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Abstract. The mandate of the Task Force Hemispheric

Transport of Air Pollution (TF HTAP) under the Convention

on Long-Range Transboundary Air Pollution (CLRTAP) is to

improve the scientific understanding of the intercontinental

air pollution transport, to quantify impacts on human health,

vegetation and climate, to identify emission mitigation op-

tions across the regions of the Northern Hemisphere, and to

guide future policies on these aspects.

The harmonization and improvement of regional emission

inventories is imperative to obtain consolidated estimates on

the formation of global-scale air pollution. An emissions data

set has been constructed using regional emission grid maps

(annual and monthly) for SO2, NOx , CO, NMVOC, NH3,

PM10, PM2.5, BC and OC for the years 2008 and 2010, with

the purpose of providing consistent information to global and

regional scale modelling efforts.

This compilation of different regional gridded inventories

– including that of the Environmental Protection Agency

(EPA) for USA, the EPA and Environment Canada (for

Canada), the European Monitoring and Evaluation Pro-

gramme (EMEP) and Netherlands Organisation for Applied

Scientific Research (TNO) for Europe, and the Model Inter-

comparison Study for Asia (MICS-Asia III) for China, India

and other Asian countries – was gap-filled with the emis-

sion grid maps of the Emissions Database for Global At-

mospheric Research (EDGARv4.3) for the rest of the world

(mainly South America, Africa, Russia and Oceania). Emis-

sions from seven main categories of human activities (power,

industry, residential, agriculture, ground transport, aviation

and shipping) were estimated and spatially distributed on

a common grid of 0.1◦× 0.1◦ longitude-latitude, to yield
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monthly, global, sector-specific grid maps for each substance

and year.

The HTAP_v2.2 air pollutant grid maps are considered to

combine latest available regional information within a com-

plete global data set. The disaggregation by sectors, high spa-

tial and temporal resolution and detailed information on the

data sources and references used will provide the user the

required transparency. Because HTAP_v2.2 contains primar-

ily official and/or widely used regional emission grid maps, it

can be recommended as a global baseline emission inventory,

which is regionally accepted as a reference and from which

different scenarios assessing emission reduction policies at a

global scale could start.

An analysis of country-specific implied emission factors

shows a large difference between industrialised countries

and developing countries for acidifying gaseous air pollutant

emissions (SO2 and NOx) from the energy and industry sec-

tors. This is not observed for the particulate matter emissions

(PM10, PM2.5), which show large differences between coun-

tries in the residential sector instead. The per capita emis-

sions of all world countries, classified from low to high in-

come, reveal an increase in level and in variation for gaseous

acidifying pollutants, but not for aerosols. For aerosols, an

opposite trend is apparent with higher per capita emissions

of particulate matter for low income countries.

1 Introduction

Intercontinental transport of air pollution occurs on

timescales of days to weeks and, depending on the specific

type of pollutant, may contribute substantially to local scale

pollution episodes (HTAP, 2010). Common international un-

derstanding of global air pollution and its influence on human

health, vegetation and climate, is imperative for providing a

basis for future international policies and is a prime objective

for the Task Force Hemispheric Transport of Air Pollution

(TF HTAP)1. While nowadays many countries and regions

report their air pollutant emissions, these estimates may not

be readily accessible, or may be difficult to interpret without

additional information, and their quality may differ widely,

having various degrees of detail and being presented in dif-

ferent formats.

The UN Framework Convention on Climate Change (UN-

FCCC) requires official inventory reporting that complies

with the TACCC principles of quality: transparency, ac-

curacy, consistency, comparability and completeness2, re-

viewed by UNFCCC roster experts and made available at

their website (UNFCCC, 2013). Under the CLRTAP (Con-

vention on Long-range Transboundary Air Pollution) the par-

ties need to report emissions to the EMEP (European Mon-

itoring and Evaluation Programme) Centre on Emission In-

1More info on www.htap.org.
2Timeliness has recently also been considered.

ventories and Projections (CEIP), which also reviews data

on completeness and consistency. Responsibility of provid-

ing emission inventories to several international bodies is of-

ten distributed within a particular country; e.g. the methane

inventory of some Annex I countries is provided by differ-

ent national institutions. Although they represent the same

region, they might be different, which is often the case and

leads to confusion (Janssens-Maenhout et al., 2012).

Currently available emission inventories differ in spatial

and temporal resolution (“consistency”), in coverage of ge-

ographical area, time period and list of compounds (“com-

pleteness”) and in the sector-specific details of the source cal-

culation (“transparency”). Moreover the official inventories

submitted by countries have at least a 1-year time lag, are up-

dated with different frequency and with or without review of

the historical time series. The work of Lamarque et al. (2010)

provides a unique example of a comprehensive “composite”

historical emissions data set spanning from 1850 to 2000,

using a similar methodology of combining country level in-

ventories for most OECD (Organisation for Economic Co-

operation and Development) countries with research inven-

tories for Asia and EDGAR for other regions. The data set

also provided harmonized base-year (2000) emissions that

were used as a starting point for the development of the so-

called RCPs (representative concentration pathways) emis-

sion scenarios (e.g. Moss et al., 2010; van Vuuren et al.,

2011). For other years and specific model domains cover-

ing multiple regions, atmospheric modellers often compile

their own emission inputs drawing upon different pieces of

the available inventories. These compilations involve some-

times arbitrary choices, and are often not clearly described or

evaluated. For example, the atmospheric modelling groups,

which contributed to the HTAP multi-model experiments de-

scribed in HTAP (2010), used their own best estimates for

emissions for the year 2001, obtaining in some cases compa-

rable global emissions (e.g. for NOx and SO2 model input),

and sometimes getting larger differences in the model input

(e.g. for NMVOC emissions). Moreover, Streets et al. (2010)

evaluated the consistency of the emissions used in the vari-

ous models and nationally reported emissions. For a follow-

up study in HTAP Phase 2, it was recommended to provide

a harmonised emissions data set for the years 2008 and 2010

in line with the following four major objectives:

1. to facilitate development of mitigation policies by mak-

ing use of well documented national inventories;

2. to identify missing (anthropogenic) sources and gap fill

them with scientific inventories for a more complete pic-

ture at the global scale;

3. to provide a reference data set for further emission com-

pilation activities (benchmarking or scenario exercises);

4. to provide a single entry point for consistent global and

regional modelling activities focusing on the contribu-
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tion of long-range (intercontinental) air pollution to re-

gional air quality issues.

A harmonized global, gridded, air pollution emission data

set has been compiled with officially reported, gridded inven-

tories at the national scale, to the extent possible and comple-

mented with science-based inventories for regions and sec-

tors where nationally reported data were not available.

For a preceding data set3 of EDGAR-HTAP_v1, the na-

tionally reported emissions (combined with regional scien-

tific inventories and gap-filled with the global set originat-

ing from EDGARv4.2) were all gridded with geospatial data

from EDGAR (Janssens-Maenhout et al., 2012). However,

this time we used regional gridded emissions, which are of-

ficially accepted and complemented with EDGARv4.3 grid

maps (Janssens-Maenhout et al., 2013) for countries or sec-

tors without reported data.

The resulting data set, named HTAP_v2.2, is a compila-

tion of annual and monthly grid maps of anthropogenic air

pollution emissions (with a 0.1◦× 0.1◦ grid resolution). It

contains region-specific information on human activity (con-

cerning intensity and geospatial distribution) and on fuel-

, technology- and process-dependent emission factors and

end-of-pipe abatement, but it is not as consistent as a glob-

ally consistent emission inventory using international statis-

tics and global geospatial distributions. With the perspective

of being used in chemical transport models, this inventory in-

cludes the atmospheric gaseous pollutants (SO2, NOx , CO,

NMVOC4, NH3) and particulate matter with carbonaceous

speciation (PM10, PM2.5, BC and OC)5.

3EDGAR-HTAP_v1 completed in October 2010 comprises

sector-specific annual grid maps for the 6 years from 2000 to 2005

and covers air pollutants (CH4, CO, NH3, NMVOC, SO2 and NOx )

and particulate matter with its carbonaceous speciation (PM10,

PM2.5, BC and OC). The annual grid maps of 0.1◦× 0.1◦ reso-

lution are made available via http://edgar.jrc.ec.europa.eu/national_

reported_data/htap.php and the CIERA and ECCAD servers. Doc-

umentation is available in the HTAP_v1 EUR25229EN report of

Janssens-Maenhout et al. (2012) (http://edgar.jrc.ec.europa.eu/htap/

EDGAR-HTAP_v1_final_jan201acp-2015-214-g02.pdf).
4The non-methane volatile organic compounds (NMVOC) of

HTAP_v2.2 are defined as the total sum of Alkanols, Ethane,

Propane, Butanes, Pentanes, Hexanes and higher, Ethene, Propene,

Ethyne, Isoprenes, Monoterpenes, Other alk(adi)enes/alkynes,

Benzene, Methylbenzene, Dimethylbenzenes, Trimethylben-

zenes, Other aromatics, Esters, Ethers, Chlorinated hydrocarbons,

Methanal, Other alkanals, Alkanones, Acids, Other Aromatics, all

expressed in their full weight, not just C.
5Whereas PM10 is defined as primary emitted aerosols with

aerodynamic diameter up to 10 micrometer, PM2.5 is a subset with

aerodynamic diameter up to 2.5 micrometer, including elemental

carbon (BC), organic carbon (OC), SO42−, NO31−, crustal mate-

rial, metal and other dust particles. Note that BC and OC are ad-

ditive to each other but not to PM2.5 ({BC,OC} ⊂ {PM2.5} and

{=PM2.5} ⊂ {PM10}).

