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Abstract. Ozone (O3) plays an important role in chemical

reactions and is usually incorporated in chemical data assim-

ilation (DA). In tropical cyclones (TCs), O3 usually shows

a lower concentration inside the eyewall and an elevated

concentration around the eye, impacting meteorological as

well as chemical variables. To identify the impact of O3

observations on TC structure, including meteorological and

chemical information, we developed a coupled meteorology–

chemistry DA system by employing the Weather Research

and Forecasting model coupled with Chemistry (WRF-

Chem) and an ensemble-based DA algorithm – the maxi-

mum likelihood ensemble filter (MLEF). For a TC case that

occurred over East Asia, Typhoon Nabi (2005), our results

indicate that the ensemble forecast is reasonable, accompa-

nied with larger background state uncertainty over the TC,

and also over eastern China. Similarly, the assimilation of O3

observations impacts meteorological and chemical variables

near the TC and over eastern China. The strongest impact on

air quality in the lower troposphere was over China, likely

due to the pollution advection. In the vicinity of the TC, how-

ever, the strongest impact on chemical variables adjustment

was at higher levels. The impact on meteorological variables

was similar in both over China and near the TC. The analy-

sis results are verified using several measures that include the

cost function, root mean square (RMS) error with respect to

observations, and degrees of freedom for signal (DFS). All

measures indicate a positive impact of DA on the analysis –

the cost function and RMS error have decreased by 16.9 and

8.87 %, respectively. In particular, the DFS indicates a strong

positive impact of observations in the TC area, with a weaker

maximum over northeastern China.

1 Introduction

The air quality forecast is related to emissions, trans-

port, transformation and removal processes, and to the pre-

vailing meteorological conditions. Therefore, the coupled

meteorology–chemistry model is essential for the air qual-

ity and weather forecasting (e.g., Carmichael et al., 2008).

The coupled system forecast is improved through coupled

meteorology–chemistry data assimilation (DA), which esti-

mates the best initial conditions by combining the informa-

tion from the model and observations in a mathematically

consistent manner (e.g., Houtekamer and Mitchell, 1998; El-

bern and Schmidt, 1999; Wang et al., 2001; Evensen, 2003;

Park and Zupanski, 2003; Navon, 2009; Zupanski, 2009;

Park et al., 2015).

Ozone (O3) has a relatively long photochemical lifetime

and high concentrations at high latitude and in the strato-

sphere, except during ozone hole conditions. It is a passive

tracer at synoptic scale or smaller; thus variations of total

column O3 in space and time are a result of the atmospheric

flow, and is highly correlated to many meteorological vari-
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ables in the upper troposphere (Wu and Zou, 2008). Assim-

ilation of O3 has several motivations such as (Lahoz et al.,

2007): (1) taking better account of stratospheric O3 when

assimilating satellite radiance data; (2) leading to better ra-

diative forcing when used by the model radiation scheme;

(3) providing useful dynamical information via the motion

of O3 in the atmosphere; and (4) improving the accuracy

of UV index forecasting. Moreover, the improved strato-

spheric O3 distribution by DA can affect meteorological vari-

ables such as stratospheric winds and temperature as well as

other chemical variables (e.g., Lahoz et al., 2007; Park et al.,

2015).

O3 is also relevant to the structure of tropical cyclones

(TCs), showing a lower concentration just inside the eyewall

and elevated concentration around the eye (e.g., Carsey and

Willoughby, 2005; Zou and Wu, 2005; Wu and Zou, 2008),

which is caused by the updraft in the eyewall and subsi-

dence in the eye (Zou and Wu, 2005). Using these relations,

the daily total column O3 from Total Ozone Mapping Spec-

trometer (TOMS) showed that mutual adjustment occurred

between the TC and its upper tropospheric environment

on a synoptical timescale (Rodgers et al., 1990; Stout and

Rodgers, 1992). The linear relationship between total column

O3 from TOMS and mean vertically integrated potential vor-

ticity (MPV) was used to improve hurricane or winter storm

prediction (e.g., Jang et al., 2003; Zou and Wu, 2005; Wu and

Zou, 2008). However, these studies employed a meteorolog-

ical model, not the coupled meteorology–chemistry model.

