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Abstract. During the fourth Fire Lab at Missoula Exper-
iment (FLAME-4, October–November 2012) a large vari-
ety of regionally and globally significant biomass fuels was
burned at the US Forest Service Fire Sciences Laboratory
in Missoula, Montana. The particle emissions were charac-
terized by an extensive suite of instrumentation that mea-
sured aerosol chemistry, size distribution, optical proper-
ties, and cloud-nucleating properties. The trace gas measure-
ments included high-resolution mass spectrometry, one- and
two-dimensional gas chromatography, and open-path Fourier
transform infrared (OP-FTIR) spectroscopy. This paper sum-
marizes the overall experimental design for FLAME-4 – in-
cluding the fuel properties, the nature of the burn simula-
tions, and the instrumentation employed – and then focuses
on the OP-FTIR results. The OP-FTIR was used to mea-
sure the initial emissions of 20 trace gases: CO2, CO, CH4,
C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH,
glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN,
HCl, and SO2. These species include most of the major
trace gases emitted by biomass burning, and for several of
these compounds, this is the first time their emissions are
reported for important fuel types. The main fire types in-
cluded African grasses, Asian rice straw, cooking fires (open
(three-stone), rocket, and gasifier stoves), Indonesian and

extratropical peat, temperate and boreal coniferous canopy
fuels, US crop residue, shredded tires, and trash. Compar-
isons of the OP-FTIR emission factors (EFs) and emission
ratios (ERs) to field measurements of biomass burning ver-
ify that the large body of FLAME-4 results can be used to
enhance the understanding of global biomass burning and its
representation in atmospheric chemistry models.

Crop residue fires are widespread globally and account for
the most burned area in the US, but their emissions were
previously poorly characterized. Extensive results are pre-
sented for burning rice and wheat straw: two major global
crop residues. Burning alfalfa produced the highest average
NH3 EF observed in the study (6.63± 2.47 g kg−1), while
sugar cane fires produced the highest EF for glycolalde-
hyde (6.92 g kg−1) and other reactive oxygenated organic
gases such as HCHO, HCOOH, and CH3COOH. Due to
the high sulfur and nitrogen content of tires, they produced
the highest average SO2 emissions (26.2± 2.2 g kg−1) and
high NOx and HONO emissions. High variability was ob-
served for peat fire emissions, but they were consistently
characterized by large EFs for NH3 (1.82± 0.60 g kg−1) and
CH4 (10.8± 5.6 g kg−1). The variability observed in peat
fire emissions, the fact that only one peat fire had previ-
ously been subject to detailed emissions characterization,
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and the abundant emissions from tropical peatlands all im-
part high value to our detailed measurements of the emis-
sions from burning three Indonesian peat samples. This study
also provides the first EFs for HONO and NO2 for Indone-
sian peat fires. Open cooking fire emissions of HONO and
HCN are reported for the first time, and the first emis-
sions data for HCN, NO, NO2, HONO, glycolaldehyde, fu-
ran, and SO2 are reported for “rocket” stoves: a common
type of improved cookstove. The HCN/ CO emission ra-
tios for cooking fires (1.72× 10−3

± 4.08× 10−4) and peat
fires (1.45× 10−2

± 5.47× 10−3) are well below and above
the typical values for other types of biomass burning, re-
spectively. This would affect the use of HCN/ CO obser-
vations for source apportionment in some regions. Biomass
burning EFs for HCl are rare and are reported for the first
time for burning African savanna grasses. High emissions of
HCl were also produced by burning many crop residues and
two grasses from coastal ecosystems. HCl could be the main
chlorine-containing gas in very fresh smoke, but rapid par-
titioning to aerosol followed by slower outgassing probably
occurs.

1 Introduction

Biomass burning (BB) is the largest source of primary, fine
carbonaceous particles and the second-largest source of to-
tal trace gases in the global atmosphere (Bond et al., 2004,
2013; Akagi et al., 2011). Although it is a naturally occurring
process, humans have harnessed fire for various purposes,
including land management, pest control, cooking, heating,
lighting, disposal, hunting, and industrial use (Crutzen and
Andreae, 1990). The ever-growing global population con-
tributes to increases in these anthropogenic practices; the in-
jection of BB gas- and particle-phase emissions into the at-
mosphere; and critical climatic, radiative, chemical, and eco-
logical impacts on local to global scales.