This paper provides a detailed description of the data sets

and of the methodology used to compute the 0.1◦× 0.1◦ grid

maps for 2008 and 2010, which are delivered via the EDGAR

JRC website (see Sect. 4). Section 2 defines the considered

emitting sectors and presents the original data sources: (a)

the officially accepted regional/national gridded emission in-

ventories, which were mainly provided by national and inter-

national institutions, and (b) EDGAR_v4.3 for gap filling the

remaining regions and/or sectors for some substances. In the

HTAP_v2.2 database, grid maps were merged together with

a “collage/mosaic” approach instead of gridding the global

emission inventory with one single proxy data set, as done

in for the EDGAR-HTAP_v1 data set compilation (Janssens-

Maenhout et al., 2012). The HTAP_v2.2 inventory aims to

obtain more local accuracy on the location of single point

sources compared to the previous HTAP_v1, but the down-

side is that a consistent single location of a specific source of

multi-pollutants is no longer ensured, when data originated

from different sources, possibly leading to spurious chemi-

cal reactions involving non-linear chemistry in the air qual-

ity models. Sect. 3 discusses the resulting grid maps and ad-

dresses the contents of the HTAP_v2.2 compilation method-

ology, the assumptions, dataflows and consistency of the data

used to create the global grid maps. Whereas HTAP_v2.2

uses more regional bottom-up data (local information on

emission factors, on assumed penetration of technology and

end-of-pipe control measures in the facilities), the higher

spatial accuracy is sometimes overshadowed by artefacts at

borders – at least when graphically displaying the data. This

is followed with an evaluation of the HTAP_v2.2 by compar-

ing per capita emissions, emissions per unit of GDP (gross

domestic product) and implied emission factors for the dif-

ferent countries. The concluding Sect. 4 summarises the pur-

poses, content and access to this data set that is currently in

use by the HTAP modellers community.

2 Methods

2.1 Defining the sector-specific breakdown

An overview of the data sources used is given in Table 1a. For

the development of HTAP_v2.2, a detailed cross-walk table

of the US EPA, EDGAR and EMEP (sub)sector-specific ac-

tivities has been setup, using all human activities defined in

detail by IPCC (1996) and applied for the reporting under the

UNFCCC. The US EPA and the contributing data set from

Environment Canada, provided the most detailed cross-walk

matrix between the categories used in their national inven-

tory and the full-fledged set of all IPCC categories. However,

a higher level of aggregation was needed to find a common

basis with the Asian emission inventories, which led to the

establishment of the seven categories: aircraft, international

shipping, power industry, industry, ground transport, residen-

tial and agriculture (described in Table 1b underneath).

www.atmos-chem-phys.net/15/11411/2015/ Atmos. Chem. Phys., 15, 11411–11432, 2015
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HTAP_v2.2 focusses only on anthropogenic emissions,

in a comprehensive way, but excludes large-scale biomass

burning (forest fires, peat fires and their decay) and agri-

cultural waste or field burning. We refer to inventories such

as GFED3 (van der Werf, 2010) for the forest, grassland

and Savannah fires (IPCC categories 5A+C+4E) and to

the 1◦× 1◦ grid maps of Yevich and Logan (2003) or the

0.1◦× 0.1◦ EDGARv4.2 grid maps (EC-JRC/PBL, 2011) for

the agricultural waste burning (4F). Moreover, only NH3

emissions from the agricultural sector were taken up in the

htap_8_AGRICULTURE sector of HTAP_v2.2 inventory, so

that the occasionally reported NOx from agricultural waste

burning or from biological N fixation and crop residues

(which is typically considered under S10 for Europe) are ex-

cluded.

2.2 Gridded input data sets for HTAP_v2.2

As explained earlier, the goal of the HTAP_v2.2 inventory is

to provide consistent and highly resolved information (see

Fig. 1a) to global and regional modelling. It is important

to realize that in the HTAP modelling exercise both global

and regional models are participating. The HTAP global

modelling is coordinated with the regional modelling exer-

cise of Air Quality Model Evaluation International Initia-

tive AQMEII (Galmarini et al., 2012, 2015) that manages

regional scale activities for Europe and North America, and

the regional modelling exercise of the Model Intercompari-

son study for Asia MICS-Asia (Carmichael et al., 2008) that

manages the regional modelling over Asia. Hence, the re-

gional inventories used for HTAP_v2.2 are constructed and

used in accordance with these regional activities.

2.2.1 USA and Canada: EPA and Environment

Canada grid maps and EPA temporal profiles

EPA (2013) provides the 2008 and 2010 areal and point

source emissions for the complete North American domain

at 0.1◦× 0.1◦ resolution, covering USA with a grid rang-

ing from 180–63◦W in longitude and 75–15◦ N in latitude

and covering Canada with a grid from 142–47.8◦W in lon-

gitude and 85–41◦ N in latitude. Mexico is not covered by

these latitudes and it is gap-filled with EDGARv4.3 data (see

Sect. 2.2.4). For the northern latitudes above 45◦ N, Envi-

ronment Canada provided the 2008 basis and an update of

the point sources for 2010, from which US EPA prepared the

full set of detailed grid maps also for 2010. The 2010 data for

Canada were missing and as such extrapolated by US EPA

based on the 2008 National Emission Inventory of Environ-

ment Canada and assuming no trend, but they use updated

point sources (Pouliot et al., 2014). The temporal profiles of

US EPA were applied for USA and Canada with identical

monthly distributions per sector for 2008 and 2010. More de-

tails about the US inventory are given by Pouliot et al. (2014,

2015).

2.2.2 Europe: TNO grid maps and EMEP temporal

trends

Countries that are parties to the CLRTAP (http://www.unece.

org/env/lrtap/welcome.html) need to report anthropogenic

emissions of air pollutants and particulate matter, but nei-

ther BC nor OC. These reported/official inventories are re-

ported on the national level to EMEP-CEIP6 which provides

the annual emission inventory data for CO, NH3, NMVOC,

NOx , SOx , PM10 and PM2.5 (not BC and not OC). However,

the currently used EMEP grid uses a polar-stereographic pro-

jection with about 50 km× 50 km grid cells centred over the

European region and converting to a Mercator projection im-

plied a loss of spatial accuracy. These reported data are in-

complete according to the CEIP annual report of Mareckova

et al. (2013) and for evaluation with the EMEP unified model

further gap filling is needed, resulting in a semi-official emis-

sion data set. To overcome the problems of inconsistent emis-

sions time series and fulfil the need for a higher spatial res-

olution to support AQ modelling in Europe in the European

FP7 project Monitoring Atmospheric Composition and Cli-

mate (MACC), TNO established a scientifically complete

and widely accepted data set, which is fully documented

by Kuenen et al. (2014). This so-called TNO-MACC-II in-

ventory of Kuenen et al. (2014) covers the same European

domain with areal and point source emission grid maps at

1/8◦× 1/16◦ resolution for SO2, NOx , CO, NMVOC, NH3,

PM10, PM2.5 with point sources allocated to their exact lo-

cation. The grid-domain ranges from 30◦W to 60◦ E in lon-

gitude and 72–30◦ N in latitude. The geographical area cov-

ered all EU-28 countries, Switzerland, Norway, Iceland and

Liechtenstein, Albania, Bosnia-Herzegovina, Serbia, Mace-

donia, six Newly Independent States (Armenia, Azerbaijan,

Belarus, Georgia, Moldova, Ukraine) and Turkey. EMEP-

TNO data for countries with only partial coverage (Russia,

Turkmenistan, Kazakhstan and Uzbekistan) were not used

in the HTAP_v2.2 inventory because of inconsistencies with

other data sets (see Sect. 2.2.4). Sector-specific data (given

by SNAP-code, see Table 1b) are used for all countries with

complete coverage of their territory and for each substance

the contribution from each sector is compared to EMEP and

EDGARv4.3 estimates. Standard re-sampling is applied to

obtain grid maps at the common resolution of 0.1◦× 0.1◦.

Point-source, ground-level airport emissions in the transport

sector (under SNAP 8) were taken out, in order to avoid a

double counting with the aviation sector (HTAP1_AIR), for

which the same geospatial data set taken from EDGAR_v4.3

was used globally.

The EMEP-TNO data were only available for 2006 and

2009. The 2008 data for Europe are based on the EMEP-

TNO data for 2009 data, and the 2010 data for Europe are

based on the same 2009 data but using the trend in EMEP-

TNO data between 2006 and 2009. For NH3, the reporting of

6More info on www.ceip.at.
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Figure 1. (a) Collection of regional emission inventories (US-EPA, Environ Canada, TNO-EMEP, MIX (MICS-Asia III), EDGARv4.3 for

the global air pollutants and their use for world countries in data set HTAP v2.2 (b) Regional relative contribution to 2010 pollutant emissions

(upper panel). Asian emissions have been divided into China, India and other Asia fractions from the MIX database. The region “rest of the

world” has been disaggregated into Oceania, Africa, Middle East, Central/South America and other countries making use of the EDGAR

v4.3 inventory. Global sector-specific anthropogenic emissions of gaseous pollutants and particulate matter components for the year 2010

(lower panel). Global absolute emissions are reported on top of each bar in Tg species per year. Large scale open-biomass burning is not

included in the analysis. (c) Temporal profiles with relative factors varying around 1/12 and applied on the yearly emissions of the different

data sources (US-EPA for US and Canada, EMEP-TNO for Europe with compound-specific variation of the agricultural temporal profiles,

EDGAR temporal profiles for the Northern Hemisphere and MICS profiles for Asia).