They used the standard dynamical variables as control vari-

ables and empirical regressions to develop a cross-correlation

between O3 and dynamical model variables.

In this study, we directly assimilate the total column

O3 from the Ozone Monitoring Instrument (OMI) to iden-

tify the impact of O3 observations on TC structure includ-

ing meteorological and chemical information in a coupled

meteorology–chemistry model (e.g., WRF-Chem) with an

ensemble-based DA system (e.g., Maximum Likelihood En-

semble Filter; MLEF). We define an augmented control vari-

able that contains both meteorological and chemical vari-

ables. Here meteorological variables consist of dynamical

variables (e.g., wind components) and physical variables

(e.g., water vapor, cloud water, etc.). Therefore, the cross-

correlations between meteorological and chemical variables

are obtained directly from ensemble forecasts (e.g., Park

et al., 2015). Section 2 describes the methodology, and

Sect. 3 presents results. Conclusions are provided in Sect. 4.

2 Methodology

2.1 Model

In this research, we use the Weather Research and Fore-

casting (WRF) model coupled with Chemistry (WRF-Chem)

version 3.4.1 as a prediction model on a regional scale.

It simulates the emission, transport, mixing and chemi-

cal transformation of trace gasses and aerosols simultane-

ously with meteorology (Grell et al., 2005). The WRF-Chem

uses configuration options for various meteorological pro-

cesses such as the WRF Single-Moment 6-class (WSM6)

scheme for the microphysics, the Community Atmospheric

Model (CAM) scheme for the radiation physics, the Monin–

Obukhov scheme for the surface layer, the Noah land sur-

face model for the land surface, the Yonsei University (YSU)

scheme for the planetary boundary layer, and the Kain–

Fritsch scheme for the cumulus parameterization. These are

the recommended physics options for the regional climate

case at 10–30 km grid size. As an advection option, the

monotonic transport is applied to turbulent kinetic energy

and scalars such as mixing ratios of water vapor, cloud wa-

ter, rain, snow and ice and chemical species. The monotonic

transport is commonly used for real-time and research appli-

cations (e.g., Chapman et al., 2009; Yang et al., 2011). Re-

garding the chemical mechanism, the Carbon Bond Mecha-

nism version Z (CBM-Z) without Dimethylsulfide scheme is

used for gas-phase chemistry. The CBM-Z includes the pre-

diction of O3 and several other chemical constituents (Fast

et al., 2006).

In terms of the DA system, we use an ensemble-based

DA method called the Maximum Likelihood Ensemble Filter

(MLEF; Zupanski, 2005; Zupanski et al., 2008). The MLEF

generates the analysis solution which maximizes the likeli-

hood of the posterior probability distribution, obtained by

minimization of a cost function. The MLEF belongs to the

family of deterministic ensemble filters, hence it is a hybrid

between variational and ensemble DA methods. The MLEF

employs a cost function derived using a Gaussian proba-

bility density function and produces both the analysis and

the background error covariance (Zupanski, 2005). It is well

suited for use with highly nonlinear observation operators,

for a small additional computational cost of minimization us-

ing the Hessian preconditioning (Zupanski, 2005; Zupanski

et al., 2007b, 2008), and has been employed in many stud-

ies including uncertainty analysis, parameter estimation and

data assimilation (e.g., Zupanski and Zupanski, 2006; Zupan-

ski et al., 2007a; Lokupitiya et al., 2008; Kim et al., 2010;

Apodaca et al., 2014; Tran et al., 2014; Park et al., 2015).

The coupling between the MLEF and WRF-Chem is made

through an interface module that transforms the MLEF con-

trol variables into the netcdf file of WRF-Chem, and vice

versa. This interface module is a component of MLEF, and

hence the WRF-Chem is not altered.

