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Abstract. Detecting the optical properties of aerosols us-

ing passive satellite-borne measurements alone is a difficult

task due to the broadband effect of aerosols on the mea-

sured spectra and the influences of surface and cloud reflec-

tion. We present another approach to determine aerosol type,

namely by studying the relationship of aerosol optical depth

(AOD) with trace gas abundance, aerosol absorption, and

mean aerosol size. Our new Global Aerosol Classification

Algorithm, GACA, examines relationships between aerosol

properties (AOD and extinction Ångström exponent from the

Moderate Resolution Imaging Spectroradiometer (MODIS),

UV Aerosol Index from the second Global Ozone Moni-

toring Experiment, GOME-2) and trace gas column densi-

ties (NO2, HCHO, SO2 from GOME-2, and CO from MO-

PITT, the Measurements of Pollution in the Troposphere in-

strument) on a monthly mean basis. First, aerosol types are

separated based on size (Ångström exponent) and absorption

(UV Aerosol Index), then the dominating sources are identi-

fied based on mean trace gas columns and their correlation

with AOD. In this way, global maps of dominant aerosol

type and main source type are constructed for each season

and compared with maps of aerosol composition from the

global MACC (Monitoring Atmospheric Composition and

Climate) model. Although GACA cannot correctly character-

ize transported or mixed aerosols, GACA and MACC show

good agreement regarding the global seasonal cycle, partic-

ularly for urban/industrial aerosols. The seasonal cycles of

both aerosol type and source are also studied in more detail

for selected 5◦×5◦ regions. Again, good agreement between

GACA and MACC is found for all regions, but some system-

atic differences become apparent: the variability of aerosol

composition (yearly and/or seasonal) is often not well cap-

tured by MACC, the amount of mineral dust outside of the

dust belt appears to be overestimated, and the abundance of

secondary organic aerosols is underestimated in comparison

with GACA. Whereas the presented study is of exploratory

nature, we show that the developed algorithm is well suited to

evaluate climate and atmospheric composition models by in-

cluding aerosol type and source obtained from measurements

into the comparison, instead of focusing on a single param-

eter, e.g., AOD. The approach could be adapted to constrain

the mix of aerosol types during the process of a combined

data assimilation of aerosol and trace gas observations.

1 Introduction

Measurements of aerosol optical depth (AOD) – by ground-

based, airborne, and satellite-borne instruments – have pro-

vided us with a good picture of the highly variable distribu-

tion of aerosols throughout the globe. The uncertainties in

our knowledge of the global distribution of aerosol loading

have become progressively smaller during the past decade

owing to dedicated satellite-borne aerosol instruments like

the Moderate Resolution Imaging Spectroradiometer and the

Multi-angle Imaging Spectroradiometer (MODIS and MISR;

see e.g., Remer et al., 2005; Kahn et al., 2005; Kokhanovsky

and de Leeuw, 2009; Chin et al., 2014, and references

therein). However, for many applications the aerosol amount

tells only half of the story: to study the interaction be-

tween aerosols and clouds (Rosenfeld et al., 2014), to de-

termine aerosol radiative effects, and for the development
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of mitigation strategies it is crucial to additionally know the

aerosol type or source (e.g., IPCC, 2013). For remote sens-

ing retrievals themselves, aerosol optical properties or some

constraints on particle type are also needed to aid model se-

lection in the inversion process.

The contribution of aerosols to the top-of-atmosphere ra-

diance detected by satellite instruments is spectrally smooth,

and due to the interfering signal from the surface, passive ra-

diometers like MODIS cannot retrieve more than one or two

pieces of information from their measurements: AOD and the

extinction Ångström exponent (EAE). The EAE, as a proxy

for the particle size distribution, turns out to be a very useful

metric when characterizing aerosol types. Naturally emitted

primary aerosols, such as mineral dust and sea salt, consist of

relatively large particles with a size distribution centered at

sizes > 1 µm. In contrast, secondary aerosols – those formed

from components emitted in gaseous form – are generally

(much) smaller than 1 µm (i.e., the extinction is almost en-

tirely due to small particles; Seinfeld and Pandis, 2006). The

majority of such “fine” particles is often assumed to be of an-

thropogenic origin (Kaufman et al., 2002), although biomass

burning aerosols, which consist mostly of fine particles, are

not all human-induced. In addition, there are strong biogenic

sources of small secondary organic aerosols. To further dis-

criminate between aerosol types, differences in absorption

can be exploited (as e.g., in Higurashi and Nakajima, 2002;

Jeong and Li, 2005; Kim et al., 2007; Mielonen et al., 2009).

This allows for the distinction of desert dust (large parti-

cles that absorb in the UV range) from sea salt (large, but

non-absorbing), and smoke (small, absorbing) from indus-

trial pollution (small, weakly or non-absorbing), for exam-

ple. In practice, such simple rules are often violated: aging

of particles (hygroscopic growth, coating or other processes)

or mixing of different aerosol types change the optical prop-

erties. To determine the (most probable) main aerosol source,

more information is required. We use measurements of trace

gas abundances as a source of this information.

Apart from naturally formed particles (desert dust and sea

salt), aerosols are often accompanied by enhanced trace gas

levels – because they were emitted by the same source, or

were formed from those trace gases or from the same precur-

sor. Hence, collocated measurements of trace gases can be

used to determine the main source of aerosols. This has been

exploited in a study by Veefkind et al. (2011), in which it was

shown that the presence of significant correlation of AOD

with trace gas concentrations, notably NO2 and HCHO, is an

indication of the main source of those aerosols. In a later

publication, also involving data from the Ozone Monitor-

ing Instrument (OMI), Torres et al. (2013) demonstrated that

the use of CO data from the Atmospheric Infrared Sounder

(AIRS) to identify smoke improves the aerosol retrieval by

OMI. In the present study, we take these findings a step fur-

ther and integrate them into an algorithm to determine the

main aerosol type and its source on a global scale. We ex-

tend the analysis initiated by Veefkind et al. (2011) by adding

CO abundance and aerosol optical properties. The resulting

Global Aerosol Classification Algorithm, GACA, combines

the EAE from MODIS and UV Aerosol Index (UVAI) from

GOME-2 (Global Ozone Monitoring Experiment-2) to de-

termine an aerosol type based on its size and absorption.

Subsequently, trace gas vertical column densities (VCDs of

NO2, HCHO, SO2, and CO) are used to infer the dominating

source of the aerosols. The main results from this algorithm

are seasonal maps that show the dominating aerosol type and

source at 1◦× 1◦ or 2◦× 2◦ resolution, respectively.

GACA results are compared to aerosol composition from

MACC (Monitoring Atmospheric Composition and Climate)

reanalysis data on a global and regional scale. The MACC

project provides data on atmospheric composition for the re-

cent past and makes midterm forecasts by combining state-

of-the-art atmospheric modeling with satellite-based mea-

surements (e.g., Inness et al., 2013). The model assimilates

AOD from both MODIS instruments, using it to scale the to-

tal aerosol mixing ratio. The tropospheric aerosol types (or

components) included in MACC are sea salt, desert dust, or-

ganic matter, black carbon, and sulfate. The comparison with

model data highlights an important application of our algo-

rithm: the improvement of emissions of both trace gases and

aerosols in models (as suggested in e.g., Xu et al., 2013).

In this paper we present GACA and demonstrate its capa-

bilities with seasonal global maps of aerosol type and main

source, seasonal cycles of aerosol type and source in six se-

lected regions, and several other applications. We find good

agreement between results from GACA and MACC reanal-

ysis in most cases; some important discrepancies between

the data sets are discussed. The paper is structured as fol-

lows: first, we describe the instruments and data sets used

in GACA. The algorithm is described in detail in Sect. 3.

Global maps of aerosol type and aerosol source determined

by GACA are presented and compared with maps of aerosol

composition from the MACC reanalysis in Sect. 4, where the

study of the seasonal cycle in six study regions is also shown.

In Sect. 5 the sensitivity of GACA to various parameters is

discussed, GACA results are compared to existing aerosol

climatologies, and future improvements to the algorithm are

suggested; the closing Sect. 6 contains our concluding re-

marks.

2 Instruments and data

2.1 Satellite instruments

There are two MODIS instruments in operation: one each

on NASA’s Aqua and Terra satellites. Designed to detect

aerosols, the MODIS instruments measure reflectances in 36

wavelength bands at high spatial resolution (of the order of

1 km2 or less) with a swath wide enough (2600 km) to pro-

vide daily global coverage (Justice and Townshend, 2002,

and references therein). Aqua is part of the A-Train, it crosses
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the Equator at 13:30 local time (LT) and performs its daylight

measurements on the ascending part of its orbit; Terra is in

a daytime-descending orbit and has a local Equator crossing

time of about 10:30 LT.

The MOPITT instrument (Pan et al., 1998) is also part

of the payload of the Terra satellite. MOPITT pixels mea-

sure 22km× 22 km and the swath of the instrument is

640 km; hence, global coverage is reached approximately ev-

ery 3 days.