Atmos. Chem. Phys., 15, 11411–11432, 2015 www.atmos-chem-phys.net/15/11411/2015/
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emissions from the energy, industry and residential sectors

was apparently negligible for some countries7 compared to

the agricultural emissions and was therefore not gap-filled

by EMEP and/or TNO.

BC and OC emission data are not available as emission

grid maps within the MACC-II data set, but the PM grid maps

are accompanied by a recommendation on the PM composi-

tion describing the carbonaceous profiles per SNAP code and

country. This so-called PM split table (per SNAP code and

country) of TNO (Visschedijk et al., 2009) is used to derive

the BC and OC from PM10 and PM2.5 emission grid maps

(see Kuenen et al. (2014) for details).

Finally, to derive the monthly grid maps the EMEP mod-

elling group provided the monthly profiles, which are with

a monthly factors varying around 0.0833 specified for each

country and for each sector, with a further substance-specific

variation for the agricultural sector (M. Schulz, personal

communication, 27 May 2013 and A. Nyiri, personal com-

munication, 4 June 2013).

2.2.3 Asia: monthly grid maps from MIX

For Asia, a different challenge is faced, because no coun-

tries except Japan are legally required to yearly report de-

tailed emission inventories under the CLRTAP, UNFCCC or

similar conventions. However, in Asia many scientific efforts

aimed at establishing a detailed emission inventory, accepted

by the different regions, using official or semi-official statis-

tics collected at county level (by provinces for China). Under

the Model Inter-comparison Study for Asia Phase III (MICS-

Asia III), a mosaic Asian anthropogenic emission inventory

was developed for 2008 and 2010 (Li et al., 2015). The mo-

saic inventory, named MIX, incorporated several local emis-

sion inventories including the Multi-resolution Emission In-

ventory for China (MEIC), NH3 emission inventory from

Peking University (Huang et al., 2012), Korean emissions

from the Clean Air Policy Support System (CAPSS) (Lee

et al., 2011), Indian emissions from the Argonne National

Laboratory (Lu et al., 2011), and fill the gap where local

emission data are not available using REAS2.18 developed

by Kurokawa et al. (2013).

7No NH3 emissions are reported in the energy sector: for the

countries Albania, Bosnia-Herzegovina, Cyprus, Estonia, Greece,

Ireland, Iceland, Luxembourg, Latvia, FRY Macedonia, Malta, Nor-

way, Poland, Romania, Slovakia, and Slovenia; in the industry sec-

tor for the countries Albania, Bosnia-Herzegovina, Greece, Ireland,

Iceland, and FRY Macedonia; and in the residential sector for the

countries Greece, Iceland and Slovenia.
8The REAS2.1 inventory for Japan includes the data devel-

oped by Ministry of the Environment of Japan (MOEJ, 2009)

for NMVOC evaporative emissions from stationary sources, the

database developed by the Ocean Policy Research Foundation

(OPRF, 2012) for the maritime sector, and the Japan Auto-Oil Pro-

gram Emission Inventory-Data Base (JEI-DB) developed by Japan

Petroleum Energy Center (JPEC, 2012a, b, c) for other sources.

MEIC is developed by Tsinghua University under an open-

access model framework that provides model-ready emission

data over China to support chemical transport models and cli-

mate models at different spatial resolution and time scale. In

the MIX inventory, the MEIC v.1.0 data were used, which

contain the anthropogenic emissions of China for SO2, NOx ,

CO, NMVOC, NH3, CO2, PM2.5, PMcoarse, BC, and OC

for the years 2008 and 2010 with monthly temporal variation

at 0.25◦× 0.25◦. For India, MIX used the Indian emission

inventory provided by ANL (Argonne National Laboratory)

for SO2, BC, and OC and REAS2.1 for other species. With

the input from different regions, the MIX inventory provided

harmonized emission data at 0.25◦× 0.25◦ grid resolution

with monthly variation for both 2008 and 2010. The detailed

mosaic process of the MIX inventory is documented in Li

et al. (2015). Reported emissions from countries which are

only partly covered by the MIX, like Russia, Turkmenistan,

Uzbekistan and Kazakhstan were not taken up in the HTAP

inventory and instead gap filling by EDGARv4.3 was used

(see Sect. 2.2.4).

As such, countries within the broad area, spanning from

89.875◦ N to 20.125◦ S in latitude and from 40.125 to

179.875◦ E in longitude were inserted in the 0.1◦× 0.1◦

emission grid maps after converting the 0.25◦× 0.25◦ with

a raster resample procedure – dividing the cells in 5x5 and

then aggregating the 0.05◦× 0.05◦ cells 2× 2. Monthly grid

map results (without distinction between point and areal

sources and without temporal profiles) are given per sector

(energy, industry, residential, transport, and agriculture only

for NH3).

2.2.4 Rest of the world covered by EDGARv4.3

The Emission Database for Global Atmospheric Research

(EDGAR) of EC-JRC/PBL (2011) provides historical (1970–

2008) global anthropogenic emissions of greenhouse gases9

CO2, CH4, N2O, HFCs, PFCs and SF6, of precursor gases,

such as CO, NOx , NMVOC and SO2 and of aerosols (PM10)

per source category at country level on 0.1◦× 0.1◦ grid maps.

This data set is in the version EDGARv4.3 extended with

the years 2009 and 2010 and covering with the carbona-

ceous species PM2.5, BC and OC. For HTAP_v2.2 a pre-

liminary version of the EDGARv4.3 (EC-JRC/PBL, 2015)

is used. Emissions are calculated by taking into account hu-

man activity data of IEA (2013) for fuel consumption and

of FAO (2012) for agriculture, different technologies with

installed abatement measures, uncontrolled emission factors

(IPCC, 2006) and emission reduction effects of control mea-

sures (EMEP/EEA, 2013). Anthropogenic emissions calcu-

lations are extended till 2010 for all 246 world countries for

the emission source (sub)groups; (i) combustion/conversion

in energy industry, manufacturing industry, transport and res-

9The methodology for the greenhouse gas emission time se-

ries applied in EDGARv4.2 is detailed in Olivier and Janssens-

Maenhout (2012).
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idential sectors, (ii) industrial processes, (iii) solvents and

other product use, (iv) agriculture, (v) large scale biomass

burning, (vi) waste and (vii) miscellaneous sources.

The EDGAR emission data are spatially distributed using

an extensive set of global proxy data, which are representa-

tive for major source sectors and documented in the EDGAR

gridding manual of Janssens-Maenhout et al. (2013). For

HTAP_v2.2, the EDGARv4.3 database provides yearly emis-

sion grid maps with a resolution of 0.1× 0.1 degree for the

“rest of the world” countries of Table S1.2 of Annex I in

the Supplement for all pollutants (SO2, NOx , CO, NMVOC,

NH3, PM10, PM2.5, OC, BC) and HTAP sectors for the years

2008 and 2010. The htap_2 SHIPS data are provided for

the entire world, while the htap_1 AIR data are provided

for the entire world for the international aviation and for the

world excluding USA and Canada for the domestic aviation.

EDGAR provides also sector-specific monthly profiles, de-

fined with first order estimated factors for each of the three

different zones: Northern Hemisphere, the Equatorial region

and Southern Hemisphere (Table S1.2 in the Supplement).

A reverse profile is applied for the two hemispheres from

the EDGAR v4.3 database, while no seasonal pattern is used

for the Equatorial regions. Monthly emissions grid maps are

generated from the annual emission data per HTAP sector us-

ing these EDGAR monthly factors, which resemble most to

the EMEP-TNO profiles (see Sect. 2.3).

The countries with partial geo-spatial coverage under the

MACC-II and MIX inventories (see Sects. 2.2.2 and 2.2.3)

are completely replaced with EDGARv4.3 data to avoid in-

consistencies and artefacts at the border between two data

sets within one country (such as Russia, Kazakhstan, Turk-

menistan and Uzbekistan). This replacement took place after

the grid maps were converted into 0.1◦× 0.1◦ using a raster

resampling procedure. For EMEP-TNO the resampling im-

plied a 25-fold division to 0.0025◦× 0.0125◦ followed by

an aggregation of 4× 8 grid cells. For MIX the resampling

needed also a 25th fold division to 0.05◦× 0.05◦ followed by

an aggregation of 2× 2 grid cells. The cells including coun-

try borders are split up and allocated to the different countries

using the corresponding areal percentage.

2.3 Overview of the temporal profiles used in

HTAP_v2.2

The modulation of annual emissions over time is necessary in

order to provide the modelers emission data consistent with

the seasonal pattern and activities. Monthly data were gener-

ated for all sectors except for the international shipping and

international aviation, which are considered constant over the

year. US-EPA, EMEP and EDGAR provided monthly pro-

files, but MIX provided directly and solely monthly emission

grid maps.

Figure 1c summarizes the sector-specific monthly pro-

files for each of the regional data sets. The temporal pro-

files are additive and specified with monthly factors mod-

ulating around 1/12 for each of the sectors. For the agri-

cultural sector, EMEP provided compound-specific monthly

factors, which characterise high NMVOC emission in spring

and high CO emission in autumn. Agriculture (largely con-

tributing to NH3 emissions) shows most seasonal variation,

which differs also most between the different regions because

of region-specific management practices (for e.g. crop culti-

vation), climate and geographical location and soil composi-

tion. The residential sector is characterized by a monthly dis-

tribution which is inversely related with the temperature and

therefore with the use of heating systems, and in some de-

veloped countries with air conditioning. In some developed

countries with hot summers, air conditioning again boosts

emissions during the summer. The seasonality remains rela-

tively modest in all regions for the sectors transport, industry

and energy.