2.2 Observations

Satellite retrievals often provide estimates of chemical con-

centration as a total vertical column, and they cover a wide

geographical range compared to other measurements (e.g.,

Silver et al., 2013). In our study, the total column O3 ob-

tained by OMI is used as an observation. The OMI is a nadir-
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viewing near-UV/visible charge-coupled device (CCD) spec-

trometer aboard NASA’s Aura satellite (OMI Team, 2012).

The total column O3 is Level 2 data (OMTO3) based on

the TOMS v8.5 algorithm, which is obtained from an or-

bital swath with a resolution of 13km×24km at nadir (OMI

Team, 2012). It achieves global coverage in 1 day. In this ex-

periment, we did not apply the quality flags because the first

appearance of the row anomaly that affects particular view-

ing directions, corresponding to the rows on the CCD detec-

tors (OMI Team, 2012) did not occur in 2005, when the TC

case considered occurred (i.e., Typhoon Nabi, 2005). There-

fore, we employ the OMI data without quality flags.

Figure 1 shows the total column O3 from OMI at

04:05 UTC 3 September 2005. It shows a lower concentra-

tion just inside the eyewall and elevated concentration around

the eye. This distinct distribution is well described when the

TC has the strongest intensity in the intensifying stages (e.g.,

Carsey and Willoughby, 2005). Note that OMI switches from

its normal global mode to zoom-in mode, to perform spa-

tial zoom (higher resolution) measurements, for a 24 h pe-

riod about once a month. It occurs when OMI finishes its last

orbital pass over Europe, and returns to global mode after

14–15 orbits or about 24 h later. During this period of zoom-

in mode, OMI has no global coverage of data (OMI Team,

2012). Typhoon Nabi (2005) reached the maximum intensity

on 2 September when OMI entered into the zoom-in mode.

Due to the lack of O3 data in our domain on 2 September, we

have alternatively chosen 3 September for the analysis of O3

properties during the maximum development of the TC case.

2.3 Experimental design

For the TC case, we choose Typhoon Nabi (2005), which

lasted several days from 29 August 2005 until 8 Septem-

ber 2005. Nabi moved westward after its formation and

passed near Saipan on 31 August as an intensifying TC,

transformed to a super typhoon on 1 September, and reached

its peak with winds of 175 kmh−1 (10 min average) on

2 September. It became weak while turning to the north and

striking Kyushu on 6 September. Nabi turned to the northeast

after passing by South Korea, and transformed to an extrat-

ropical cyclone passing over Hokkaido on 8 September.

In general the DA is composed of two components – pre-

diction and analysis. A meaningful cycling of DA is inher-

ently related to the prediction component, as every new cycle

begins from the forecast guess from the previous cycle. The

analysis component of DA is also important, as it provides

the impact of observations on the analysis produced by DA.

In the current research, we focus on the analysis component

of DA, as the first step towards the eventual DA system for

OMI observations.

Conducting the DA cycling with several cycles can make

DA more powerful. Although one can potentially have four

cycles with a 6-h assimilation window in a day, the infrequent

availability of OMI observations over the model domain al-

Figure 1. Total column O3 (in DU) from OMI at 04:05 UTC,

3 September 2005.

lows only one DA cycle per day. Therefore, we only perform

the first DA cycle, which has the strongest impact among the

cycles. It is our view that this single cycle DA experiment

is sufficient to illustrate the effect of coupled meteorology–

chemistry DA.

We focused on a single DA cycle from 00:00 to 06:00 UTC

3 September 2005, which is one of the strongest periods

of the typhoon lifetime. We conduct the experiment with

32 ensembles and 6 h assimilation window. Note that the

OMI observations have an approximate frequency of once

per day over the typhoon and the surrounding geographical

area. Therefore, adding more DA cycles would not be bene-

ficial since no additional data are available. In the future we

plan to add a capability to assimilate other observations, such

as meteorological observations and all-sky infrared radiances

from a geostationary satellite.