The primary carbon-containing gases emitted from
biomass burning in order of abundance are carbon dioxide
(CO2), carbon monoxide (CO), and methane (CH4), which
includes two major greenhouse gases. BB is the second-
largest source of gas-phase non-methane organic compounds
(NMOCs) in the global atmosphere (Yokelson et al., 2008),
and they have significant impacts on smoke evolution: par-
ticularly rapid formation of secondary organic aerosol (SOA)
and secondary gases such as photochemical ozone (O3) (Al-
varado and Prinn, 2009; Reid et al., 1998). Other significant
gas-phase primary emissions – including nitric oxide (NO),
nitrogen dioxide (NO2) (van der A et al., 2008), and ni-
trous acid (HONO) – play important roles in the oxidative
state of the atmosphere by contributing to both sources and
sinks of the hydroxyl radical (OH), a primary atmospheric
oxidant (Thompson, 1992). Bottom-up modeling of the lo-
cal to global atmosphere requires emissions inventories that

incorporate measurements of the amount of a trace gas or
aerosol species emitted per unit fuel consumption (emission
factors, EFs). Top-down modeling can use known EFs to con-
strain total fuel consumption at various geographic scales.
Constructing comprehensive inventories for models requires
emissions data for a variety of important fuel (ecosystem)
types including savanna; temperate, boreal, or tropical forest;
crop residue; peat; garbage burning; biofuels (e.g., cooking,
charcoal making); etc. (Akagi et al., 2011; Wiedinmyer et al.,
2011; Randerson et al., 2005; van der Werf et al., 2010). The
characterization of the smoke emissions that result from fires
burning a wide range of globally significant fuels is essential
to model the initial impact and evolution of the emissions and
their influence on local to global atmospheric chemistry.

Many different approaches are useful for characterizing
BB emissions and aging. Field studies based on airborne
or ground-based platforms characterize fires burning in the
complex, natural environment. Airborne platforms are ideal
for representative sampling of most fires and smoke ag-
ing, while ground-based sampling can characterize unlofted
smoke, which is important on some fires (Bertschi et al.,
2003a, b; Akagi et al., 2012, 2013, 2014; Yokelson et al.,
2013a). A third alternative, burning biomass fuels in a labora-
tory has been a useful way to characterize BB smoke (Chris-
tian et al., 2003; Goode et al., 1999; Yokelson et al., 1996,
2008, 2013a; McMeeking et al., 2009; Levin et al., 2010; Pet-
ters et al., 2009). Benefits typically include better fuel char-
acterization, the opportunity to sample all the smoke from a
fire, and quantification of more species/properties due to a
more extensive suite of instrumentation. With this in mind,
from October to November of 2012, a team of more than 40
scientists carried out the fourth Fire Lab at Missoula Exper-
iment (FLAME-4), which characterized the initial trace gas
and particle emissions (and their subsequent evolution) from
a wide variety of globally significant fuels, including African
savanna grasses; crop residue; Indonesian, temperate, and
boreal peat; temperate and boreal coniferous canopy fuels;
traditional and advanced cooking stoves; shredded tires; and
trash.

In FLAME-4, the overarching goal was to burn both his-
torically undersampled and well-studied fuels while adding
new instrumentation and experimental methods to provide
previously unavailable information on smoke composition,
properties, and evolution. A critical objective was to ac-
quire this new information under conditions where the lab re-
sults can be confidently used to better understand real-world
fires. In this respect the open-path Fourier transform in-
frared (OP-FTIR) spectroscopy system was especially help-
ful since it provided new emissions data and also measured
many of the major inorganic and organic gaseous products
of both flaming and smoldering combustion that overlapped
well with the suite of fire emissions measured in numerous
field campaigns. Thus, in FLAME-4, advanced lab measure-
ments were combined with a lab–field comparison to en-
hance our understanding of important aspects of biomass
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burning, including (1) the effect of fuel type and fuel chem-
istry on the initial emissions; (2) the distribution of the
emitted carbon among pools of various volatility in fresh
and aged smoke with special attention to the large pool of
unidentified semi-volatile organic gases identified in previ-
ous work (Yokelson et al., 2013a); and (3) the factors in-
fluencing the evolution of smoke’s chemical, physical, and
cloud-nucleating properties.