The strongest variation over the year and between regions

is observed for the agricultural sector (+215 % in the EMEP-

TNO profiles but only +45 % in the MIX profiles), followed

by the residential sector ((+70 and −75 %) in the EMEP-

TNO profiles, (+20 and −25 %) in the US EPA profiles and

(+115 and −40 %) in the MIX profiles).

3 Results

Monthly global grid maps were produced for 2008

and 2010 and are available per HTAP sector and sub-

stance at http://edgar.jrc.ec.europa.eu/htap_v2/index.php?

SECURE=_123. We describe major characteristics of the

grid maps in Sect. 3.1. We focus on 2010 but the observa-

tions remain valid for 2008 (in the same period of recession).

A summary graph of the emission totals and their sector-

specific composition is given in Fig. 1b. In Sects. 3.2 and

3.3 we put the country totals (given bottom-up except for

the MICS-Asia regions, where we derived the totals from the

grid maps) in perspective with a comparative analysis of the

emissions per capita and emissions per GDP for low, lower

middle, upper middle and high income country groups. To

estimate how polluting the activities are in the different re-

gions, Sect. 3.4 addresses the implied emission factors. Fi-

nally, we address the difference in emissions 2008 to 2010 in

Sect. 3.5, and we conclude with a qualitative assessment of

the uncertainty of the grid maps in 3.6.

3.1 Spatial distribution of global emissions per sector

An overview on the region-specific totals and the compo-

sition per region and sector is given in the nine maps of

Fig. 2a–i for the different substances for the year 2010. The

sector-specific country-totals are given in Table S1.1 and

the totals for each of the 16 HTAP source region, as de-

fined for the source-receptor calculations of the HTAP mod-

elling community and described in Supplement Table S2.1

are given in Table S2.2 of Annex II in the Supplement. Be-

Atmos. Chem. Phys., 15, 11411–11432, 2015 www.atmos-chem-phys.net/15/11411/2015/

http://edgar.jrc.ec.europa.eu/htap_v2/index.php?SECURE=_123
http://edgar.jrc.ec.europa.eu/htap_v2/index.php?SECURE=_123


G. Janssens-Maenhout et al.: The HTAP_v2 emissions gridmap 11419

fore focusing on the emissions over land surface, we assess

the global shipping emissions. Table 2a compares the in-

ternational shipping emissions with the bottom-up and top-

down estimated emissions reported by IMO (International

Maritime Organisation) (2014). We note that an agreement

between the data of HTAP (EDGAR based), and IMO (both

top down and bottom up estimates) is obtained for all com-

pounds within 30 %, except for CO. For the latter EDGAR

shows a 55 and 70 % higher estimate for the 2008 and 2010

bottom-up values of the IMO (2014) study, which on his turn

is 55 %, respectively, 33 % higher than the 2008 and 2010 top

down estimates of the IMO (2014) study. It is worth mention-

ing that a 250 % downscaling of the CO emission factor was

undertaken in IMO (2014) compared to the previous study of

IMO (2009).

Developing countries contribute from 70 % to more than

90 % to the current global anthropogenic pollutant emissions,

depending on the considered compound and Asian countries

are the major emitters, contributing from 40 to 70 %. Among

these countries, China and India represent two densely pop-

ulated regions, producing together more than two-thirds of

the total Asian emissions. On the contrary, developed regions

(like North America and Europe) produce much lower emis-

sions, representing overall from 30 down to 10 % of the total

annual global anthropogenic emissions. Since the rest of the

world group of countries includes a variety of regions, differ-

ing in population, human activities, types of industries, etc.,

it is crucial to disaggregate it into its components. In particu-

lar for PM2.5 and somewhat less for NOx , Asia strongly con-

tributes to the global emissions compared to the contribution

of North America and Europe.

Generally, higher emissions are observed for populated ar-

eas and coastal regions, but specific features can be high-

lighted depending on the pollutant and activity for specific

countries per substance. The differences of the Figs. 2a–i in

the sector-specific composition (pie charts) of the emission

sources for world regions (represented by the colour scale)

vary strongly between compounds. Some of the factors in-

clude:

– for SO2 the emissions will depend on the importance

of coal used in the industry and residential sectors and

the degree of flue gas desulfurization. In some regions

non-ferrous metals industry will be of great importance.

– For NOx emissions industrial combustion and transport

are key and with increasing level of activity the applica-

tion of end-of-pipe controls, including catalytic reduc-

tion of flue gases, is playing an ever increasing role.

– CO and NMVOC emissions are dominated by incom-

plete combustion (cooking and heating stoves) and

transport, especially in absence of advanced controls.

For NMVOC additionally evaporative losses from sol-

vent use and oil industry are of high relevance.

– Finally for PM, incomplete combustion (stoves) and in

developing countries poor efficiency of filters installed

on industrial boilers can be a source of large emissions

while more recently transport emissions from diesel en-

gines became of concern.

3.1.1 SO2

The Asian region is still characterised by a relatively large

contribution of SO2 from (coal fired) power plants and man-

ufacturing industry. Most of the SO2 emitted in North Amer-

ica and Europe comes from coal power plants. However, in

Europe Fig. 2a shows that SO2 is also emitted from the res-

idential and waste disposal sector. Residential (heating and

cooking) and waste disposal sources are particularly rele-

vant in Africa. High annual SO2 emissions are also observed

for India, to which the energy sector contributes 59 % and

the energy-intensive manufacturing industry (iron and steel)

32 %, also both using coking and bituminous coal accord-

ing to IEA (2013). Finally, international shipping contributes

∼ 10 % to the global SO2 emissions. SO2 grid maps clearly

show the ship emission tracks connecting Asia and Europe

with Africa and America.

3.1.2 NOx

Figure 2b shows that the major sources of NOx are ground

transport and power generation and these source contribu-

tions show a rather uniform feature for all the considered re-

gions. In Central and South America, major emissions are at-

tributed to the transportation sector and just to a minor extent

to the energy sector (e.g. in Mexico 65 % of the NOx emis-

sions originate from road transport). Those industrialised

countries with a large share of natural gas as fuel for heat-

ing houses and commercial centres and for industry (such

as Canada, the Netherlands, Norway) show relatively high

emissions of NOx : the share of the residential and industry

NOx emissions is around 30 % of the total NOx , whereas in

USA this is only 20 %. International shipping and, in partic-

ular, aviation contribute together more than 10 % of global

NOx emissions.

3.1.3 CO

CO is a product of incomplete combustion, which can there-

fore be emitted by any fuel combustion (ground transport, in-

dustrial processes involving combustion, as well as domestic

heating). As presented in Fig. 2c, the power generation sec-

tor emits less CO than the residential one because of higher

combustion efficiency and higher temperatures compared to

domestic burners. In Africa, there are large emissions of CO

from the residential sector, mainly due to the use of wood and

charcoal for cooking activities. As shown in Fig. 2c, some

industrial activities emit CO, like the production of non-

metallic minerals and crude steel and iron, which is partic-

www.atmos-chem-phys.net/15/11411/2015/ Atmos. Chem. Phys., 15, 11411–11432, 2015
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Figure 2.

ularly relevant for India and China, while non-ferrous metal

and iron and steel production are dominant in Oceania.

3.1.4 NMVOC

NMVOCs (non-methane volatile organic compounds) are

emitted from chemical and manufacturing industries, as well

as fuel transformation processes, the production of primary

fuels, the use of solvents and from the residential sector, in-

clusive waste (Fig. 2d). Important sources of NMVOCs in-

clude also evaporative emissions from road transport, specif-

ically gasoline engines and the use of biofuels. Major emis-

sion sectors in the USA emitting NMVOCs include oil re-

fineries, oil and gas production, several industrial processes

and motor vehicles. Most of the NMVOC emissions in Eu-

rope are due to solvent use, road transport, and the use of

primary solid biomass in the residential sector. In the Middle

East, NMVOC sources include oil production: the industry

sector in Saudi-Arabia contributes 75 % to its total NMVOC

emissions. In China, particularly high emissions are origi-

nating from industry (62 %) and residential (27 %), the lat-

ter also associated with the high usage of solvents in paints.

In Brazil, particularly high usage of biogasoline is present

resulting in a 52 % NMVOC contribution of the transport

sector. Also the production of charcoal is emitting strongly

NMVOC and the world’s top three emitters (IEA, 2013) are

Brazil, Thailand10 and Kenya, which explains that their in-

dustry sector is contributing to the NMVOC total with, re-

spectively, 35, 37 and 80 % in 2010. NMVOC speciation is

not provided by the HTAP_v2.2 emission database; however,

TNO has produced a breakdown into 23 NMVOC species,

which has been used for the RETRO project and the RCP

scenarios of IPCC AR5. Recommendations for the NMVOC

splits are given on the HTAP wiki site http://iek8wikis.iek.

fz-juelich.de/HTAPWiki/WP1.1.