The initial and lateral boundary conditions for meteo-

rological states are provided by the National Centers for

Environmental Prediction (NCEP) Global Forecasting Sys-

tem (GFS), while those for chemical variables are obtained

from the Model for Ozone and Related chemical Tracers

(MOZART) chemistry global model of the National Center

for Atmospheric Research (NCAR)/Atmospheric Chemistry

Division (ACD). The WRF-Chem is set up with a horizon-

tal resolution of 30 km and 51 vertical levels with the bottom

at the ground and the top at 10 hPa using a terrain-following

hydrostatic pressure coordinate (Skamarock et al., 2008).

The model domain is centered over the Korean Penin-

sula, covering an area of approximately 3900km× 4400km

with 132× 147 horizontal grid points. The control variables

defined in the coupled meteorology–chemistry DA are the

WRF-Chem prognostic variables that contain meteorologi-
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cal variables such as winds, perturbation potential tempera-

ture, perturbation geopotential, water vapor mixing ratio and

perturbation dry air mass in a column, and the chemical vari-

ables such as ozone (O3), nitrates (NO, NO2, NO3), and sul-

fur dioxide (SO2). The experiments consist of (i) the forecast

(without DA) which is useful to understand the synoptic sit-

uation and background error covariance, and (ii) the analysis

(with DA) which is useful to understand the assimilation im-

pact.

2.4 Bias correction of total column O3

We define the observation operator transforming the WRF-

Chem O3 forecast to the total column O3 observation. It con-

tains the calculation of total column O3 with unit conversion

and bi-linear interpolation, that is; (1) to transform the physi-

cal units of O3 from the model-produced concentrations in

parts-per-million-volume (ppmv) units to the OMI data in

Dobson Units (DU), and (2) to transform the O3 amount from

the model grid levels to vertically integrated value at the ob-

servation location. Mathematically, the operator can be writ-

ten as

h(x)= hi(hc(hu(x))), (1)

where x denotes an input model variable (e.g., concentra-

tion), and hi represents the horizontal interpolation operator,

hc the vertical column integration and hu the unit transfor-

mation from ppmv to DU. The unit transformation for ozone,

hu, is given by

hu(x)=
A× 10−81p

g×md

× x, (2)

where A= 6.02252× 1023 is the Avogadro number, 1p is

the vertical increment of pressure in the layer (hPa), g is the

gravity constant, and md is the molecular weight of dry air

(kg mol−1). The vertical column integration, hc, is

hc(s)=

K∑
k=1

sk, (3)

where sk is the ozone in DU at layer k, and K denotes the

number of vertical layers. Finally the bi-linear horizontal in-

terpolation, hi, is

hi(r)=

I∑
i=1

wiri, (4)

where ri is the vertically integrated ozone at grid point i,

wi is the bi-linear observation weight at grid point i, and

I denotes the number of grid points used in the interpola-

tion (I = 4 in our case). After combining Eqs. (2)–(4) into

Eq. (1), the observation operator for OMI observations be-

comes

h(x)=

I∑
i=1

wi

(
K∑
k=1

A× 10−8(1p)k

g×md

× xk

)
i

. (5)

In these processes, the most demanding part of the ob-

servation operator is bias correction of total column O3 ob-

servations. Although we use the reference pressure at the

model top as 10 hPa, which is the highest value we could

use in the current model version, there are still consider-

able amounts of O3 in the stratosphere that could not be

included in the calculation of the model guess (e.g., back-

ground). Since this creates a negative bias in the mean obser-

vation error, we introduce a multiplicative bias correction ε

to preserve positive-definiteness of the bias-corrected guess

(Apodaca et al., 2014) as

hB(x)= ε×h(x), (6)

where x is the model state vector. With the multiplicative

bias correction in Eq. (6), we can make a new cost function

in unbiased form as

J (x)=
1

2
(x− xb)

TP−1
f (x− xb)

+
1

2
[y−hB(x)]

TR−1
[y−hB(x)], (7)

where xb is the prior (background) state, y is the observation

vector, and the superscript T means a transpose. Here, h is the

nonlinear observation operator, Pf is the background (fore-

cast) error covariance matrix in the ensemble subspace, and

R is the observation error covariance matrix. Equation (7) is

the cost function used in DA, provided ε can be estimated.