GOME-2 on MetOp-A is a spectrometer that measures

backscattered radiance in the UV–NIR range (240–790 nm)

with a nominal spatial resolution of 40km× 80 km (Callies

et al., 2000). The swath width of the GOME-2 instrument

is 1920 km, permitting global coverage in 1.5 days. MetOp-

A was launched in 2006 into a daytime-descending orbit with

a local Equator crossing time of 09:30 LT.

2.2 Data sets

The data sets that are used as input to GACA are briefly in-

troduced in this section; for details we refer to the literature

and websites listed in Table 1.

2.2.1 Aerosol optical depth and extinction Ångström

exponent

Monthly mean values of AOD (or τ ) from MODIS collec-

tion 5.1 were obtained at 1◦×1◦ resolution. The retrieval al-

gorithms for aerosols over ocean and dark land are described

in Remer et al. (2005) and Levy et al. (2007b), respectively.

For bright surfaces where no AOD value is available from

the dark target algorithm (mainly deserts), the Deep Blue

product (Hsu et al., 2004) is used. In this study, data from

the MODIS instrument on Aqua are used – despite the bet-

ter agreement of the overpass times of GOME-2 and Terra –

because the Deep Blue data set of Terra reaches only up to

2007 due to a missing polarization correction. The Level-3

reprocessing of collection 6, in which the calibration of both

MODIS instruments is improved and several other algorithm

updates have been made (Levy et al., 2013; Lyapustin et al.,

2014), is incomplete at the time of writing. MODIS AOD is

given at 550 nm. Monthly mean EAE (α) is calculated ac-

cording to Eq. (1) from the mean MODIS AOD:

α =−
log(τλ2

/τλ1
)

log(λ2/λ1)
, (1)

with τλ as the monthly mean AOD at the wavelengths λ1 =

470 nm and λ2 = 660 nm. Those are the only two channels

for which AOD is determined for land, ocean, and bright

surfaces. The EAE was chosen over the fine-mode fraction

(FMF) because FMF is not part of the Deep Blue aerosol

product, thus no aerosol size information would be available

over deserts and other bright surfaces. A more detailed dis-

cussion of EAE and FMF appears in Sect. 5.2.

2.2.2 UV Aerosol Index

The UVAI is a semi-quantitative indicator of aerosols. Pos-

itive values of UVAI are generally referred to as “Absorb-

ing Aerosol Index (AAI)”, which is a measure of aerosols

that absorb UV radiation (Torres et al., 1998; de Graaf et al.,

2005). For UVAI< 0, which can be used for the detection of

non-absorbing aerosols (Penning de Vries et al., 2009), the

term “SCattering Index (SCI)” was suggested. The UVAI is

a complex function of AOD, aerosol absorption, and layer

altitude, and using it in a quantitative sense is not straightfor-

ward. However, in combination with auxiliary information

on aerosol abundance (i.e., AOD), information on aerosol ab-

sorption can be derived from UVAI. Although “AAI” is more

often used in literature, we prefer to use the term “UVAI”, as

we use both the positive and negative values of the Aerosol

Index. Level-2 operational UVAI (determined using 340 and

380 nm GOME-2 reflectances) from the O3M SAF (Satel-

lite Application Facility for Atmospheric Composition and

UV Radiation; o3msaf.fmi.fi) were obtained from the Tro-

pospheric Emission Monitoring Internet Service (TEMIS);

a description of the algorithm can be found in de Graaf et

al. (2005, 2014). The UVAI were corrected for the effects of

instrument degradation using empirically derived inflight re-

flection correction factors (Tilstra et al., 2012). The data were

filtered for sunglint, single scattering angles smaller than 90◦,

and solar eclipses, as recommended in the “ATBD for the

GOME-2 Aerosol products” by de Graaf et al. (2014). In ad-

dition, data with FRESCO (Fast Retrieval Scheme for Clouds

from the Oxygen A band) effective cloud fractions (Wang

et al., 2008) exceeding 0.2 or solar zenith angle (SZA) over

80◦ were discarded prior to gridding and averaging to com-

ply with the data selection of the trace gases measured by

GOME-2 (see next section).

2.2.3 Trace gases

Total column densities of SO2 and HCHO, and tropospheric

column densities of NO2 are retrieved by DOAS analysis

(Differential Optical Absorption Spectroscopy; see e.g., Platt

and Stutz, 2008; Richter and Wagner, 2011) of GOME-2

spectra in the UV–visible range.

For our study, TM4NO2A version 2.1 Level-2 NO2 tro-

pospheric VCDs were obtained from TEMIS. The retrieval

of NO2 from GOME, similarly applied to GOME-2, is de-

scribed in Boersma et al. (2004).

Version 12 GOME-2 HCHO VCDs were downloaded

from h2co.aeronomie.be; the retrieval description can be

found in De Smedt et al. (2012). Level-2 HCHO data are

only available for SZA< 80◦.

Our retrieval of GOME-2 SO2 data is described in detail

in Hörmann et al. (2013). It takes into account non-linear

effects that may occur for high SO2 concentrations.

All GOME-2 trace gas data were filtered by FRESCO

cloud fraction (CF< 0.2, unless stated otherwise) and
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Table 1. Data sets that are used as input to GACA, with appropriate literature references and websites.

Data set Instrument Data Literature references Source

version

AOD MODIS Coll. 5.1 Remer et al. (2005); http://ladsweb.nascom.nasa.gov

Levy et al. (2007b);

Hsu et al. (2004)

UVAI GOME-2 V. 4 de Graaf et al. (2005, 2014) www.temis.nl/airpollution/absaai

NO2 VCD GOME-2 V. 2.1 Boersma et al. (2004) www.temis.nl/airpollution/no2.html

HCHO VCD GOME-2 V. 12 De Smedt et al. (2012) http://h2co.aeronomie.be

SO2 VCD GOME-2 Hörmann et al. (2013) own

CO VCD MOPITT V. 6 Deeter et al. (2003, 2013) http://eosweb.larc.nasa.gov/project/mopitt/mopitt_table

SZA< 80◦, subsequently gridded to 1◦× 1◦ resolution and

averaged for each month of the years 2007–2011.

Monthly mean, gridded version-6 MOPITT CO total

VCDs were obtained from the Atmospheric Science Data

Center (ASDC). We used results from the combined near-

and thermal-infrared (NIR–TIR) retrieval because combina-

tion of the two spectral regions greatly improves the sensi-

tivity to the lower troposphere (Deeter et al., 2003, 2013).

A recent validation of the NIR–TIR algorithm found rela-

tively large random retrieval errors and bias drift (Deeter et

al., 2013), but these are not expected to significantly influ-

ence our results for two reasons: first, we use monthly mean

data on a coarse 1◦× 1◦ grid which reduces random errors;

and, second, we use the excess CO (value minus background)

instead of the absolute value, which should remove a time-

dependent bias. The total excess CO column used here (de-

noted as 1CO) is obtained by subtracting a background col-

umn that is the median of the data within each 5◦ latitude

band. This procedure is needed due to the long lifetime of

CO and allows using a single CO threshold value throughout

the year and for the whole globe.

2.2.4 MACC model data

The MACC reanalysis was developed and produced during

the series of EU-funded GEMS (Global and regional Earth-

system (Atmosphere) Monitoring using Satellite and in situ

data), MACC and MACC-II (MACC-Interim Implemen-

tation) projects. These projects developed the operational

Copernicus Atmosphere Monitoring Services (CAMS),

which was launched in November 2014. It delivers global

atmospheric composition analyses and forecasts and Euro-

pean air quality forecasts every day. While the main develop-

ments were aimed at real-time production, periodic reanaly-

ses have been planned from the outset to provide consistent

time series for various scientific applications (Hollingsworth

et al., 2008, www.copernicus-atmosphere.eu). The aerosol

model is integrated into the European Centre for Medium-

Range Weather Forecasts (ECMWF) Integrated Forecasting

System (IFS) for numerical weather predictions and uses the

total aerosol mixing ratio as a control variable. Five types

of tropospheric aerosols are included: sea salt, desert dust,

organic matter, black carbon, and sulfate. Aerosols of nat-

ural origin (sea salt and desert dust) are related to model

parameters (wind speed and soil moisture), whereas an-

thropogenic aerosol emissions come from inventories (Mor-

crette et al., 2009). In particular, biomass burning emis-

sions are distributed with 0.5◦ and 1-day resolution accord-

ing to GFASv1.0 (Global Fire Assimilation System; Kaiser

et al., 2012), with monthly budgets before 2009 scaled to

GFED3.0 (Global Fire Emissions Database; van der Werf et

al., 2010). The aerosol assimilation system uses AOD from

both MODIS sensors at the time and location of overpass to

scale the total aerosol abundance, while retaining the frac-

tional contribution of each aerosol component to the total

mass (Benedetti et al., 2009).