3.1.5 NH3

NH3 is mainly emitted by the agricultural sector, including

management of manure and agricultural soils (application

of nitrogen fertilizers, including animal waste), as Fig. 2i

shows, while a relatively small amount is emitted by the de-

ployment of catalysts in gasoline cars. Minor contributions

are also observed for Asian countries from the residential

sector due to dung and vegetable waste burning and coal

combustion. For industrialized regions, especially for coun-

tries using low sulphur fuel, Mejía-Centeno et al. (2007) re-

ported that the deployment of catalytic converters in gasoline

cars enhanced the NH3 emissions from this source since mid-

2000. This is also observed by the larger NH3 with increased

transport activity and corresponding increased consumption

10No charcoal production emissions are accounted for in the

REAS2.1 inventory, which is a shortcoming mainly for Thailand.
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Figure 2. Sector-specific breakdown of regional emission totals (Tg) for 2010: (a) SO2, (b) NOx , (c) CO, (d) NMVOC, (e) PM10, (f) PM2.5,

(g) BC, (h) OC and (i) NH3.

of low sulphur fuels. In the USA gasoline vehicle catalysts

represent ca 6 % of total NH3 emissions, while a lower con-

tribution is found for Europe due to the high deployment of

diesel vehicles.

3.1.6 PM10 and PM2.5

Particulate matter (PM), both in the fine and coarse frac-

tion, is mainly emitted by biomass and fossil fuel combus-

tion in domestic and industrial activities (Fig. 2e and f). On

the contrary, ground transportation contributes ∼ 5 % to to-

tal PM emissions (excluding non-exhaust road abrasion dust

and tyre wear emissions). As depicted in Fig. 1b, developed

countries (like USA and EU) represent ∼ 10 % of global

emissions of PM and its components, while much higher

contributions derive from developing countries where less

strict legislation is applied in the industrial sector and in road

transport. Figure 2e and f show a similar composition of the

contributing sectors to PM10 and PM2.5 globally. PM10 and

PM2.5 grid maps point out the enhanced PM emissions in

Asian countries, due to industrial processes and the residen-

tial sector. A decreasing trend from 2008 to 2010 is observed

for Brazil due to decreases in emissions from charcoal pro-

duction (with 23 % share in the world production in 2008 and

12 % in 2010, according to IEA, 2013). Emissions from char-

coal production are also important for some African coun-

tries (Kenya, Sudan, South Africa, Tanzania, Ethiopia), with

country-specific shares in world production varying between

1.3 and 12.9 % according to IEA (2013). Western Africa gen-

erally emits more PM than the eastern part because of more

industrial activities.

www.atmos-chem-phys.net/15/11411/2015/ Atmos. Chem. Phys., 15, 11411–11432, 2015
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Table 2. (a) Comparison of the international shipping emissions: IMO bottom-up (BU) and IMO top-down (TD) emissions of the IMO (2014)

study and the EDGAR emissions of the HTAP_v2.2 (2015) study. (b) Per capita emissions in 2010 for USA, Germany, China, India, Russia

and Japan from HTAP_v2.2. (c) Emissions per unit of GDP in 2010 for USA, Germany, China, India, Russia and Japan from HTAP_v2.2.

(a) kton yr−1 BC CO NMVOC NOx OC PM10 PM2.5 SO2

EDGAR 2008 34 1340 730 13 762 458 1376 1376 8348

IMO BU 2008 864 727 20 759 1545 1545 11 041

IMO TD 2008 553 615 18 442 1221 1400 8280

EDGAR 2010 33 1300 720 14 000 430 1400 1400 8300

IMO BU 2010 763 593 16708 1332 1332 9895

IMO TD 2010 574 638 19 098 1304 1304 9232

(b) Substance USA Germany China India Russia Japan

ton CO2(long cycle C) yr−1 cap−1 17.6 9.9 6.4 1.5 11.9 9.7

HDI 0.91 0.90 0.70 0.57 0.77 0.88

kg SOx yr−1 cap−1 32.6 5.2 21.0 8.0 31.9 5.2

kg NOx yr−1 cap−1 43.6 14.2 20.8 7.9 25.1 14.5

kg NMVOC−1 yr−1 cap−1 43.1 11.9 16.9 14.0 26.9 9.1

kg CO−1 yr−1 cap 148.3 35.6 125.6 56.0 52.8 33.1

kg NH3 yr−1 cap−1 11.6 7.3 6.7 8.2 6.3 3.7

kg PM2.5 yr−1 cap−1 5.25 1.08 8.93 5.19 2.18 0.62

kg BC−1 yr−1 cap−1 0.95 0.20 1.29 0.85 0.29 0.16

(c) Substance USA Germany China India Russia Japan

kg CO2(long cycle C)yr−1 USD−1 339.71 287.79 240.88 136.6 644.58 267.08

GDP cap−1 49 307 39 668 9230 4638 21663 34561

g SOx yr−1 USD−1 0.668 0.132 2.310 1.719 1.482 0.150

g NOx yr−1 USD−1 0.892 0.363 2.295 1.714 1.166 0.419

g NMVOC yr−1 USD−1 0.882 0.305 1.863 3.013 1.249 0.263

g CO yr−1 USD−1 3.036 0.910 13.830 12.069 2.449 0.957

g NH3 yr−1 USD−1 0.236 0.187 0.735 1.770 0.291 0.108

g PM2.5 yr−1 USD 0.108 0.028 0.984 1.119 0.101 0.018

g BC yr−1 USD−1 0.019 0.005 0.143 0.183 0.013 0.004

3.1.7 BC and OC

Black carbon (BC), the light-absorbing component of the

carbonaceous part of PM, and organic carbon (OC) are emit-

ted from incomplete combustion. Major emission sources are

residential cooking and heating (fossil fuel and biomass com-

bustion) and for BC also ground transport (especially diesel

engines). Very low emissions originate from the energy sec-

tor due to higher process efficiencies and high combustion

temperatures. Figure 2g shows that the largest contributing

sector for BC in North America, Europe and the Middle East

is road transport, which can be allocated mainly to diesel ve-

hicles given the much higher BC emission factor for diesel

than for petrol. Heavy duty and light duty vehicles in these

regions, as well as diesel passenger cars in Europe and the

Middle East, cause this relatively large contribution despite

the use of particle filters, which have not yet fully penetrated

the fleet. For Asia, Oceania, Africa and Central and South

America, the residential sector is the main contributor of BC

emissions. In China and India the industry and residential

sectors contribute to, respectively, 84 and 91 % of their to-

tal BC emissions, while this share in USA or in Germany

is only 42 % and 36 %, respectively. The IEA (2003) data

indicates the combination of high usage of coal (mainly in

China) and of biomass (mainly for India) in power plants,

coke ovens and non-metallic mineral industries, as well as

the residential heating. The residential sector in China ac-

counts for more than half (52 %) of its BC total. Russia shows

a similar high share of the residential sector (46 %) to its total

BC. Most important sources calculated in EDGARv4.3 for

heating buildings in Russia include bituminous coal (57 %)

and solid biomass (30 %), lignite (6 %) and industrial waste

(3 %) burning in the residential sector (for domestic hous-

ing as well as commercial services) (EC-JRC/PBL, 2011

and IEA, 2013). A different situation is observed for Africa,

where in addition to emissions from traffic and oil produc-

tion, an important role is played by charcoal production and

the use of primary solid biomass and charcoal in the resi-

dential sector. Nigeria has high flaring emissions from oil

and gas production and Kenya and Sudan suffer from large

Atmos. Chem. Phys., 15, 11411–11432, 2015 www.atmos-chem-phys.net/15/11411/2015/
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charcoal production activities. For OC (Fig. 2h), all regions

except the Middle East show that the largest emission con-

tribution comes from the residential sector (combustion of

charcoal and solid biomass). For the Middle East a relatively

large contribution from industrial activities (fuel production)

is observed.

3.2 Per capita emissions

To compare emissions from worldwide countries character-

ized by different degrees of development and numbers of

inhabitants, per capita emissions were calculated. Country-

specific per capita total emissions are given in Table S3.1 of

Annex III in the Supplement. In Table 2b we compare for

the world’s top six CO2 emitters, China, USA, India, Rus-

sia, Japan and Germany the per capita air pollutant emis-

sions while making the link with the country’s activity level

and level of clean technologies development. Country to-

tal population data were obtained from the United Nations

Population Division (UNPD, 2013). This approach allocates

the emissions from industrial production to a country with-

out taking into account exports. No life cycle assessment

of products at the point of consumption is considered here.

This production-based approach has limitations as moving

heavy industry from industrialized to developing countries

puts a large burden on countries (in particular those with

small populations and mining/manufacturing activities for

export). For example mining for export is having a growing

impact in Oceania (with low population) and industrial pro-

duction in China for international markets became increas-

ingly important since 2002 when China entered the World

Trade Organisation. The importance of this consumption vs.

production-based approach can be expected in 2008 (and

also 2010) to be at least but probably even larger than what

Boitier (2012) and Davis et al. (2011) amongst others re-

ported for CO2. A consumption-based approach would yield

at least 10 % higher emissions for industrialised countries

whereas 10 % lower emissions for developing countries with

emerging economy.

For SO2 the per capita emission in 2010 for EU-28 of

9.1 kg SO2 cap−1 is very close to the reported value of

8.9 kg SO2 cap−1 from EuroSTAT (2014) – the 0.2 difference

is much less than the 20 % higher per capita SO2 emission

in 2008 (11.5 kg SO2 cap−1). EU’s 9.1 kg SO2 cap−1 is about

half the SO2 per capita for China in 2010 and about one-third

of the SO2 per capita for USA. Significant reductions of the

Chinese SO2 per capita emissions started due to the introduc-

tion of very strict emission limits followed by ambitious flue

gas desulfurization programs in power plants (Lu et al., 2011;

Klimont et al., 2013; Wang et al., 2014). China is expected

to follow the European example, where the SO2 per capita

decreased from 1995 to 2005 with 65 % of the decrease oc-

curring in Germany and UK according to Ramanathan and

Feng (2009).