The optimal value of parameter ε is obtained by implic-

itly assuming lognormal probability density function errors

for a multiplicative bias correction in Eq. (6) (e.g., Apodaca

et al., 2014) as

ε = ε0 exp


1
N

N∑
i=1

log
(

yi
ε0h(x)i

)
1+

r0
w0

 , (8)

where ε0 is a guess parameter value and N is the number

of observations. The empirical weighting values are set to

r0 = w0 = 0.5 which implies having the same confidence in

observations and the guess. We assume the starting value of

the bias to be

ε0 =
y

h(x)
where y =

1

N

N∑
i=1

yi,

h(x)=
1

N

N∑
i=1

h(x)i . (9)

Equation (8) is calculated once in every DA cycle.

3 Results

A specific characteristic of our experiments is that both me-

teorological and chemical variables are used as control vari-

ables in DA. Regarding the meteorological variables, we fo-

cus on what is related to the TC formation and development,
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such as the temperature, wind, and water vapor. Regarding

the chemical variables, we select the chemical constituents

such as O3, NO2 and SO2. These are used to identify the

impact of O3 observations on the TC structure in a WRF-

Chem-MLEF system.

3.1 Synoptic situation with ensemble WRF-Chem

forecast

In general, observations show that SO2 has larger concen-

trations in the troposphere while O3 and NO2 have larger

concentrations in the stratosphere (e.g., Meena et al., 2006).

However, in East Asia, especially in eastern China, there is

a significant tropospheric NO2 concentration because of the

industrialized and urbanized part of China (Richter et al.,

2005; Ohara et al., 2007). Regarding the meteorological

variables, temperature and water vapor have higher values

in the troposphere, while wind has larger speed near the

tropopause. To consider these characteristics, we focused

on two pressure levels: (i) 850 hPa (lower troposphere) and

(ii) 200 hPa (upper troposphere/lower stratosphere; UTLS).

The WRF-Chem forecast is in general agreement with the

observed synoptic situation, which is not shown in this pa-

per.

3.2 Background error covariance

The background error covariance represents the background

state uncertainty (e.g., Buehner, 2005; Zupanski and Zupan-

ski, 2007; Kim et al., 2010). These are estimated by taking

the difference between the ensemble perturbation forecasts

(total of 32) and the control forecast in the ensemble system

(Zupanski, 2005; Zhang et al., 2013). In our study, the en-

semble WRF-Chem-MLEF estimates the background error

covariance defined in Zupanski (2005) as

Pf = P
1/2

f

(
P

1/2

f

)T

, P
1/2

f =

(
pf

1· · ·p
f
N

)
,

pf
n =m(x

0
n)−m(x

0) (10)

where the index n is an ensemble member, N is the total

number of ensemble forecasts, m is the WRF-Chem model,

and the subscript 0 denotes the initial time of the forecast

with corresponding initial conditions x0 (i.e., control fore-

cast) and ensemble initial conditions x0
n (i.e., ensemble fore-

casts). In this experiment, the initial ensemble perturbations

are generated by using the lagged forecast outputs (Zhang

et al., 2013).

Being calculated from the WRF-Chem ensemble forecast,

the flow-dependent background error covariance is defined

for meteorological and chemical variables, which allows

chemistry observations to impact meteorological variables in

DA. In Zhang et al. (2013), a larger background state uncer-

tainty was found in the storm region. Our results also identify

the larger background state uncertainty near the TC, similar

to Kim et al. (2010). Figure 2 shows the standard deviation

(SD) of background error covariance for chemical variables.