3 Global Aerosol Classification Algorithm description

GACA is based on the outcome of several tests applied to

the trace gas and aerosol data described in the previous sec-

tion, and their correlation with AOD. The algorithm consists

of two main parts: the first part, named GACA-type, assigns

certain aerosol types to each data point within a grid box

based on UVAI (a measure of aerosol absorption) and EAE

(a measure of aerosol size). The second part, GACA-source,

relates trace gas abundance to the different aerosol types and

assigns the most probable aerosol source to each grid box.

Both parts will be described in detail in Sects. 3.2 and 3.3,

and are summarized in the decision tree in Fig. 2.

3.1 Data selection

Prior to analysis, GACA performs a selection of data for

each “grid box”. For a final map with a resolution of 2◦× 2◦

(which was chosen as a compromise between spatial reso-

lution and statistics), each grid box on the globe contains

four data points per month, because the input monthly mean

maps (of AOD, UVAI, EAE, and trace gas column densi-

ties) have a resolution of 1◦× 1◦. To improve statistics and

stability of the algorithm, the data are grouped by season

and 5 years of data (2007–2011) are combined, increasing

Atmos. Chem. Phys., 15, 10597–10618, 2015 www.atmos-chem-phys.net/15/10597/2015/
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Figure 1. Speciation of aerosol types based on absorption (UVAI)

and size (EAE). Left, aerosol types color-coded according to size

(larger sizes have darker hues) and absorption (non-absorbing in

blue, neutral in green, absorbing in red): LA, large absorbing; MA,

medium-size absorbing; SA, small absorbing; LN, large, neutral;

MN, medium-size, neutral; SN, small, neutral; LNA, large, non-

absorbing; MNA, medium-size, non-absorbing; SNA, small, non-

absorbing. Right, monthly mean UVAI and EAE within grid boxes

in regions dominated by desert dust (red dots), biomass burning

smoke (gray crosses), secondary biogenic aerosols (green circles),

and sea salt (light blue pluses). Data are from June–August 2007–

2011; see the text for the selected geographical regions.

the number of data points to 60. Grid boxes in which the

monthly mean AOD never exceeds 0.05 are removed, as it is

assumed that they cannot be reliably classified. The obtained

data set is screened for missing values and outliers; the lat-

ter because the intention is to build a climatology of typical

conditions, which should not be influenced by exceptional

events. In addition, faulty retrievals (e.g., due to the South

Atlantic Anomaly) are removed. Outliers are removed by re-

peated exclusion of data points exceeding the mean-plus-3σ

criterion until all data fall within the 3σ range. Whenever an

AOD, EAE or UVAI outlier is encountered, all corresponding

values (collocated AOD, UVAI, EAE, and trace gas columns)

are removed from the data set. Trace gas outliers are also

excluded, but in this case only the affected data point is re-

moved. Hence, if an NO2 outlier is encountered, the NO2

value is removed, but HCHO, SO2, and 1CO columns and

aerosol data are retained (i.e., in this case the mean NO2

VCD is calculated with one data point less than the means of

the other trace gases and aerosol data; the same applies to the

calculation of the correlation with AOD). If outliers are not

removed from the data set, GACA results are not strongly af-

fected, but the effects of local extreme events (fires, volcanic

eruptions) become apparent. This is discussed in more detail

in Sect. 5.1.

3.2 Aerosol type classification by GACA-type

Each point of the filtered data set is subsequently assigned

one of nine aerosol types based on its UVAI and EAE values.

In this study, aerosol types are defined by their size – small

(S), medium (M), and large (L) – and the amount of aerosol

absorption in the UV range – non-absorbing (NA), neutral

(N), or absorbing (A) – as shown in the left panel of Fig. 1.

The acronyms of aerosol types and sources are explained in

Table 2.

The choice of UVAI and EAE thresholds is motivated by

the right panel of Fig. 1, which displays monthly mean data

(June–August 2007–2011) from regions which we assume

to be dominated by one of four aerosol sources: mineral

dust (14–26◦ N, 16◦W–8◦ E), smoke (4–16◦ S, 14–30◦ E),

biogenic secondary organic aerosols (30–36◦ N, 80–90◦W),

and sea salt (0–10◦ S, 120–140◦W). The depicted aerosols

are clearly separated by the EAE thresholds (sea salt from

secondary organic aerosols; desert dust from smoke) and the

UVAI thresholds (desert dust from sea salt; smoke from sec-

ondary organic aerosols). The choice of nine aerosol types in-

stead of four (like in Higurashi and Nakajima, 2002) was mo-

tivated by the occurrence of situations where different parti-

cle types are mixed.

For each 2◦× 2◦ grid box, the fraction of data points be-

longing to each aerosol type is computed and the most fre-

quently observed type, weighted by AOD, is assumed to be

the dominant type. Note that if the type classification is run

on its own (i.e., not as input for the aerosol source assignment

step), the statistics requirements are less strict and global

maps can be produced on 1◦× 1◦ resolution (e.g., Fig. 4).

3.3 Aerosol source assignment by GACA-source

The results from GACA-type are used as input for the second

part of GACA: the determination of the dominant aerosol

source. The main assumption underlying GACA-source is

that enhancements in trace gas and aerosol abundance are

caused by the same source. The algorithm computes means

over all data points within a grid box (of AOD, UVAI, and

trace gas VCDs) and correlations between AOD on the one

hand, and UVAI and trace gas VCDs on the other. Together

with the dominant aerosol type determined in the previous

step, these data are used to assign a main aerosol source

based on the outcome of two types of tests: (1) is the mean

trace gas abundance or HCHO : NO2 ratio above the thresh-

old given in Table 3? (2) Is there a linear correlation (with

R2 > 0.25) between AOD and UVAI or AOD and trace gas

abundance? An overview of GACA-source can be found in

the lower part of the decision tree in Fig. 2.

Eight aerosol sources are discriminated in GACA-source:

biomass burning smoke, desert dust, secondary biogenic,

secondary urban/industrial, aged, volcanic sulfate, sea salt,

and unknown sources. Each source and the selected classifi-

cation criteria will be described in more detail in the follow-

ing sections.

3.3.1 Biomass burning smoke (BB)

Fresh smoke from forest, agricultural, or grassland fires

mainly consists of small particles (e.g., Dubovik et al., 2002;

Eck et al., 2013) that absorb light in the UV and visible range.

www.atmos-chem-phys.net/15/10597/2015/ Atmos. Chem. Phys., 15, 10597–10618, 2015
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Figure 2. Schematic decision tree of GACA. The corresponding threshold values are given in Table 3. The mean value of a quantity,

e.g., 1CO, is denoted 1CO; the coefficient of correlation between AOD and a quantity, e.g., HCHO, is denoted R2(HCHO). Thresholds are

denoted as e.g., SO2,thresh, R2
thresh

, ratiothresh (for the HCHO : NO2 ratio threshold), or AODSS-thresh (for the maximum AOD allowed for

SS classification). Other abbreviations are explained in Table 2.

Co-emitted trace gases are NO2, HCHO and CO, as well as

SO2 but only in very small amounts (Andreae and Merlet,

2001). In GACA-source, grid boxes are always designated

BB when the main type is small absorbing. Biomass burning

is also assigned if the absorbing aerosol criterion is fulfilled

and either (1) mean CO or (2) correlation between 1CO and

AOD or (3) mean HCHO and correlation between HCHO

and AOD pass the threshold. The absorbing aerosol criterion

requires that either (a) the dominant aerosol type is absorb-

ing or (b) the dominant type is neutral and a good correlation

with a positive slope is found for UVAI and AOD, and mean

AOD ≥ 0.15. This allows grid boxes with relatively small

UVAI (e.g., due to lower-lying aerosol layers or cloud con-

tamination) to be designated as BB.

3.3.2 Desert dust (DD)

Mineral dust consists of large, non-spherical particles that

absorb UV radiation due mainly to their iron oxide con-

tent (Sokolik and Toon, 1999). The emission and transport

of DD is linked to meteorology (i.e., wind fields) and land

surface conditions and not to trace gas emissions. GACA-

type assigns DD as a source to grid boxes that are dominated

by large absorbing aerosols – unless they were already char-

acterized as BB. To include aged DD plumes, medium-size

and large neutral aerosol types can be attributed to DD if the

absorbing aerosol criterion is fulfilled (see above) but, addi-

tionally, the correlation of 1CO and AOD and means of the

other trace gases (NO2, HCHO, and SO2) should be below

their respective threshold values. The latter criterion serves

to distinguish DD from BB and volcanic ash but as a negative
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Table 2. Abbreviations of aerosol types and sources used throughout this document.

Acronym Aerosol type/source/component Occurrence

LA Large absorbing GACA-type

LN Large neutral GACA-type

LNA Large non-absorbing GACA-type

MA Medium-size absorbing GACA-type

MN Medium-size neutral GACA-type

MNA Medium-size non-absorbing GACA-type

SA Small absorbing GACA-type

SN Small neutral GACA-type

SNA Small non-absorbing GACA-type

BB Biomass burning smoke GACA-source

DD Desert dust GACA-source and MACC

BIO Secondary aerosols of biogenic origin GACA-source

URB Secondary aerosols of urban/industrial origin GACA-source

AGED Aged aerosols GACA-source

VOG Volcanic sulfate GACA-source

SS Sea salt GACA-source and MACC

XX Unknown source GACA-source

BC Black carbon MACC

OM Organic matter MACC

SO4 Sulfate MACC

MIX Mixture MACC

na Not assessed All

Table 3. Thresholds used in GACA. Variables are unitless except for the trace gas (excess) VCDs (given in moleccm−2).