This paper provides a brief overview of the FLAME-4 ex-
periment (configurations used, fuels burned, and instruments
deployed) and then focuses on a detailed description of the
trace gas measurements by OP-FTIR. We present the ma-
jor findings by OP-FTIR and compare lab and field data
to inform the use of emissions data from the OP-FTIR and
the extensive suite of other instruments deployed during the
FLAME-4 burns. The other emissions data and the smoke ag-
ing results will be reported in separate papers and later syn-
thesized in an organic-carbon apportionment paper similar to
Yokelson et al. (2013a).

2 Experimental details

2.1 US Forest Service Fire Sciences Laboratory and
configurations of the burns

The US Forest Service Fire Sciences Laboratory (FSL)
in Missoula, Montana (MT), has a large indoor combus-
tion room described in greater detail elsewhere (Chris-
tian et al., 2003; Burling et al., 2010). The room is
12.5 m× 12.5 m× 22 m high with a 1.6 m diameter exhaust
stack joined to a 3.6 m diameter inverted funnel opening
∼ 2 m above a continuously weighed fuel bed. The room is
pressurized with conditioned outdoor air to generate a large
flow that entrains the fire emissions and vents them through
the stack. A sampling platform surrounding the stack stands
17 m above the fuel bed, and this is where most of the instru-
mentation was stationed during the first configuration of the
experiment (hereafter “stack” burns). Other instruments were
located in adjacent rooms with sampling lines pulling from
ports at the sampling platform height. Previous studies found
that the temperature and mixing ratios are constant across the
width of the stack at the platform height, confirming well-
mixed emissions that can be monitored representatively by
many different sample lines throughout the fire (Christian et
al., 2004). The room temperature and relative humidity were
documented for each burn.

A set of twin smog chambers was deployed by Carnegie
Mellon University (CMU) on the combustion room floor to
investigate smoke aging, with a focus on atmospheric pro-
cesses leading to O3 and SOA formation. The chambers con-
sisted of fluorinated ethylene propylene (FEP) Teflon bags
with UV lights affixed to the walls to initiate photochemical
aging (Hennigan et al., 2011). Fresh BB smoke was drawn
from the platform height in heated passivated sampling lines

and introduced into the chambers after dilution to typical am-
bient levels using Dekati injectors. The smoke was then mon-
itored for up to 8 h by a large suite of instruments to examine
initial and photochemically processed gas and aerosol con-
centrations and composition. The monitoring instruments in-
cluded those in the CMU mobile lab, which was deployed
just outside the building. We used the OP-FTIR to measure
the predilution smoke that filled the chambers, but we did not
monitor the subsequently diluted chamber contents via FTIR.

Experiments were conducted using two primary laboratory
configurations. In the first configuration, stack burn fires last-
ing ∼ 2–30 min were situated on a fuel bed located directly
below the combustion stack described above. Emissions trav-
eled upward through the stack at a constant flow rate, while
the instruments sampled continuously at the platform height.
The smoke was well mixed and had aged approximately 5 s
by the time it reached the sampling height. In the second
configuration, referred to hereafter as “room” burns, much
of the instrumentation was relocated to other rooms immedi-
ately adjacent to the combustion room, and air samples were
drawn from lines projecting well into the combustion room.
The combustion room was sealed and the fuels burned for
several minutes. Within∼ 15–20 min the fresh smoke was
well mixed throughout the entire combustion room and was
monitored while being “stored” in low-light conditions for
several hours. O3 and peroxyacetyl nitrate (PAN) remained
below the sub-ppbv detection limits of the OP-FTIR during
this storage period. Smoke emissions from room burns were
also diluted into the smog chambers shortly after they be-
came well mixed for further perturbation and analysis. These
room burns were conducted primarily to allow more time-
consuming analyses of the optical and ice-nucleating proper-
ties of smoke, which will be described in greater detail else-
where (Levin et al., 2014). Figure 1 shows temporal profiles
for CO and CO2 excess mixing ratios during each configura-
tion of the experiment and during distinct fuel-specific burns.

