Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis

Y. L. Sun et al.
Correspondence to: Y. L. Sun (sunyele@mail.iap.ac.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table S1. Threshold values $\left(75^{\text {th }}\right.$ percentile, $\left.\mu \mathrm{g} \mathrm{m}^{-3}\right)$ for the PSCF of aerosol species during four seasons.

	Summer	Fall	Winter	Spring
Org	30.0	36.9	43.6	29.2
$\mathrm{SO}_{4}{ }^{2-}$	14.4	9.6	10.8	10.9
$\mathrm{NO}_{3}{ }^{-}$	21.4	17.3	16.6	20.9
Cl^{-}	1.0	2.0	4.7	2.3

Fig. S1. Correlation between NR-PM M_{1} and $\mathrm{PM}_{2.5}$ for the entire year.

Fig. S2. Fire spots in north China plain during (a) 15-30 June, 2012 and (b) $1-15$
October, 2011 (https://firms.modaps.eosdis.nasa.gov/firemap/).

Fig. S3. Comparison of the average diurnal cycles of (a) organics, (b) $\mathrm{SO}_{4}{ }^{2-}$, (c) $\mathrm{NO}_{3}{ }^{-}$, and (d) Cl^{-}between weekdays and weekends during four seasons.

Fig. S4. Comparison of the average diurnal cycles of (a) NO , (b) SO_{2}, (c) CO , and (d) O_{3} between weekdays and weekends during four seasons. SO_{2} and CO were not measured in summer and fall in this study.