Variable Nominal range Thresholds GACA step

AOD 0–3 0.05 Filtering

AOD 0–3 0.15 GACA-source (sea salt)

EAE 0–2 0.75 and 1.25 GACA-type

UVAI −2.5 to +2.5 −0.5 and 0.25 GACA-type

NO2 column 0–10× 1015 1× 1015 GACA-source

HCHO column 0–25× 1015 7× 1015 GACA-source

SO2 column 0–20× 1015 1× 1015 GACA-source

1CO excess column 0–40× 1017 4× 1017 GACA-source

Ratio HCHO : NO2 0–100 4 GACA-source

Correlation coefficient, R2 0–1 0.25 GACA-source

side effect excludes polluted dust and cases of mixed desert

dust and smoke.

3.3.3 Secondary aerosols biogenic origin (BIO)

The small, non-absorbing aerosols that form by condensa-

tion of (semi-)volatile biogenic precursors are accompanied

by enhanced levels of HCHO, as both are products of the oxi-

dation of isoprene and other volatile organic compounds (Se-

infeld and Pandis, 2006; Goldstein et al., 2009; Stavrakou et

al., 2009). To separate them from urban/industrial aerosols,

the ratio of HCHO/NO2 is required to be above a certain

threshold value (given in Table 3).

3.3.4 Secondary aerosols of urban/industrial origin

(URB)

Due to the diversity of sources and chemical processing in

industrialized environments, the URB source is very broadly

defined in GACA-source. All grid boxes dominated by non-

absorbing or neutral aerosol types that have enhanced NO2

columns qualify. The only exception being grid boxes al-

ready characterized as BIO.

3.3.5 Aged/transported aerosols (AGED)

Air masses with enhanced 1CO but low levels of NO2 are

assumed to have been transported away from their sources.

The AGED source is therefore assigned when CO, which

www.atmos-chem-phys.net/15/10597/2015/ Atmos. Chem. Phys., 15, 10597–10618, 2015
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Central Africa East Pacific 

Figure 3. Relationship between 1◦× 1◦ monthly mean values of AOD and trace gas columns (in moleccm−2) for a region in central Africa

(2–4◦ S, 18–20◦ E; left panel) and in the eastern Pacific Ocean (16–18◦ N, 162–164◦W; right panel) for July–August 2007–2011. Dots depict

NO2 (blue), HCHO (green), and SO2 (red) VCDs and excess CO VCDs (light blue, scaled by a factor of 0.01) and their respective thresholds.

The threshold values of NO2 and SO2 are identical (dotted blue and red lines). Note the differences in y axis scales.

has a long lifetime, is enhanced but the shorter-lived NO2

is not. Aging may change average aerosol properties by dilu-

tion, mixing with other air masses, processing within clouds,

or other mechanisms. Hence, all neutral and non-absorbing

aerosol types qualify as AGED.

3.3.6 Volcanic sulfate (VOG)

Secondary aerosols formed by the reaction of volcanic SO2

with the atmosphere are named volcanic smog (VOG) here to

distinguish them from anthropogenic sulfate. GACA-source

can only detect VOG in remote locations, as one require-

ment for the assignment is the lack of enhancements in NO2

and 1CO. In addition, the SO2 mean and correlation with

AOD need to pass the thresholds. Freshly formed sulfate

aerosols are small, but can grow rapidly due to their hygro-

scopicity; therefore small and medium-sized aerosol types

can be assigned to VOG. Both non-absorbing and neutral

aerosol types qualify because the sensitivity of UVAI to non-

absorbing aerosols is not very high.

3.3.7 Sea salt (SS)

Breaking waves and bursting bubbles cause the release of sea

salt particles. The particles are hygroscopic and grow readily

in the marine boundary layer, forming large, non-absorbing

particles. The emission of SS depends mainly on wind speed

and geography (e.g., coastlines) but is not associated with

the emission of trace gases. GACA-source attributes SS as

a main source to grid boxes with mean AOD < 0.15 and

no trace gas enhancements; only non-absorbing and neutral,

large and medium-size type aerosols are eligible candidates.

GACA does not discriminate between grid boxes located

over land and ocean; therefore, the SS type is also regularly

found over land and may be interpreted as a generic back-

ground type.

3.3.8 Unknown source (XX)

If all tests leading to the above-mentioned aerosol sources

fail but significant amounts of aerosols are detected (mean

AOD > 0.05), the aerosol source is set to “unknown”.

3.3.9 Source assignment

Means and correlation coefficients are calculated from all

valid data points within a grid box if the fraction of valid

points amounts to at least 25 % of all points (down to an

absolute minimum of five). The tests performed by GACA-

source are based on thresholds (given in Table 3), the values

of which were chosen empirically. The source assignment

criteria were chosen based on textbook knowledge (e.g., that

biomass burning is associated with HCHO and CO emis-

sions), as detailed for each source type in Sects. 3.3.1–3.3.8,

and were adjusted iteratively to obtain consistent results. The

quantitative understanding of aerosol–trace gas relationships,

however, is currently not sufficient to derive trace gas thresh-

olds in a systematic way, hence the trace gas thresholds were

determined in a more empirical fashion. The thresholds were

empirically chosen high enough to exclude noise (or natural

variability), but low enough that the associated sources are

recognized. The 1CO threshold, for example, was chosen

low enough to include aged air masses. The SO2 threshold,

on the other hand, had to be set sufficiently high to exclude

noise.The thresholds were chosen independent of region and

season to keep the algorithm globally consistent. A future

development of GACA may be the adoption of threshold cli-

matologies to better account for regional and seasonal vari-

ability of trace gas and aerosol emissions (see Sect. 5.4).

In Fig. 3 we demonstrate the algorithm for two 2◦×2◦ grid

boxes: the first shows data from a region in central Africa (2–

4◦ S, 18–20◦ E) during the biomass burning season, whereas

the second is located west of Hawaii, in a region of volcanic

outflow at 16–18◦ N, 162–164◦W. The trace gas columns for

Atmos. Chem. Phys., 15, 10597–10618, 2015 www.atmos-chem-phys.net/15/10597/2015/
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Figure 4. Seasonal cycle of global aerosol type distribution accord-

ing to GACA. Data are from 2007–2011 and were divided into the

four main seasons (from top to bottom): winter, spring, summer,

and fall. The legend is given on the bottom; see Fig. 1 and Table 2

for aerosol-type abbreviations. The yellow box indicates the region

investigated in Fig. 5.

June–August 2007–2011 are plotted together with their re-

spective thresholds (colored lines) so that, if data points lie

above the respective threshold, the trace gas is assumed to be

associated with the local aerosols. In the left panel (central

Africa), HCHO (green) and 1CO (light blue) are strongly

enhanced. The level of NO2 (blue) clearly exceeds 10−15, the

land ocean 

mean wind 

Figure 5. Transect showing transport of mineral dust plumes.

Shown are summertime (June–August 2007–2011) data from 15–

20◦ N, a region of Saharan dust outflow. Upper panel: mean AOD

(total of all aerosol types); the mean wind direction is indicated by

an arrow, and the surface type (land or ocean) is given at the bottom

of the panel. Lower panel: AOD-weighted fraction of all aerosol

types contributing > 20 % to AOD.

threshold for both NO2 and SO2. This is in contrast to SO2,

which is close to or even below the detection limit, leading to

scatter of data and negative values. The dominating source is

BB, because (1) the dominating aerosol type is medium-size

absorbing and (2) the correlation between 1CO and AOD is

high (R2
= 0.71).

Over the remote eastern Pacific Ocean (right panel) the

trace gas means and correlations usually fall below the

threshold values; however, due to prodigious degassing of

the Kilauea Volcano (especially in 2008) strongly enhanced

SO2 columns can be observed in the selected grid box. In

the atmosphere SO2 is converted to sulfate aerosols, resulting

in a good correlation between AOD and SO2 of R2
= 0.53.

The dominating aerosol types are large neutral and large non-

absorbing; the main source assigned to this grid box is vol-

canic sulfate (VOG).

4 Results

4.1 Aerosol type

We applied GACA-type to the 2007–2011 data set to study

the seasonal cycle of aerosol properties globally. Figure 4

www.atmos-chem-phys.net/15/10597/2015/ Atmos. Chem. Phys., 15, 10597–10618, 2015
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shows maps of the dominating aerosol type on a 1◦× 1◦ res-

olution for all four seasons. Focusing first on the summer

(third panel), it can be seen that the dust belt, at around 10–

40◦ N, is dominated by large particles (dark hues) with strong

to moderate absorption (red and green tones). Smoke plumes

from central Africa consist mostly of small to medium-size

absorbing particles (orange and red), although there appears

to be a significant contribution from large absorbing (LA)

particles, which is probably an artifact that will be discussed

in more detail in the next section. North America, Europe and

large parts of Asia are dominated by small, non-absorbing

aerosols (light blue). Over ocean, particularly in the southern

oceans, large particles (dark blue and green) dominate. Light

gray areas denote regions where no AOD data were available

(due to e.g., clouds, snow or ice cover, low sun) or where

monthly mean AOD did not exceed 0.05 within the studied

period.