For NOx and NMVOC, China is similar to the European

per capita levels. North America and Oceania double the

level of European and Asian per capita emissions of NOx and

NMVOC for industrial combustion and transport mainly due

to their larger fuel consumptions in the industry (Olivier et

al., 2013) and road transport (Anderson et al., 2011) sectors,

while having similar abatement technologies.

The level of per capita air pollution results from a

combination of the per capita activity and the level of

implementation of end-of-pipe measurement technology.

The activity level can be reflected by the per capita CO2

emissions, which is highest for USA explaining the high

air pollutant emissions per capita. However, it is not India

with the lowest CO2 per capita, but Japan and Germany

that have the lowest per capita air pollutant emissions,

because of the level of technology and end-of-pipe im-

plementation. To measure the latter we apply a kind

of surrogate variable: the Human Development Index

(HDI) (2010) from UNDP (2015). This shows that Germany

and Japan are more advanced and have therefore lower

emissions per capita for all air pollutants (except NH3

for Germany) and for the PM. We observe that the PM

emissions per capita of Japan (0.16 kgPM2.5 yr−1 cap−1)

are only 60 % of those of Germany and Germany’s one

are about one-fifth of the per capita emissions of the USA,

which are on their turn only 60 % of the per capita PM2.5

for China. Table S3.1 indicates that developing countries,

in particular those with emerging economies but not yet

fully penetrated clean technologies and end-of-pipe mea-

sures, have enhanced PM per capita emissions (China –

8.2 kgPM2.5 yr−1 cap−1, India – 5.2 kgPM2.5 yr−1 cap−1,

Brazil – 3.1 kgPM2.5 yr−1 cap−1). Russia has relatively high

per capita PM emissions (2.2 kgPM2.5 yr−1 cap−1 because of

fossil fuel production and consumption in the power sector,

but much less than Canada (7.4 kg PM2.5 yr−1 cap−1),

a much less populated country but with important

fossil fuel production industry for export. Both coun-

tries, with important contribution in the Arctic region,

show relatively high NMVOC and SO2 emissions

(50.9 kg NMVOC yr−1 cap−1 and 48.7 kg SO2 yr−1 cap−1

for Canada 26.8 kg NMVOC yr−1 cap−1 and

31.9 kg SO2 yr−1 cap−1 for Russia, respectively) due to

their significant inland waterway transport using heavy

residual fuel oil or diesel.

Figure 3a gives an overview of the per capita emissions for

high, upper and lower middle and low-income countries, as

defined for the WGIII of AR5 of IPCC (2014). The largest

variation between the different groups of countries is ob-

served for SO2 and NOx , which represent the presence of

industry. The median of per capita SO2 and NOx emissions

are higher for high and upper middle income countries than

for low or lower middle income countries. The median of per

capita CO and NMVOC is not strongly dependent on the in-

come of the countries, whereas the median of per capita PM
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(and BC and OC) are definitely lower for high income coun-

tries than for low-income countries.

3.3 Per GDP emissions

Another indicator of emission intensity of a country is the ra-

tio of emissions and gross domestic product (GDP) in USD,

in constant purchasing power parity (PPP), as given in Ta-

ble S3.2 of Annex III and shown in Fig. 3b. The GDP 2010

data for the different countries were obtained from World

Bank (2014) and IMF (2014). This indicator is much more

uncertain than the per capita emissions because the GDP is

subject to heterogeneity (by the different economic activi-

ties), to heteroskedasticity (by time-dependent inflation and

currency exchange rates) and to incompleteness (by the not

officially reported activities). It is not recommended to use

this per unit of GDP emissions indicator for relatively small

countries with substantial service sectors (e.g. Luxembourg).

For 2010 Fig. 3b shows that EU and USA have similar low

emissions per unit of GDP for all substances, except NOx

where EU’s emission per unit of GDP is still significantly

lower than in USA. China’s emissions of SO2 and NOx per

unit of GDP are at the high end, whereas for NH3 and the

carbonaceous particulate matter China is bypassed by India,

which shows even higher emissions per unit of GDP. In anal-

ogy with Table 2b, Table 2c provides for the world’s top six

CO2 emitters a comparison of the air pollutants per unit of

GDP, which are linked to the country’s economic activity (in

GDP per capita) and CO2 per unit of GDP (measuring the

energy intensive industry). It is directly apparent that again

Germany and Japan are having high economic activity, with

still important energy intensive industry but low air pollu-

tant emissions per unit of GDP because of the investment

in clean technology. On the other side, India has still much

lower economic activity but nevertheless a much higher par-

ticulate matter emission per unit of GDP.

3.4 Implied emission factors

Energy-intensity is a widely used indicator to assess the

fuel efficiency of manufacturing processes. Analogous to

energy-intensity, we analyse in this section air pollution

emission-intensity for all world countries. Emission intensity

of economic activities for a given region are determined

by implied emission factors. The region-specific implied

emission factors (EFs) present the emissions per unit

of activity (per TJ (terajoule) energy consumed for all

combustion-related activities inclusive industrial processes

or per 1000 head of animals for agricultural related activ-

ities) and are defined for a substance x at year t due to

activities AD in activity subsectors j , k of each of the main

HTAP sectors (htap_3_ENERGY, htap_4_INDUSTRY,

htap_5_TRANSPORT, htap_6_RESIDENTIAL,

htap_8_AGRICULTURE) in a country C as follows:

EFC,3_energy(t,x)[kton (TJ)−1
]

=

∑
sub sec torj

EMC,3_energy,j(t,x)

∣∣∣∣∣
data source of C∑

sub sec torj

ADC,3_energy,j(t)

∣∣∣∣∣
EDGARv4.3

(1)

EFC,4_ind.(t,x)[kton (TJ)−1
][ ∑

comb.sub sec torj

EMC,4_ind.,j(t,x)+
∑

proc.sub sec tork

EMC,4_ind.,k(t,x)

]∣∣∣∣∣
data source of C∑

comb.sub sec torj

ADC,4_ind.,j(t)

∣∣∣∣∣
EDGARv4.3

(2)

EFC,5_transport(t,x)[kton(TJ)−1
]

=

∑
sub sec torj

EMC,5_transport,j(t,x)

∣∣∣∣∣
data source of C∑

sub sec torj

ADC,5_transport,j(t)

∣∣∣∣∣
EDGARv4.3

(3)

EFC,6_res.(t,x)[kton (TJ)−1
]

=

[ ∑
comb.sub sec torj

EMC,6_res.,j(t,x)+
∑

wasteprod.sub sec tork

EMC,6_res.,k(t,x)

]∣∣∣∣∣
data source of C∑

comb.sub sec torj

ADC,6_res.,j(t)

∣∣∣∣∣
EDGARv4.3

(4)

EFC,8_agr.(t,x)[ton head−1
]

=

[ ∑
animalsub sec torj

EMC,8_agr.,j(t,x)+
∑

cropsub sec tork

EMC,8_agr.,k(t,x)

]∣∣∣∣∣
data source of C∑

animalsubsectorj

ADC,8_agr.,j(t)

∣∣∣∣∣
EDGARv4.3

(5)

It should be noted that the implied emission factors of sec-

tors htap_4_INDUSTRY and htap_8_AGRICULTURE are

slightly skewed because of an incomplete accounting of the

activity data, which are for these sectors a combination of

activities of different nature and as such expressed with dif-

ferent units. The emissions of sector htap_4_INDUSTRY

mainly originate from the energy-intensive subsectors and

therefore are weighted with the energy needs (in TJ).

We omitted the accounting of industrial process emis-

sions, which are calculated per kton product manufactured.

In sector htap_6_RESIDENTIAL the waste included, kton

dry or wet waste, could not be combined with the resi-

dential energy consumption in TJ. The emissions of the

htap_8_AGRICULTURE sector are weighted with the num-

ber of animals and not with the kton crops cultivated, because

the crops serve for 85 % as animal food and are therefore

considered a justified measure of agricultural activity.

Thereto, emissions of sector-specific grid maps for 2010

have been aggregated to country level and divided with the

activity data for that sector in that country from EDGARv4.3,

Atmos. Chem. Phys., 15, 11411–11432, 2015 www.atmos-chem-phys.net/15/11411/2015/
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Figure 3. (a) 2010 per capita emissions per substance and per group of countries: low income (LIC), lower middle income (LMC), upper

middle income (UMC) and high income (HIC) with the maximum, and minimum and the percentiles reported in the box plot (10, 50 and

90◦) and the maximum and minimum in each group of countries. (b) Pollutant specific emissions divided by GDP (g USD−1) for the year

2010. Percentiles are reported in the box plots (10, 25, 50, 75 and 90◦) together with emission/GDP for specific regions (EU27, USA, China

and India).
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which are for energy-related activities based on IEA (2013)

statistics and for agricultural-related activities on FAO (2012)

statistics. It should be noted that emissions in particularly

those reported under country-specific point sources are al-

located to the reporting country solely, also for cells cover-

ing country borders. The areal fraction of these cells would

incorrectly spread the emissions also the neighbouring coun-

try, which yield in the case of e.g. the power emissions for

Canada up to 30 % increase with the USA emissions along

its borders. The implied emission factor results are given for

all world countries and for 2010 in the Table S4 of Annex IV

in the Supplement.