O3 in particular (Fig. 2a and d, respectively) shows a large

background state uncertainty near the TC, with the maxi-

mum of 0.024 ppmv at 200 hPa (Fig. 2d). The background

state uncertainties of NO2 and SO2 at 200 hPa (Fig. 2e and f,

respectively) are located near the TC, characterized by small

magnitude and weak influence on tropospheric pollution. On

the other hand, the background state uncertainties of NO2

and SO2 at 850 hPa (Fig. 2b and c, respectively) have more

impact on central eastern China, implying no visible (or ob-

vious) impact of the low-level NO2 and SO2 on the TC.

The SD of background error covariance for meteorolog-

ical variables appear to be more related to the TC struc-

ture (see Fig. 3). In particular, wind (Fig. 3a and d, respec-

tively) shows a larger background state uncertainty near the

TC at both pressure level, especially in the eye region at

850 hPa (Fig. 3a). Temperature (Fig. 3b and e) also shows

a larger background state uncertainty near the TC, especially

at 200 hPa (Fig. 3d). Regarding the water vapor mixing ratio

(Fig. 3c and f, respectively), there is a larger background state

uncertainty in the eye region at both pressure levels. Larger

background state uncertainty potentially implies a stronger

analysis correction, provided that total column O3 observa-

tions are available.

3.3 Analysis increment through the O3 data

assimilation

We assess the impact of the assimilated O3 observations us-

ing analysis increments (xa−xb), which show the correction

of the background state using the observations (e.g., Buehner,

2005). It is calculated by the following variable transforma-

tion (Zhang et al., 2013; Zupanski, 2005)

xa− xb = P
1/2

f

{
I+ [Z(xb)]

TZ(xb)
}−1/2

ζ, (11)

where ζ is the control variable in the ensemble space; the

matrix in Eq. (11) is equal to the inverse of the square root

Hessian of the cost function in Eq. (7); Z is the observation

information matrix with column vectors zi = R−1/2
[h(xi)−

h(xb)], where the index i denotes the ensemble member.

Figure 4 shows the analysis increments (xa−xb) of chem-

ical variables obtained by assimilating O3 observations. By

comparing Figs. 2 and 4 one can notice that the O3 analysis

increments are in agreement with background state uncer-

tainties, as expected from Eq. (11). At 850 hPa, the O3 anal-

ysis increment has an increase near the TC, but a decrease

over China (Fig. 4a). At 200 hPa, however, there is an in-

crease of O3 near the TC, and marginal change over China

(Fig. 4d). The strong positive response has the largest value

of approximately 0.024 ppmv. At 200 hPa, positive O3 analy-

sis increments are correlated with positive NO2 (Fig. 4e) and

SO2 (Fig. 4f) increments in the TC region, while no clear cor-

relation is found in other regions. Note that NO2 and SO2 are

not related to the TC at 850 hPa while the O3 analysis incre-

ments are correlated with NO2 (Fig. 4b) and SO2 (Fig. 4c),

www.atmos-chem-phys.net/15/10019/2015/ Atmos. Chem. Phys., 15, 10019–10031, 2015
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Figure 2. Standard deviation of background error covariance for chemical variables valid on 06:00 UTC, 3 September 2005 at 850 hPa (left

panel) for (a) O3, (b) NO2 and (c) SO2, and at 200 hPa (right panel) for (d) O3, (e) NO2 and (f) SO2. Units are ppmv.