In winter and spring (December–February; March–May)

the contribution of mineral dust to the aerosol mix over

China can be clearly seen: the aerosol type is dominated by

larger, more strongly absorbing particles than in summer.

The burning of cropland and agricultural waste in South-

east Asia stands out in spring, when aerosol types are pre-

dominantly absorbing (red and orange). The biomass burn-

ing season in South America, which starts in July–August

and peaks in September–October, has a very different sig-

nature than that in southern Africa: the particles are smaller

and appear less absorbing. This may be a consequence of the

difference in fuel type (e.g Eck et al., 2013), which leads to

different trace gas and aerosol emission factors. But the main

causes are probably the increased cloudiness, which leads

to lower UVAI values and more data gaps in the trace gas

products, and the large abundance of (non-absorbing) sec-

ondary organic aerosols. Despite the fact that wildfires occur

frequently in summer in North America, BB is not selected

as a major source there. This is because forest fires occur at

irregular intervals, so that their signal is suppressed as a con-

sequence of averaging data in time and space.

The frequency of occurrence of each aerosol type can be

used to study changes in aerosol composition as a function of

time (or distance to the source). As an example, the westward

transport of Saharan dust over the Atlantic Ocean is shown in

Fig. 5. The upper panel displays the mean total AOD along

a longitudinal transect from 10◦ E to 80◦W, at 15–20◦ N (see

yellow box in panel 3 of Fig. 4). The lower panel presents

the aerosol fraction, weighted by AOD, for the same tran-

sect. Only the three large aerosol types (LNA, LN, and LA)

are shown, the other types never contribute more than 20 %

to the total AOD. Close to the source, situated at roughly

10◦ E–10◦W, the aerosol load is almost completely made

up of large absorbing particles (LA, brown triangles). West

of about 25◦W, the fraction of large neutral aerosols (LN,

green crosses) starts increasing until it becomes the dominat-

ing particle type at 50◦W, where the total AOD has decreased

to 0.3 (from a maximum of 0.75). This apparent change in
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Figure 6. Seasonal cycle of global main aerosol source distribution

according to GACA. Data are from 2007–2011 and were divided

into the four main seasons (from top to bottom): winter, spring,

summer, and fall. Aerosol source type abbreviations are given in

Table 2; gray areas are not analyzed due to lack of data or too small

mean AOD (see text for details). Enumerated yellow boxes in the

third panel mark the regions investigated in Figs. 10–12, respec-

tively.

absorption is mainly due to the fact that we use UVAI as

a measure for absorption: as UVAI increases with AOD and

aerosol altitude, the gradual descent of the dust layer (Co-

larco et al., 2003) combined with the decreasing AOD causes

UVAI to fall below the upper threshold value of 0.25. This in-

dicates that GACA underestimates dust abundance far from

its source.
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a. Large Absorbing b. Medium-size Absorbing c. Small Absorbing 

d. Large Neutral e. Medium-size Neutral f. Small Neutral 

g. Large Non-Absorbing h. Medium-size Non-Absorbing i. Small Non-Absorbing 

Figure 7. Global aerosol source for each aerosol type according to GACA for June–August 2007–2011. Aerosol source and type abbrevia-

tions are given in Table 2; gray areas do not contain more than four points belonging to the relevant aerosol type.

4.2 Source type

The results from a run of GACA-source with data from

2007–2011 are shown in the form of seasonal global maps

with 2◦× 2◦ resolution in Fig. 6. The upper frame shows the

main source type in winter. Most of the continental North-

ern Hemisphere aerosols are of urban/industrial origin (URB,

dark blue), except where mineral dust (DD, red) predom-

inates (in northern Africa, the southern Arabian Peninsula,

and northwestern China). Biomass burning smoke (BB, dark

red) can be found in sub-Sahelian Africa in this season, as

well as over parts of Southeast Asia. The forested part of

South America is a large source of secondary organic par-

ticles (BIO, dark green). Aged aerosols (AGED, blue-gray)

can be seen in the outflow from Asia (India, China) and

are also found in the air masses transported from equatorial

Africa over the Atlantic. Most of the aerosols over oceans

are classified as sea salt (SS, light blue), although aerosols

of undefined composition (XX, dark gray) are found in the

Asian outflow over the Pacific and the African outflow over

the Atlantic. The band of aerosols at 40–60◦ S (also seen in

March–May) is caused by unrealistically high AOD mainly

due to inaccurate wind speed assumptions and residual cloud

contamination in the MODIS retrieval (Levy et al., 2013;

Schutgens et al., 2013) and may be ignored. In spring and

summer (second and third panels of Fig. 6) more dust is ac-

tivated within the global dust belt. The amount of biomass

burning smoke also increases as first the agricultural fires

in Southeast Asia reach their springtime peak and then the

Southern Hemisphere fire season starts in summer. A con-

spicuous sulfate (VOG) plume is seen emerging from Hawaii

and is mainly due to prodigious degassing in April–October

2008 by the Kilauea Volcano (19.4◦ N, 155.3◦W) (see, e.g.,

Yuan et al., 2011; Beirle et al., 2014). The misclassifica-

tion of SS aerosols over continents in the high latitudes is

most apparent in fall (lower-most panel). These grid boxes

show no enhanced trace gas concentrations and have mean

AOD< 0.15, corresponding to the definition of SS in GACA.

These aerosols may be regarded as background aerosols of

which the source cannot reliably be determined by GACA.

Whereas Fig. 6 depicts the main aerosol source, deter-

mined from all data points within a grid box, Fig. 7 shows

the aerosol source determined for each of the nine aerosol

types separately. The data are from June–August 2007–2011:

the same data set as shown in the third panel of Fig. 6.

The three absorbing aerosol types (small, medium-size and

large) are shown in Fig. 7a–c. Medium-sized and large ab-

sorbing aerosols north of the Equator are almost exclusively

attributed to mineral dust; the apparent band of desert dust at

60◦ S is caused by a few data points with unrealistically high

AOD, as mentioned above, in addition to erroneous (high)

UVAI values that are probably caused by small scattering an-

gles (90–100◦) encountered in this region. The smoke plume

off the southwestern coast of Africa in panel (a) is rather un-

usual, as biomass burning particles are usually small. This

is caused by the use of EAE as a measure for aerosol size;

although the EAE is < 0.75, the FMF in this region is on

the order of 0.7, indicating a large fraction of small aerosols

(not shown). It is unclear why EAE and FMF show oppos-

ing behavior in this region. We speculate that it has to do

www.atmos-chem-phys.net/15/10597/2015/ Atmos. Chem. Phys., 15, 10597–10618, 2015
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Figure 8. Trace gas composition for grid boxes with URB source

for June–August 2007–2011. The presence of enhanced trace gas

columns (in addition to NO2) is indicated by 1, 2, or 4 for HCHO,

SO2, and 1CO, respectively: 1 thus indicates enhanced NO2 and

HCHO, 2 enhanced NO2 and SO2, 3 enhanced NO2 and HCHO

and SO2, etc. Gray areas are not dominated by URB.

with the persistent low-cloud cover during the biomass burn-

ing season, which may cause enhanced cloud contamination

and, possibly, a wrong choice of aerosol model. However,

as it was pointed out in various studies, the size informa-

tion retrieved by MODIS is not very reliable (e.g., Remer et

al., 2005; Levy et al., 2010) and we do not pursue the is-

sue further (but see Sect. 5.2 for a discussion on EAE and

FMF). GACA assumes that the source of all small absorbing

aerosols is biomass burning; therefore, no other source type

is seen to contribute in Fig. 7c.

Neutral aerosol types, shown in Fig. 7d–f, come from var-

ious sources: URB, SS, AGED, MIX, BB, and some DD.

Large and medium-sized non-absorbing aerosols (Fig. 7g–h)

are dominated by SS with contributions from URB and MIX.

Small non-absorbing (Fig. 7i) is the dominating aerosol type

throughout the eastern United States, most of Europe and

eastern China (compare lower right panel of Fig. 4), where

URB is the main source. Large parts of South America and

southern Africa can be seen to emit BIO aerosols (which are

assumed to be exclusively small non-absorbing particles), but

the AOD-weighted main aerosol source in those regions is

BB – in contrast to Southeast Asia, where BIO is the dom-

inant aerosol source in this season (Fig. 6). Performing the

analysis by GACA-source on each aerosol type separately

allows for an insight into the aerosol mixture that cannot be

seen when studying the main source map only.

