pled plumes. This contrasts with the springtime of 2008 when

the aerosols in observed Arctic plumes had a higher organic

content than sulphate (e.g. Brock et al., 2011; Warneke et al.,

2009; Jacob et al., 2010). Annual fire counts across Siberia

from the FINN emissions inventory for March–April over the

10-year period from 2004 to 2013 are shown in Fig. 12a. The

year 2008 is shown to be anomalously high, compared to the

decadal average of 2.8× 104 by approximately a factor of

2.4. In all other years in the last decade fire counts in the

Siberia spring varied between 1.4× 104 and 3.7× 104. This

contrasts with 2013 which showed the lowest number of fire

counts (1.4× 104). Therefore, whilst 2008 does indeed show
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Figure 12. (a) Fire counts from FINN in Siberia region (50–70◦ N, 30–180◦ E) during March and April from 2004 to 2013. (b) Percentage

difference between total anthropogenic BC emissions from the ECLIPSE global BC inventory in 2010 and 2005.

the importance of biomass burning in the Arctic, Asian pol-

lution sources make a substantial contribution to Arctic BC

during many spring seasons. Figure 12b shows the changes

in anthropogenic emissions of BC between 2005 and 2010

as described in the ECLIPSE database. There is a marked in-

crease in BC emissions over this period of between 20–30 %

and these increases are projected to continue in the coming

decades.

A number of studies point out the scavenging efficiency of

BC represents a major uncertainty in model prediction of BC

in the Arctic (e.g. J. Liu et al., 2011; Hodnebrog et al., 2014;

Myhre and Samset, 2015), and these studies have shown that

models could underestimate the BC loadings in the Arctic

during the cold season by a factor of up to 10 due to a pos-

sible underestimation of the BC lifetime. Improved agree-

ment between model and measurement is achieved for many

of the models by reducing the scavenging efficiency in ice

cloud during the winter and spring time in the Arctic. The

hygroscopicity of BC can be increased by acquiring more

hygroscopic materials (Liu et al., 2013), such as sulphate, a

process that is sometimes parameterized in models by chang-

ing its solubility after sometime in the atmosphere. This pro-

cess may be only efficiently applied to warm clouds. For ice

clouds, the water soluble coatings on BC may inhibit its ice

nucleation activity (Koehler et al., 2009). The aerosols how-

ever may also experience removal by processes other than ice

nucleation, for example through impaction onto ice surfaces

(Baumgardner et al., 2008), scavenging by convective clouds

(Koch, 2011), or wash out by below cloud precipitation. The

integrated SFBC of 0.60–0.95 from this study provides a con-

straint for future model tests.

6 Conclusions

Intercontinental transport of pollutants to the European Arc-

tic was observed during the ACCACIA campaign in spring-

time 2013. FLEXPART-WRF Lagrangian dispersion mod-

elling was performed to evaluate contributions of ground

sources to the sampled air masses. When this analysis

was combined with up-to-date emission inventories, anthro-
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pogenic sources in populous regions were found to contribute

over 90 % of the BC for all the plumes sampled. In contrast

to previous observations, open wildfire contributions from

Siberia and Eastern Europe to the observed enhanced BC

were small. Our measurements of significantly higher sul-

phate content compared to organic matter are consistent with

this. Within the plumes observed, Asian sources were found

to have the most significant influence at all levels throughout

the Arctic troposphere, with the maximum BC mass load-

ing arising in the middle troposphere (MT) at concentrations

of around 100 ng sm−3. European sources (EU) also have an

important influence in the MT and are an order of magnitude

lower than those from Asia. Due to the high-latitude loca-

tion of the sources, Europe does not significantly influence

the Arctic upper troposphere (UT). North American sources

(NA) displayed a weak influence at all altitudes largely due

to the longer transport time and active meteorological influ-

ences.

The transport from Asian pollution sources is likely to

be facilitated by warm conveyor belts, through which air

parcels are rapidly uplifted on timescales of 1–2 days, fol-

lowed by long-range transport (8.5–11.5 days). We show

that this pathway efficiently transports BC from mid-latitude

Asian sources to the high-altitude Artic troposphere, rais-

ing BC concentrations to between 55 and 73 ng sm−3 close

to the Arctic tropopause. The scavenged fraction of BC for

plumes was estimated by comparing the measured BC abun-

dance relative to the measured excess CO with the same ratio

derived from values at source determined from the EDGAR

and FINN emission inventories. This showed that about 60–

95 % of BC is scavenged between the source region and the

Arctic atmosphere where the measurements took place. No

direct correlation was found between the scavenged fraction

and accumulated precipitation.

Compared to previous studies when plumes from open

fire sources were intensively observed, this study shows that

open fire contributions to BC vary significantly between

years and are sporadic, whereas the contribution of Asian

sources to pollution in the Arctic atmosphere is substan-

tial and is delivered via a persistent and consistent pathway.

Asian outflow will accumulate in the Artic troposphere dur-

ing the winter season and early spring, being retained north

of the polar front in slowly descending cold polar air. The ra-

diation balance of the upper tropospheric Arctic atmosphere

has been shown to be very sensitive to absorbing aerosol in

spring time and given that Asian pollution is likely to con-

tinue to rise over the coming years it is likely that this process

will continue to increase in importance when considering re-

gional climate effects.
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