Atmos. Chem. Phys., 15, 10019–10031, 2015 www.atmos-chem-phys.net/15/10019/2015/
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Figure 3. Standard deviation of background error covariance for atmospheric variables valid on 06:00 UTC, 3 September 2005 at 850 hPa

(left panel) for (a) wind, (b) temperature and (c) water vapor mixing ratio, and at 200 hPa (right panel) for (d) wind, (e) temperature and (f)

water vapor mixing ratio. Units are m s−1 for wind, K for temperature and g kg−1 for water vapor mixing ratio.

www.atmos-chem-phys.net/15/10019/2015/ Atmos. Chem. Phys., 15, 10019–10031, 2015
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Figure 4. Same as in Fig. 2 except for analysis increment (xa− xb) of chemical variables in response to total column O3. Units are ppmv.

Atmos. Chem. Phys., 15, 10019–10031, 2015 www.atmos-chem-phys.net/15/10019/2015/
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Figure 5. Same as in Fig. 3 except for analysis increment (xa−xb) of atmospheric variables in response to total column O3. Units are m s−1

for wind, K for temperature and g kg−1 for water vapor mixing ratio.

www.atmos-chem-phys.net/15/10019/2015/ Atmos. Chem. Phys., 15, 10019–10031, 2015
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increasing in central eastern China and Korea and decreasing

in northeastern China.

Figure 5 shows the analysis increments (xa− xb) of me-

teorological variables by O3 assimilation. Corresponding to

background state uncertainties, the analysis increments of

wind show significant impact on both lower and upper pres-

sure levels. Positive O3 increments correspond to positive

wind increments at 850 hPa (Fig. 5a), especially in the eye re-

gion, and to positive wind increments at 200 hPa (Fig. 5d) in

the TC and in northeastern China and Korea. Regarding the

temperature impact (Fig. 5b and e, respectively), the positive

O3 increments generate temperature cooling near the TC and

warming over northeastern China. Regarding the water vapor

mixing ratio, positive O3 increments generate a reduction of

water vapor mixing ratio (Fig. 5c and f, respectively) near

the TC as well as in the eye region at both pressure levels.

At 850 hPa, the water vapor mixing ratio is increasing with

positive O3 increments over northeastern China (Fig. 5c).

These results illustrate that chemical observations can im-

pact not only the chemical variables but also the meteoro-

logical variables, due to using the ensemble-based coupled

meteorology–chemistry background error covariance, as in-

dicated by Park et al. (2015).

3.4 Verification of O3 data assimilation

As a verification measure, we examine the O3 assimilation

impact on the cost function and on the root mean square

(RMS) error with respect to O3 observations, the same data

used in the analysis. The cost function of O3 driven by

Eq. (7) has decreased from 0.36924× 104 (background) to

0.30689×104 (analysis), i.e., it is reduced by approximately

16.9 %. The RMS error, calculated as

RMSa =

√
1

N

∑
[y−h(xa)]2,

RMSb =

√
1

N

∑
[y−h(xb)]2, (12)

where subscripts a and b denote analysis and background,

respectively, has also decreased from 0.16684× 102 DU

(background) to 0.15204× 102 DU (analysis), i.e., by about

8.87 %. These results suggest that O3 assimilation has pro-

duced a significant improvement in the initial conditions.

In addition, the impact of total column O3 observations is

also quantified in terms of the uncertainty reduction. With the

Gaussian probability assumption, the information content of

observations can be represented as the degrees of freedom

for signal (DFS; Rodgers, 2000), ds, as

ds = tr
[
I−PaP−1

f

]
, (13)

where tr is the trace function, I is the identity matrix, and

Pa and Pf are the analysis and background error covariances,

Figure 6. Degrees of freedom for signal (DFS) of assimilated total

column O3 observation valid at 06:00 UTC, 3 September 2005. The

units are non-dimensional.

respectively. Here ds can also be expressed as

ds =

∑
i

λ2
i

1+ λ2
i

, (14)

where λi are the eigenvalues of the observation information

matrix (e.g., Zupanski et al., 2007b). Note from Eq. (14) that

the ds are strictly a non-negative measure: zero values indi-

cate no impact of observations, while positive values indicate

a reduction of uncertainty due to assimilation. As shown in

Zupanski et al. (2007b), the estimation of Eq. (14) is also

useful in a reduced-rank setting of ensemble DA.