Additional information on the sources can be gained by

adding the trace gas information that was not directly used

for source assignment. For example: the URB source is as-

signed based only on the presence of enhanced NO2 (after

exclusion of BIO as source type; see Fig. 2), but the infor-

mation on other trace gas means is retained. By adding bi-

nary coding, i.e., values of 1, 2, and 4 to grid boxes with
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Figure 9. Seasonal cycle of global main aerosol type distribution ac-

cording to MACC. Data are from 2007–2011 and were divided into

the four main seasons (from top to bottom): winter, spring, sum-

mer, and fall. Aerosol types are black carbon (BC), mineral dust

(DD), organic matter (OM), sulfate (SO4), sea salt (SS), and mix-

ture (MIX). Light gray areas (na) are not analyzed due to too small

mean AOD. As BC does not dominate anywhere, contours show

mean BC amount (AOD 0.02–0.1) to indicate regions affected by

smoke; see text for details.

enhanced mean values of HCHO, SO2, and 1CO, respec-

tively, we obtain the map presented in Fig. 8 for June–August

2007–2011. If only NO2 is enhanced, the grid box has an

index of 0 and appears dark blue. If, in addition, HCHO is

enhanced, the grid box obtains an index of 0+1= 1 and ap-

pears in a lighter shade of blue. Grid boxes with enhanced

NO2, HCHO, and 1CO are indexed 0+ 1+ 4= 5 and are

shown in orange. Grid boxes with a main source other than

Atmos. Chem. Phys., 15, 10597–10618, 2015 www.atmos-chem-phys.net/15/10597/2015/
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URB are shown in light gray. This analysis reveals a great

diversity in urban/industrial emissions. A clear separation

can be seen in Europe, with enhancements of NO2 in the

west but additionally enhanced HCHO in the east, confirm-

ing the findings of Veefkind et al. (2011). Further east, ur-

ban/industrial aerosols are again only associated with in-

creased NO2 columns. Throughout most of the Indian sub-

continent, both NO2 and HCHO are enhanced. The increased

HCHO levels are mainly due to human activities: industrial

and vehicle exhaust, biogenic emissions from agriculture (di-

rect and indirect, by CH4 oxidation) and burning of biomass

(e.g., household fires) (Stavrakou et al., 2009). A similar pat-

tern can be seen over northern Thailand. Northeastern China

emits large quantities of all trace gases investigated here, in

addition to aerosols. It is one of only a few regions where

anthropogenic SO2 can be detected from satellite – another

being the Highveld in South Africa, which stands out in light

blue (enhanced NO2 and SO2). Grid boxes colored yellow

and orange (increased 1CO, or increased 1CO and HCHO

levels) mostly appear at the edges of regions with intense

biomass burning in this season (central Africa, central South

America) and are influenced by fire emissions or are possibly

misclassified. In southern South America, the South Atlantic

Anomaly causes errors in trace gas retrievals that show up

mainly in erroneously enhanced SO2 values. Although the

HCHO retrieval is similarly affected, the threshold used in

GACA-source is high enough to exclude those outliers. Ur-

ban aerosols in North America are accompanied by enhanced

HCHO levels, which is mostly of biogenic origin (Goldstein

et al., 2009; Stavrakou et al., 2009). The filament with en-

hanced 1CO and HCHO seen on the northeast coast of the

United States is possibly due to transported wildfire smoke

from the northwest (Canada/Alaska). Similar patterns are

found for the other seasons (see Fig. S1 in the Supplement).

4.3 Comparison with MACC

Main aerosol types from the MACC reanalysis for 2007–

2011 were grouped by season and treated analogously to the

measured data with respect to the minimum AOD threshold

of 0.05 and the removal of outliers. The dominating aerosol

component is shown in Fig. 9 in a similar fashion to Fig. 6,

but there are two important differences.

1. The aerosol components are different (Benedetti et al.,

2009): black carbon (BC, black) originates mostly from

biomass burning but also occurs in urban regions due

to e.g., vehicle exhaust or household fires. In Fig. 9,

AOD due to BC is additionally shown in contours

(AOD = 0.02–0.1), to indicate the regions affected by

biomass burning, as BC constitutes only a small frac-

tion of aerosol emissions by fires. The contribution of

organic matter (OM, green) to biomass burning smoke

is much greater, but OM also has important biogenic

and anthropogenic sources. The types desert dust (DD)

and sea salt (SS) are equivalent to the source types of

the same name in GACA and are therefore indicated

with the same colors (red and light blue, respectively).

Sulfate aerosols (SO4) are indicated in the same color,

blue, as URB aerosols in GACA, because the sources

are assumed to be similar. The aerosol type is set to MIX

when none of the aerosol components contributes more

than 50 % to the total AOD.

2. MACC data are also inherently different from GACA

data in that each data point contains contributions

of each aerosol component (BC, OM, DD, SO4,

SS), whereas GACA determines only one dominating

aerosol source per grid box or, at most, one dominating

aerosol source for each aerosol type found in a grid box.

At a first glance, the agreement between GACA-source and

MACC is quite good (compare Figs. 6 and 9): the general

spatial and seasonal patterns of DD and SO4 (or URB) agree

well. The biomass burning regions roughly agree, although

the model does not show BC in South America in summer,

where GACA sees a lot of BB (mostly due to fires in Au-

gust, as can be seen in MODIS fire count patterns). In ad-

dition, GACA selects BB as the main source of AOD in

sub-Sahelian Africa in the first half of the year, whereas in

MACC DD dominates. On the other hand, the agricultural

fires in Southeast Asia in spring are well captured by both

GACA and MACC. The main sources of BIO (or OM) agree

in GACA and MACC, but the source in the southeastern USA

is missed by the model. The differences between MACC and

GACA will be discussed in more detail in the following sec-

tion, where regional seasonal cycles are investigated.

4.4 Regional seasonal cycles

Six 5◦×5◦ regions were selected for the study of the seasonal

cycle: central South America (1), southern Africa (2), south-

eastern USA (3), northwestern Europe (4), Thailand (5), and

northeastern China (6); the regions are shown as enumerated

yellow boxes in the third panel of Fig. 6. For each season

of each year (2007–2011), the AOD of every aerosol type

is shown in panels (a1)–(a6) of Figs. 10–12. The dominant

aerosol source was determined for each individual aerosol

type separately and is shown in panels (b1)–(b6). The AOD

fractions are therefore equal in panels (a) and (b) of Figs. 10–

12. For example, the bar representing the fall (September–

November) of 2007 in Fig. 10a1 contains contributions from

MA, SA, SN, and SNA types. The AOD fraction correspond-

ing to SNA reappears in Fig. 10b1 in dark green (BIO), the

dominant source of the SN fraction is URB (blue), and the

summed AOD from SA and MA types is attributed to BB

(brown). Panels (c1)–(c6) of Figs. 10–12, finally, display the

AOD corresponding to the MACC aerosol types for the same

regions. All data presented in Figs. 10–12 can be found in

Tables S1–S6 in the Supplement.

The first two regions, central South America and southern

Africa (panels a1–c1 and a2–c2 of Fig. 10, respectively), are

www.atmos-chem-phys.net/15/10597/2015/ Atmos. Chem. Phys., 15, 10597–10618, 2015



10610 M. J. M. Penning de Vries et al.: Global aerosol classification algorithm

1. Central South America 

a1 

b1 

c1 

a2 

b2 

c2 

2. Central Southern Africa 

G
A

C
A

-t
yp

e 
G

A
C

A
-s

o
u

rc
e 

M
A

C
C

 t
yp

e 

Figure 10. Seasonal cycles of global aerosol type and source according to GACA and MACC for 5◦× 5◦ regions in central South America

(10–15◦ S, 60–65◦W) and central southern Africa (0–5◦ S, 15–20◦ E). Data are grouped into four seasons and separated by year. Panels (a1)

and (a2) mean AOD contribution of each aerosol type; (b1) and (b2) mean AOD contribution of aerosol source (determined from each

aerosol type); (c1) and (c2) mean AOD contribution of aerosol types from MACC. Abbreviations are explained in Table 2.

characterized by seasonal biomass burning. The fire season

starts in late summer in South America; the highest number

of fires is usually found in fall. The high year-to-year vari-

ability of biomass burning in this region is clearly reflected

in all three panels. Both GACA and MACC ascribe the

larger part of AOD in winter and spring to secondary organic

aerosols (BIO and OM in GACA and MACC, respectively).

Although the DD contribution in the model appears to be

somewhat high (no DD is detected by GACA), the agreement

between GACA and MACC is good for this example. Good

agreement is also found for southern Africa, where smoke

forms the major part of the aerosol mixture during the fire

season in summer, when the highest AOD are detected. All

panels show that the year-to-year variation is much smaller

than in South America. Urban/industrial aerosols appear to

be overestimated by GACA, whereas MACC shows higher

contributions of DD.

The regions southeastern USA and northwestern Europe

are dominated by non-absorbing aerosols (Fig. 11a3, a4).