Figure 4 gives an overview per sector of the range of differ-

ent implied emission factors for each country with the max-

imum/minimum, the percentiles and the median. In addition

the position in this range of EU27, USA, China and India

is indicated to evaluate the level of emission-intensity of the

different activities. EU 27 and USA show very similar im-

plied emission factors for the energy and industry sectors,

which are much lower than the median for all pollutants.

China also shows implied emission factors for energy and

industry that are lower than the medians, but still larger than

USA and EU 27. India shows much higher implied emission

factors for energy and industry, which are for CO, PM2.5,

BC, and OC above the median. In the case of the residential

sector, the range of variation of the implied emission factors

is the smallest for SO2 and NOx , but the largest for PM2.5

and BC. For the transport sector a relatively large variation

is present for CO, with an implied emission factor for China

that is above the median. For agriculture it is remarkable that

China and India, as well as the USA and EU 27, have implied

emission factors that are above the median, with China reach-

ing the maximum compared to all other world countries.

Even though only implied emissions factors for country

emissions are presented in Fig. 4, the implied emission fac-

tors were also calculated for the international bunker fuel

and indicated that the implied emission factors are at the

high end of the range for SO2 (0.98 ton SO2 TJ−1 similar

to the road transport emission factor of Laos or Panama),

NOx (with 1.65 ton NOx TJ−1 similar as for transport in

Bangladesh or Myanmar), PM2.5 (with 0.17 ton PM2.5 TJ−1

similar as for transport in China), but are relatively low for

CO, NMVOC and BC. The high SO2 implied emission fac-

tor (from EDGARv4.3) represents the use of lower quality

fuels in sea transportation, especially in international waters:

85 % of the sea bunker fuel in 2010 consists of residual fuel

oil with an emission factor of 1.29 ton SO2 TJ−1.

3.5 Emission changes 2008–2010

The emission change from 2008 to 2010 is given in Ta-

ble S2.3 of Annex II. It should be noted that the data provided

for Canada by US-EPA/Environment Canada and for Europe

by TNO were actually not representing 2010, but 2008 and

2009, respectively. However, updates were undertaken: point

source data of 2010 were used and implemented in the grid

maps. Both regions were affected by the economic crisis of

2008, yielding stagnation and even downwards trends in the

following years, mainly in the energy and industry sectors.

The latter sectors are primarily composed of point sources;

therefore the grid maps of 2010 represent also for Canada and

Europe the actual 2010 situation. For the developed countries

in North America and Europe, the decline of emissions be-

tween 2008 and 2010 for most of the pollutants are driven

mostly by continued implementation of emission reduction

technologies. In some cases this also leads to increases in

sectorial emissions, although insignificant for the total, as is

estimated for NH3 in the energy and transport sectors, due to

the use of catalysts.

For the MICS-Asia region, the emissions are mostly in-

creasing except for the energy sector, where the SO2 and

PM emissions are reduced in 2010 due to the wide de-

ployment of flue-gas desulfurization (FGD) and particulate

matter filters in the power plants, consistent with Wang et

al. (2014). For the other developing countries (calculated

with the EDGARv4.3 data and based on the IEA (2013) fuel

statistics), the SO2 emissions of the energy sector slightly in-

crease from 2008 to 2010 because of the increased coal use

(as also observed by Weng et al., 2012) and the increased use

of heavy fuel oil in the Middle East. The PM emissions from

the energy and industry of some other developing countries

show a decrease from 2008 to 2010, mainly due to the activ-

ity reduction and in some cases due to the modelled decrease

in controlled emission factor in EDGARv4.3. Largest reduc-

tions were seen for Brazil (with 54 % reduction of its 2008

charcoal production) and Kazakhstan (11 % reduction in coal

power generation, which is modelled with a 31 % decreasing

BC emission factor).

3.6 Qualitative assessment of the uncertainty of

emission grid maps

Even though the HTAP_v2.2 data sources are all bottom-up

constructed inventories, they differ considerably in e.g. the

assumptions taken on the modelling of technology and end-

or-pipe measures and use different emission factors, which

lead to inconsistencies at the borders between two adjacent

inventories. On their turn the different bottom-up inventories

are constructed with sub-regional (country, state, county or

province level) activity data and emission factors. As such,

inconsistencies can be expected at each country border, and

the variation of the emissions at cross-border cells already

gives us a first indication on the region- and sector-specific

emission uncertainty. The propagation of uncertainty is given

by the effect of variables’ uncertainties (or errors) on the un-

certainty; i.e. the variance of the activity data and that of the

emission factor. Table 3 provides some insight in the estima-

tion of the uncertainty range, however the approach followed

in HTAP v2.2 inhibits an overall consistent uncertainty as-

sessment because it is not one single bottom-up inventory.
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Figure 4. Sector specific implied emissions factors (ton (TJ)−1) for the year 2010. Percentiles are reported in the box plots (10, 25, 50,

75, and 90◦) together with implied emission factors for specific regions (EU27, USA, China and India). Note – For the percentiles the

following countries are left out. For CO – for the industry sector: Togo, Eritrea, Congo, Côte d’Ivoire, Kenya, Benin; for the residential

sector: Maldives; for the transport sector: North Korea, Afghanistan, Laos, Tajikistan, Mongolia. For SO2 – for the industry sector: Namibia,

Laos, Jamaica. For NOx – for the residential sector: Maldives; for the TRANSPORT sector: Afghanistan, Laos, North Korea, Tajikistan.

For NMVOC – for the energy sector: Bhutan; for the industry sector: Togo, Eritrea, Côte d’Ivoire, Congo, Cameroon, Kenya, Benin, Aruba,

Antigua, Bahamas, Ethiopia, Sudan, Senegal, Equatorial Guinea, Central African Rep., Sri Lanka, Angola, Mozambique, Zambia, Jamaica;

for the residential sector: American Samoa, Gum, Maldives, Tonga; for the transport sector: Afghanistan, Laos, North Korea. For PM10 –

for the industry sector: Togo, Eritrea, Côte d’Ivoire, Congo, Kenya, Benin, for the transport sector: Afghanistan. For PM2.5 – for the energy

sector: Tajikistan, Luxembourg; for the industry sector: Togo and Eritrea; for the transport sector: Afghanistan. For BC – for the energy

sector: Nigeria, Malaysia, Belgium, Oman, Finland, Georgia, Vietnam, Canada, Armenia, Tunisia, Jordan, The Netherlands, Trinidad and

Tobago, Algeria, Latvia, United Arab Emirates, Brunei, Turkmenistan, Japan, Mozambique, Congo, Qatar, Bahrain, Moldova, Kyrgyzstan,

South Korea, Taiwan, Luxembourg, Bhutan, Tajikistan; for the industry: Trinidad and Tobago, Malta; for the transport sector: Afghanistan.

For OC – for the energy sector: Tunisia, Jordan, Trinidad and Tobago, Algeria, United Arab Emirates, Brunei, Turkmenistan, Tajikistan,

Mozambique, Congo, Qatar, Bahrain, Kyrgyzstan, Taiwan, Myanmar, South Korea, Vietnam; for the industry sector: Bahrain, Eritrea; for

the residential sector: Greenland, Gibraltar, Faroe Islands, Saint Pierre et Miquelon; for the transport sector: Afghanistan. For NH3 – for

the agriculture sector: Faroe Islands, Tajikistan, Greenland, Falkland Islands, Kyrgyzstan, South Korea, Brunei, American Samoa, Malaysia,

Trinidad and Tobago, Bahamas, Saint Pierre et Miquelon, Sri Lanka, Suriname, Réunion, Thailand, Indonesia, Japan, Barbados, Bhutan,

Guyana, Costa Rica.

Guidance on evaluation of emission uncertainties can be

obtained from the evaluations of the national inventories re-

ported to UNFCCC, addressed by e.g. Jonas et al. (2010)

(and references in there). With the evaluation of common

behaviours between species in EDGARv4.2 of Balsama et

al. (2014) we propose the same approach of CO2 uncertainty
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Table 3. Variables’ uncertainties for sector- and country-specific totals per region with qualitative classification using the abbreviations low

(L), low-medium (LM), upper-medium (UM), and high (H). The legend provides an interpretation of the level low, low-medium, upper-

medium and high, which is indicatively specified for two groups of countries with two different statistical infrastructures.

SO2 NOx CO NMVOC NH3 PM BC / OC With legend:

htap1_AIR L LM LM UM LM UM UM countries with well maintained Countries with poorly maintained

statistical infrastructure statistical infrastructure

htap2_SHIPS L LM LM UM LM H H

htap3_ENERGY L LM LM UM LM UM UM

htap4_INDUSTRY LM LM LM UM UM LM LM L < 15 % L < 35 %

htap5_TRANSPORT LM UM UM UM H H H 15 %≤LM < 50 % 35 %≤LM < 70 %

htap6_RESIDENTIAL LM UM UM UM H H H 50 %≤UM < 100 % 70 %≤UM < 150 %

htap8_AGRICULTURE UM UM UM UM H H H 100 %≤H 150 %≤H

Note: The EMEP/EEA (2013) Guidebook’s Uncertainties Chapter 5 for the absolute annual total of different pollutants have been taken into account to qualitatively indicate a low (L), low medium (LM), upper

medium (UM) or high (H) uncertainty for the different sectors and species. Countries with well maintained infrastructure are mainly the 24 OECD (1990) countries and India. Other countries are considered to

have a relative poorly maintained statistical infrastructure.

assessment for SO2 and NOx (all driven by combustion-

related activities), and the approach of N2O for NH3. As

such, Table 3 follows the grouping of countries by Andres et

al. (2012) and Marland et al. (1999), based on their statistical

infrastructure. Countries with well maintained statistical in-

frastructure are the 24 OECD-1990 countries plus India with

a British statistical accounting system. For the other coun-

tries, a larger range in uncertainty is present, for which we

refer to Gregg et al. (2008) or Tu (2011) and Olivier (2002).