Figure 6 shows the DFS of assimilated total column O3

observations. One can note that the largest values of DFS

coincide with the satellite path, and thus the observations, as

expected. The area with the maximum impact is near the TC

location, indicating that it is the area where the total column

O3 observation had the strongest impact. In agreement with

the analysis increments, there exists a secondary maximum

over northeastern China, and a smaller one over the Yellow

Sea. Given that the DA system includes meteorological and

chemical control variables, this result also indicates that O3

total column observations have a positive impact on both the

meteorological and chemical components of the WRF-Chem

system, especially in the TC area.

4 Conclusions

In this study, we investigated the impact of ozone (O3) assim-

ilation on the structure of a tropical cyclone (TC). We directly

assimilated the total column O3 from the Ozone Monitoring
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Instrument (OMI) in a coupled meteorology–chemistry mod-

eling system – the Weather Research and Forecasting (WRF)

model coupled with Chemistry (WRF-Chem). An ensemble-

based data assimilation (DA) method, the maximum likeli-

hood ensemble filter (MLEF), is employed and interfaced

with the WRF-Chem. We include only a single DA cycle

since the OMI observations are covering the model domain

only once per day (i.e., 06:00 UTC), and no other observa-

tions are available at that time.

Our results show that the O3 assimilation has a significant

impact on the analyses of other chemical variables (e.g., NO2

and SO2) as well as O3 itself, and meteorological variables

(e.g., wind, temperature, water vapor, etc.), especially near

the TC case considered. These meteorological variables are

closely related to the TC structure and other properties. The

O3 observations can affect other chemical and meteorologi-

cal variables, and thus the TC itself. For example, tempera-

ture is related to development, wind to intensity, and water

vapor to precipitation of the TC. Therefore, the implied cor-

rections of these variables in TC regions have a potential to

improve the forecast of TCs.

In our DA experiments, the ensemble forecast error, given

by the background error standard deviation, appears reason-

able with larger uncertainty over the TC area and also over

eastern China. The root mean square error reduction indi-

cates an improvement of the optimal analysis state, while the

degrees of freedom for signal indicate a reduction of the un-

certainty of the optimal analysis.

The use of a single DA cycle limits the conclusions that

can be drawn regarding the robustness of the DA system, but

it does not impact the performance and implications of using

a coupled meteorology–chemistry DA system. It is desired

to perform a DA cycling with multiple cycles (i.e., the pre-

diction component of DA); however, it has several difficult

aspects that are not possible to resolve in the current setup. It

is known that the realistic DA is not perfect in providing dy-

namically balanced initial conditions, typically resulting in

a forecast spin-up period where some of the analysis adjust-

ments are filtered out (Kalnay, 2002). A practical remedy is

to produce an improved fit to observations, bringing about the

related stronger impact on dynamical model variables (e.g.,

wind, temperature and pressure), which would eventually re-

sult in a longer, sustained influence into the forecast. How-

ever, given that the assimilation of OMI observations exerts a

stronger impact on chemical variables than dynamical initial

conditions, the 24-h forecast that we need for the next cycle

would not be strongly influenced by the OMI observations.

Thus we need to assimilate additional observations.

As a future study, we plan to explore the longer DA peri-

ods (e.g., several days) to assess the impact of O3 observation

on the track, intensity and precipitation of TCs. Although we

have only one available observation product per day for O3,

we anticipate a positive impact of assimilation. In order to

obtain more improved DA effects, in addition to O3, we plan

to assimilate NO2 and SO2 observations, as well as meteo-

rological observations and all-sky infrared satellite radiances

from a geostationary satellite that will be launched in the near

future. Noting that NO2 and SO2 show high concentrations

in East Asia, especially over eastern China, we expect to im-

prove our understanding of the TC structure and the trans-

boundary air pollution as well through assimilation of such

chemical compositions from satellite observations.
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