Throughout most of the year, aerosols over the southeast-

ern USA are of urban/industrial origin (URB and SO4 for

GACA and MACC, respectively). In summer this region is

dominated by secondary organic aerosols (Goldstein et al.,

2009), clearly seen by GACA (Fig. 11b3), which attributes

nearly all AOD to BIO. MACC, on the other hand, only

shows a slight increase in OM relative to the other sea-

sons. The contributions of dust and sea salt to the aerosol

mixture appear to be too large in the model in comparison

to GACA results, which points to sources missing in the

model: MACC scales the aerosol amount with MODIS AOD

but keeps the mass fractions of the different aerosol com-

ponents constant (see Sect. 2.2). Hence, if a source is miss-

ing, e.g., secondary organic aerosols, the AOD due to those

aerosols is spread over the remaining components. The small
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Figure 11. Seasonal cycles of global aerosol type and source according to GACA and MACC for 5◦× 5◦ regions in southeastern USA

(30–35◦ N, 80–85◦W) and northwestern Europe (48–53◦ N, 3–8◦ E). See Fig. 10 for details.

year-to-year variation observed in MACC aerosol composi-

tion is a result of this procedure.

There is no clear aerosol seasonal cycle recognizable in

northwestern Europe (Fig. 11a4–c4): the AOD is rather con-

stant throughout the year and the composition rarely devi-

ates from the urban/industrial (URB and SO4) type. In winter

there is a larger contribution of medium-size and large parti-

cles (Fig. 11a4), which GACA-source has trouble identifying

but which MACC attributes to sea salt. As in all previous re-

gions, the model sees significant amounts of dust that are not

detected by GACA. This can partly be explained by too low

deposition rates in the model but may also be due to the fact

that GACA does not select DD as a source if any trace gas

means are enhanced (unless the aerosol type is large absorb-

ing).

Figure 12 presents the seasonal cycle for two regions in

Asia. In winter and particularly in spring, agricultural fires in

Thailand release large quantities of smoke, as seen by both

GACA and MACC (Fig. 12a5–c5). During the rainy season

(June–October) secondary aerosols dominate, both from an-

thropogenic (URB and SO4) and biogenic sources (BIO and

OM). MACC finds significant contributions of dust which are

not seen by GACA.

In northeastern China, the seasonal mean AOD is greater

than 0.5 throughout the year for each year from 2007 to

2011 (Fig. 12a6–c6). Most of the AOD can be attributed to

aerosols of anthropogenic origin (URB and SO4), but a large

fraction is caused by mineral dust transported from deserts

in Mongolia, northern China, and Kazakhstan, especially in

winter and spring. In view of their sizes (medium to large),

most of the aerosols characterized as BB by GACA are prob-

ably polluted dust or dust in the presence of pollution, i.e.,

NO2, HCHO, SO2 or 1CO. The variability of the seasonal

cycle of DD appears to be underestimated by MACC (com-

pare Fig. 12a6 and c6). The amount of modeled BC in China

is as high as for South America in the biomass burning season

(see Fig. 10c1), which may be reflected by the high levels of

aerosol absorption found by GACA for northeastern China.

The more probable source of absorbing aerosols is, however,

desert dust.
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Figure 12. Seasonal cycles of global aerosol type and source according to GACA and MACC for 5◦× 5◦ regions in Thailand (15–20◦ N,

100–105◦ E) and northeastern China (35–40◦ N, 115–120◦ E). See Fig. 10 for details.

5 Discussion

GACA is a threshold-based algorithm for the determination

of dominant aerosol types and sources globally on a sea-

sonal basis. In this section we investigate the robustness of

the algorithm, motivate our choice of EAE (as opposed to

FMF), and compare results from GACA with previously re-

ported climatologies from measurements and models. Al-

though the algorithm can be improved further by fine-tuning

with regional settings and/or additional (satellite) data, the

main objective of the current study is to explore what can

be learned from the combination of different satellite data

sets. We present some suggestions for future improvements

to GACA in Sect. 5.4.

5.1 Sensitivity studies

It is clear that GACA results depend on the choice of thresh-

olds and criteria for aerosol type and source determina-

tion. Most source assignments are rather robust and altering

thresholds only causes small shifts of borders between dif-

ferent sources. Beyond being rooted in textbook knowledge,

our criteria are justified by the consistency of the obtained

results and the good general agreement with MACC model

results. The basic assumption underlying GACA is that en-

hancements in trace gas and aerosol abundance are caused

by the same source and wherever this is not the case, the

algorithm fails. Correctly characterizing mixed air masses

(e.g., dust with smoke or pollution) or transported aerosols

(that may be present above or in addition to local pollution)

thus is beyond the capabilities of GACA.

To investigate how robust GACA is with respect to ef-

fects of clouds, varying time ranges, and the treatment of

outliers, we performed a series of tests. First, we applied dif-

ferent cloud filters to the GOME-2 data prior to gridding.

Unfortunately, a similar test could not be performed on MO-

PITT data, as we used gridded monthly means that had al-

ready been cloud-cleared. MODIS AOD is only retrieved un-

der clear sky conditions, but because the field of view of the

instrument is small, retrievals in between cloud patches are
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often possible in regions that would be considered cloudy

by GOME-2. Setting the maximum effective cloud fraction

(CF) to 0.05, 0.20, or 0.40 does not cause major changes in

global maps of GACA-type and GACA-source (Figs. S2 and

S3 in the Supplement, respectively). Perhaps surprisingly,

the results are still similar if only data with CF > 0.40 are

selected: the main difference is the disappearance of non-

absorbing aerosol types due to the increase in data points

with UVAI< 0. We conclude that measurements of NO2,

HCHO, SO2, and UVAI in the presence of clouds contain

enough information to be used for characterization of aerosol

(or air mass) sources, at least on a monthly mean basis. Mea-

surements of other trace gases, e.g., CO, are expected to be

similarly useful (e.g., Liu et al., 2014).

The effects of varying the time range from the maximum

of 15 months per season (5years× 3 months) are rather triv-

ial: the scatter increases with decreasing data amount, and

so does the influence of one-time events, such as volcanic

eruptions. We performed tests for the summer (June–August)

and found that GACA-type and GACA-source results are

very similar if data from 2007–2011 or 2008–2010 are used.

Decreasing the time window further to July 2007–2011 (5

months) or to June–August 2009 causes noisy results with

large data gaps (particularly over South America). For source

determination of individual aerosol types (as in Fig. 8), the

statistical requirements are even higher. Changing the reso-

lution of GACA-source to 1◦× 1◦ yields dominant source

maps very similar to those in Fig. 6 but with several large

data gaps, most notably over South America in summer.

In the standard GACA setup, each data set is screened for

outliers which are then removed (see Sect. 3.1 for details).

The reason for this procedure is that GACA is aimed at con-

structing a climatology in which exceptional events (large

fires, volcanic eruptions, etc.) should not be represented. An-

other reason is the removal of artifacts which are, however,

only rarely encountered in the monthly averaged, gridded

data sets used here – except in the region affected by the

South Atlantic Anomaly. If GACA is run without remov-

ing outliers, the resulting source maps are very similar to

those from the standard run (compare Fig. 6 with Fig. S4

in the Supplement); in fact, the map for winter does not

change at all. The biggest change is found for the spring

maps, where several volcanic sulfate (VOG) plumes appear,

e.g., most prominently the one from the Fernandina Volcano

on the Galapagos Islands, which erupted in April 2009. VOG

plumes from degassing (Kilauea, Hawaii, 2008) and erupting

(Nabro, Eritrea, 2011) volcanoes are also seen more clearly

in the summer map when outliers are not removed. The

largest change in summer is caused by the exceptional fire

season that occurred in 2010 in Russia. Because GACA uses

AOD weighting, the thick, persistent smoke plumes strongly

influence the algorithm, despite the fact that the fires oc-

curred in only 2 out of 15 months considered. In South Amer-

ica more grid boxes are assigned to BB, replacing URB; the

same is seen in fall, although there BB replaces several as-

signments of BIO if outliers are included in the analysis.

5.2 Extinction Ångström exponent and

fine-mode fraction

Throughout this study, EAE is used as a measure of aerosol

size, instead of the often-used FMF (also denoted as η in the

MODIS literature). The main reason is consistency among

the three MODIS aerosol algorithms: the Deep Blue algo-

rithm does not output FMF, and although both dark target

algorithms (land and ocean) provide values of FMF, the def-

initions are different. The MODIS over-ocean retrieval ad-

justs the abundance of two aerosol types – one fine-mode,

one coarse-mode – to best fit the measured radiance at six

wavelength bands. The two types are chosen from a total of

nine aerosol types (four fine, five coarse), each represented

by a single lognormal size distribution. The over-ocean FMF

is the radiance fraction attributed to the fine-mode aerosol

type (Remer et al., 2005). Over (dark) land, the FMF repre-

sents the weighting of fine-dominated and coarse-dominated

models, which each consist of fine and coarse mode(s). In

practice, FMF is essentially binary, rarely deviating from ei-

ther 0 or 1 (Levy et al., 2010).