For the annual CO2 inventory, the biofuel is carbon-neutral

and not taken up in the national inventories. However, for the

air pollutants it is an additional large source of uncertainty,

which is often not officially reported and as such missing.

For the N-related emissions, the division in countries could

be based on common agricultural practices (Leip et al., 2011

and Rufino et al., 2014).

In addition to the uncertainty of the activities, the qual-

ity and representativeness of the controlled emission factors

play a crucial role. The standard range of uncertainty already

varies according to the EMEP/EEA (2013) Guidebook’s Un-

certainties Chapter 5 for the absolute annual total of different

pollutants between at least 10 % for SO2, at least 20 % for

NOx and CO, at least 50 % for NMVOC, an order of magni-

tude for NH3, and PM10, PM2.5, BC and OC. These consider-

ations have been taken into account to indicate qualitatively

a range for the different uncertainties (using the terminology

low (L), low medium (LM), upper medium (UM) or high

(H)) for the different sectors and species.

The HTAP modelling community is expected to run in

addition to the actual 2008 and 2010 simulations with the

HTAP_v2.2 emission inventory also the emission scenarios

of ECLIPSEv5 (Klimont et al., 2015). ECLIPSEv5 starts

with a 2010 emission inventory (or base year inventory),

that serves also as reference point for all projections. Here

we compare the ECLIPSEv5 emission inventory for 2010

with the HTAP_v2.2 2010 data, in order to evaluate how

close the reference point is to the “officially accepted” re-

gional inventories of HTAP_v2.2. At the global level, a rel-

atively good agreement is found with small relative emis-

sion differences (ECLIPSEv5 – HTAPv2.2)/HTAPv2.2 for

the aggregated sectors in 2010. It should be noted that the

GAINS data set, another bottom inventory, can not be consid-

ered an external independent source of verification, because

similar information on emission factors and reductions for

certain technologies have been applied in the TNO-EMEP,

MIX-Asia and EDGARv4.3 data sets. The relative difference

for NOx and CO is only −4 % and +5 %, respectively. For

SO2 a larger difference of −8 % reflects the recent important

S-reductions for the non-ferrous metal smelters in ECLIP-

SEv5 (Klimont et al., 2013). For NH3 a relative difference

of +17 % is acceptable because of the larger uncertainty in

emission factors driven by lack of information about manure

management practices and also by incomplete data on the

agricultural activities. For NMVOC a difference of −27 %

stems primarily from the assumptions about emissions from

solvent use. The information about activity levels is scarce

and even less is known about the emission factors for some

important sources. Both regional inventory compilers and

modellers often make assumptions about per capita or per

GDP solvent use NMVOC emissions from particular sectors.

Here assumptions employed in the ECLIPSEv5 lead to lower

emissions from these activities. As anticipated (and reflected

in Table 3) larger differences of 48 and 29 % are present

for PM2.5 and BC, respectively. While for PM2.5, assump-

tions about penetration and efficiency of filters in industrial

and small-scale residential boilers as well as emission factors

and activity data for biomass used in cooking stoves play a

key role, for BC assumptions about coal consumption in East

Asia are of relevance since ECLIPSEv5 relied on provincial

statistics for China which results in higher coal consump-

tion than reported in national statistics and IEA. Additionally,

ECLIPSEv5 includes emissions from kerosene wick lamps,

especially relevant for South Asia and parts of Africa accord-

ing to Lam et al. (2012), gas flaring and high emitting vehi-

cles, which together result in about 30 % higher emissions.

In addition, the spatial allocation is subject to other types

of errors, with a spatial variance for point sources and a more

important systematic error when a spatial proxy is used to
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distribute the emissions. Geo-spatial consistency is lower in

the HTAP_v2.2 database than if the national totals would

have been spatially redistributed with one harmonised spa-

tial proxy data set. It should be also noted that derivation of

country totals from the 0.1◦× 0.1◦ emission grid maps (as

e.g. done in the ECCAD system) is only valid if the country-

specific total is larger than 0.2 % of each of the totals of

the neighbouring countries. Otherwise the derived country-

specific sector total can be 50 % larger than the bottom-up

one, mainly in the energy sector with many point sources

which are typically located on waterways or coastal areas

and as such in cross border cells. Table S1.3 illustrates the

deviations of derived country-specific sector totals to the

bottom-up ones for the Asian region. The latter caused de-

rived sector totals for Kyrgyzstan, Tajikistan, Afghanistan,

Laos, Myanmar, Bangladesh, which deviated with 1 order

of magnitude from the bottom-up totals. However, the rela-

tively small differences for China (≤ 5 %), India (≤ 3 % for

all except for SO2 from energy where it is 14 %), Indone-

sia (≤ 7 %) and Thailand (≤ 12.5 %), Japan (≤ 16.0 %) and

South Korea (≤ 17.3 %) show a good agreement for the top

six Asian emitters.

Another type of inconsistency in mass balance at grid cell

level occurs when for the same region the data sources pro-

viding the emission grid maps for PM10 and PM2.5 or for

PM2.5 and BC / OC are different. Already the application of

different spatial proxy data sets (e.g. with and without point

sources) result in an inconsistent allocation of multi-pollutant

sources to different grid cells. This was another reason not to

use the PM grid maps of EMEP, as no BC and OC speci-

ation is available from the same EMEP data source. Instead

we used the grid maps of TNO for all PM components (PM10

and PM2.5) and the TNO speciation file for BC and OC. In

addition a check was performed to ensure that the sum of BC

and OC emissions in every grid cell is smaller than the PM2.5

emission in that grid cell. Thereto a re-allocation of the emis-

sions of some point sources (industrial facilities) was needed

within Europe (e.g. Poland) and performed in consultation

with TNO.

Even though this mosaic inventory can not present the

same consistency as one global bottom-up inventory, its ex-

tensive evaluation and use helped improving its quality. The

evaluation was undertaken in particular in discussion with

TNO and with US EPA to identify missing sources or misal-

location of point sources. In particular point sources are very

important input, but their strengths and locations are subject

to input errors with larger consequences and cannot be ex-

trapolated in time. (Closure of power plants as large point

sources can change the emission distribution pattern from 1

year to another.) In addition the use of the data set by global

and regional climate and air quality modellers and the mod-

ellers’ feedback (L. Emmons, personal communications, 5

November 2013 and D. Henze, personal communication, 19

November 2013) were most useful and are further encour-

aged.

4 Conclusions and recommendations

This paper describes the HTAP global air pollutant reference

emission inventory for 2010, which is composed of latest

available data from regional inventory compilers. It assures

a consistent input for both regional and global modelling as

required by the HTAP modelling exercise. The HTAP_v2.2

emission database makes use of consolidated estimates of of-

ficial and latest available regional information with air pollu-

tant grid maps from US EPA and Environment Canada for

North America, EMEP-TNO for Europe, MIX for Asia, and

the EDGARv4.3 database for the rest of the world. The mo-

saic of grid maps provides comprehensive local information

on the emission of air pollutants, because it results from the

collection of point sources and national emission grid maps

at 0.1◦ (for some regions 0.25◦) resolution. Even though

the HTAP_v2.2 data set is not a self-consistent bottom-up

database with activity data of consistent international statis-

tics, with harmonized emission factors, and with global sets

of spatial proxy data, it provides a unique set of emission

grid maps with global coverage and high spatial resolution,

including in particular important point sources. The compi-

lation of implied emission factors and per capita emissions

for the different world regions using multiple sources pro-

vides the regional and national emission inventory compilers

with a valuable asset for comparison with their own data for

cross checking and analysis which may lead to identification

of future improvement options.

This data set was prepared as emission input for the HTAP

community of modellers and its preparation has involved out-

reach to global and regional climate and air quality mod-

ellers (collaborating also within the AQMEII and MICS-

Asia modelling exercises). The TF HTAP needed an emis-

sion inventory that was suitable for simultaneous and com-

parable modelling of air quality at the regional scale and at

the global scale to deliver consistent policy support at both

scales. The HTAP-v2.2 emission inventory presented in this

paper is tailor-made to allow the TF HTAP to fulfil its prime

objectives and contribute to a common international under-

standing of global and regional air pollution and its influ-

ence on human health, vegetation and climate. The use of the

HTAPv2.2 inventory will substantially help to provide a ba-

sis for future international policies because it combines and

is consistent with the inventories that are used for regional

(EU, US Canada, China) policy analysis and support.

Data availability

The 0.1◦× 0.1◦ emission grid maps can be downloaded

from the EDGAR website on http://edgar.jrc.ec.europa.eu/

htap_v2/index.php?SECURE=_123 per year, per substance

and per sector either in the format of netcdf-files or .txt

files. The emissions in the netcdf-files are expressed in

kg substance m−2 s−1 but the emissions in the .txt are in ton

substance/gridcell. For the NMVOC speciated grid maps we
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refer to the link on the ECCAD data portal: http://eccad2.

sedoo.fr/eccad2/mapdisplay.xhtml?faces-redirect=_true.

The Supplement related to this article is available online

at doi:10.5194/acp-15-11411-2015-supplement.
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