The definition of EAE, on the other hand, is unambigu-

ous (Eq. 1). Throughout the course of the MODIS retrieval,

AOD is determined at each of the wavelengths used in the re-

trieval, hence EAE can be computed for several wavelength

combinations. Here, 470 and 660 nm were chosen, as these

are the only two wavelengths used in all three MODIS re-

trievals. Despite the fact that like FMF, EAE is affected by

a priori assumptions of aerosol optical properties and surface

reflectance (over land), the monthly pattern of EAE corre-

sponds to the global distribution of dust and non-dust (Remer

et al., 2005) and this is sufficient for the application presented

here. For spatially and temporally higher-resolved charac-

terization studies, however, a different (or additional) metric

may need to be used, e.g., size and/or shape from instruments

like the MISR (Kahn et al., 2005) or POLDER (Polarization

and Directionality of the Earth’s Reflectances; Tanré et al.,

2011).

5.3 Comparison with other climatologies

Different aerosol climatologies of microphysical aerosol

properties (or proxies) have been constructed using remotely

sensed data in the past. The most established empirical clima-

tologies are derived from AERONET (Aerosol Robotic Net-

work) data (Dubovik et al., 2002; Omar et al., 2005; Levy

et al., 2007a; Lee et al., 2010). At a first glance, the agree-

ment between GACA-source and AERONET-derived clima-

tologies (e.g., Fig. 2 in Omar et al., 2005, Fig. 3 in Levy

et al., 2007a, or Fig. 2 in Lee et al., 2010) is good. How-

ever, due to large differences in spatial sampling and the lim-

ited information available from AERONET, the informative
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value of such a comparison is limited. More recently, large-

scale collaborations between various modeling groups have

shown that a combination (or mean) of aerosol properties

from different models performs better (i.e., display smaller

differences with measurements) than the output of any sin-

gle model (e.g., Kinne et al., 2013; Sessions et al., 2015).

The resulting climatologies (Fig. 2 in Kinne et al., 2013,

and Fig. 3 in Sessions et al., 2015) are in agreement with

GACA regarding the dominating aerosol type. But, again,

the gain from such a comparison is limited because there is

no separation of aerosol types in the presented model cli-

matologies apart from that between fine and coarse modes.

It would be more interesting to compare the aerosol com-

position from the model climatologies with GACA-source,

but this is beyond the scope of the current study. Recently

published model data of global aerosol composition (Chin et

al., 2014) allow for a more detailed comparison with GACA-

source results. The agreement between our Figs. 10–12 and

Chin’s Fig. 6a (where regional annual average AOD com-

position from 1980–2009 is shown) is good; many of the

discrepancies between GACA-source and GOCART (God-

dard Chemistry Aerosol Radiation and Transport) model re-

sults may be attributed to the differences in geographical

selection. There are, however, some important differences,

two of which point to inaccuracies in the modeling of sec-

ondary organic aerosols. In the regions of southern USA and

South America, GOCART clearly underestimates the amount

of organic matter contributing to aerosols. This is particu-

larly evident in South America, where both GACA-source

and MACC ascribe the major part of AOD to secondary or-

ganic aerosols throughout the year, whereas in GOCART

sulfate aerosols contribute almost 50 % to the yearly mean

AOD. Additionally, the amount of desert dust appears to be

high compared to GACA. The general underestimation of

secondary organic and biomass burning aerosols, as well as

the overestimation of desert dust by the GOCART model is

known (Chin et al., 2014) and might be remedied with the

help of an algorithm like GACA.

5.4 Applications and improvements

The presented algorithm is an attempt at determining domi-

nating aerosol types and sources on a global scale and mainly

intends to show the potential of combined trace gas and

aerosol data sets. The most important application of an al-

gorithm like GACA is the improvement of model emissions

of aerosols and trace gases, as suggested in the study by Xu

et al. (2013). Not only models that rely on data assimilation

(like MACC, now succeeded by CAMS) may benefit from

comparisons with GACA. The possibility of selecting certain

aerosol types (e.g., small non-absorbing aerosols) or sources

(e.g., urban/industrial) for more detailed investigations of the

relationships between AOD and trace gases is a useful tool

for the assessment of model performance regarding aerosols

and may assist in finding strategies to improve aerosol pa-

rameterization. In addition, GACA is rather robust despite

the flexibility with respect to temporal and spatial resolution

and input data.

There is a multitude of possible adaptations for an algo-

rithm like GACA, but here we focus on three.

1. Adaptation of GACA to shorter time periods and

smaller spatial scales. The algorithm as such can be

easily applied to daily Level-2 data (on a single-pixel

scale), with the caveat that co-location of the mea-

surements then becomes more important. This could

be achieved using data from a single instrument (e.g.,

GOME-2 or OMI), from different instruments on the

same platform (GOME-2 and Infrared Atmospheric

Sounding Interferometer (IASI); OMI and Tropospheric

Emission Spectrometer, TES), or from instruments

closely following each other, as in the A-Train. Such

an approach could be directly applied to atmospheric

composition modeling through global data assimilation,

e.g., in CAMS. Using the combined information from

different satellite observations, the aerosol type could

be updated in addition to the total AOD, yielding a more

realistic mix of aerosol composition.

2. Application of GACA to cloudy data, i.e., aerosol and

trace gas measurements of pixels with high cloud cover.

As shown above, trace gas measurements of cloudy pix-

els contain enough information to be used for aerosol

characterization. These would have to be combined with

aerosol retrievals over clouds, e.g., from MODIS or

OMI (Torres et al., 2012; Jethva et al., 2013, 2014).

3. Modification of GACA to ground-based data. For ex-

ample, multi-axis-DOAS (MAX-DOAS) measurements

of trace gases could be combined with aerosol data

from a sun photometer (e.g., AERONET) to assess local

aerosol sources.

Possible future improvements include (a) the use of more

aerosol data, e.g., particle shape and aerosol layer height

(e.g., from POLDER or MISR) or more trace gas data from

GOME-2 (glyoxal) or other instruments; (b) making use of

spatial and/or temporal patterns and correlations, e.g., by tak-

ing into account the results from neighboring grid boxes or

by pattern recognition; and (c) replacing the fixed thresholds

with a threshold climatology that depends on location and

season.

6 Conclusions

Aerosols and trace gases are frequently co-located, and of-

ten even correlated, because they are (1) emitted by the

same sources, e.g., in the case of biomass burning smoke;

(2) formed from the same precursor, e.g., volatile organic

compounds and secondary organic aerosols; or (3) formed

from trace gases in the atmosphere, e.g., sulfate aerosols
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from SO2. We exploit this fact for the assessment of the

dominant aerosol source from satellite observations. In this

paper, we introduce a strategy for the systematic classifi-

cation of aerosols using the combination of aerosol optical

depth and extinction Ångström exponent from MODIS with

UV Aerosol Index and trace gas columns (NO2, HCHO, and

SO2) from GOME-2, and CO columns from MOPITT. Our

Global Aerosol Classification Algorithm, GACA, is sepa-

rated into two main steps: first, an aerosol type is determined

based on its optical properties; subsequently, trace gas in-

formation is added to appoint a dominant aerosol source.

The obtained global yearly and seasonal maps are generally

in good agreement with MACC model data, indicating that

both are legitimate. However, systematic differences are also

found: more desert dust and less secondary organic aerosols

are indicated by MACC than by GACA. This demonstrates

the potential of our method – combining aerosol and trace gas

data – to evaluate and investigate aerosol treatment (param-

eterization, sources, transport, aging and removal processes)

in air quality and climate models. One possible application of

an algorithm like GACA is the updating of both aerosol and

trace gas emissions, e.g., in CAMS (successor of MACC)

or in GEOS-Chem, as suggested in the study by Xu et al.

(2013). Since the mix of aerosol types is currently preserved

in models, a combined data assimilation of aerosol and trace

gas observations would lead to an overall more realistic rep-

resentation of aerosols by models.

We find that the rather simple, threshold-based GACA suf-

fices for very plausible results that are quite robust with re-

spect to outliers, choice of time range and cloud fraction

thresholds. We emphasize, however, that the presented study

is exploratory in nature. We provide several suggestions for

improvement of the algorithm. With the coming new gen-

eration of space-based DOAS instruments with high spatial

resolution, in particular TROPOMI (Tropospheric Monitor-

ing Instrument on the polar-orbiting Sentinel-5p platform;

Veefkind et al., 2012) and the geostationary Sentinel 4 (In-

gmann et al., 2012), more (cloud-free) data will be avail-

able. With such instruments, global aerosol-type maps with

even higher spatial and temporal resolution become feasi-

ble. These maps may find a wide range of applications:

from modelers, who can use the information to verify emis-

sions and aerosol processes, to scientists working to update

aerosol climatologies used in the retrieval of aerosol optical

depth (e.g., MODIS) or trace gas columns, and environmen-

tal policy makers, for the development of effective mitigation

strategies.

The Supplement related to this article is available online

at doi:10.5194/acp-15-10597-2015-supplement.
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