2.2 Fuels overview

This section summarizes the significance and authenticity of
the fuels burned in this study. Selected properties are pre-
sented in Table 1, which includes the sampling location and
dry weight percentage of carbon, nitrogen, and ash measured
using a commercial CHN analyzer. Fuel chlorine and/or sul-
fur content are shown for selected fuels (Midwest Microlab
LLC; ALS Environmental). Fuel loadings varied by fuel but
were chosen to simulate real-world values, typically in the
range of 0.1–5 kg m−2 (Akagi et al., 2011). Global estimates
of biomass consumption for several major fuel types investi-
gated here are shown in Table 4 of Akagi et al. (2011). The
fuels were primarily ignited with electric resistively heated
coils, but for cooking fires and occasionally other fires a
propane or butane torch was used and small amounts of al-
cohol were sometimes required.
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Figure 1. (a)Typical peat “stack” burn,(b) open cookstove stack burn (feeding fire),(c) grass stack burn, and(d) “room” burn.

2.2.1 South African and US grasses

Fire is a natural disturbance factor and valuable ecological
management tool in grasslands, which are widespread glob-
ally. During the dry season in southern Africa, savannas are
burned for reasons ranging from agricultural maintenance to
grazing control (Govender et al., 2006). The fires consume
aboveground biomass consisting mainly of grass with some
litter and woody debris. Savanna fire emissions (mainly in
Africa) have been estimated to contribute up to 44 % of the
total global pyrogenic carbon emissions in some years (van
der Werf et al., 2011). A smaller but significant fraction of
the total pyrogenic emissions is attributed to this source by
Wiedinmyer et al. (2011).

Savanna fuels burned during FLAME-4 were collected
from experimental burn plots in Kruger National Park (KNP)
in South Africa, a savanna ecosystem heavily prone to fire
that has been the location of a number of ground- and
aircraft-based campaigns measuring BB emissions (Wooster
et al., 2011; Sinha et al., 2003; Yokelson et al., 2003a). We
obtained tall- and short-grass samples from KNP near previ-
ous research sites (Shea et al., 1996) towards the peak of the
fire season in September 2012. The tall-grass site (Pretori-
ouskop sourveld) is at an elevation of 560–640 m with an an-
nual precipitation of∼ 700 mm. The landscape is dominated
by tall, coarse grasses densely dispersed in clumps through-
out the area, with very little tree or leaf litter. The short-grass
site (Skukuza sweetveld) is at a lower elevation (400–480 m)
with less precipitation (∼ 570 mm) and was covered by much
shorter grasses but included a greater amount of leaf litter. In
both cases our lab simulations did not include the minor leaf
component due to import restrictions.

Other grass samples burned included wiregrass, sawgrass,
and giant cutgrass, all of which are common prescribed fire
fuels in the southeastern US (Knapp et al., 2009). Wire-
grass is frequently a significant component of the forest un-
derstory, while the other two grasses are major fuel com-
ponents in coastal wildlife refuges. Prescribed burning in
coastal marshes of the southeastern US is done to improve
habitat for waterfowl (Nyman and Chabreck, 1995). All our
US grass samples were collected in South Carolina.

2.2.2 Boreal, temperate, and tropical peat samples

Peat deposits are accumulated, partially decomposed vegeta-
tion that is highly susceptible to combustion when dry and
burns predominately by “creeping” surface or underground
smoldering, which is difficult to detect from space (Reid et
al., 2013). Peat fires are the largest contributor to annual
greenhouse gas emissions in Indonesia (Parker and Blodgett,
2008), and an estimated 0.19–0.23 Gt of carbon was released
to the atmosphere from peat combustion during the 1997 El
Niño, which was equivalent to∼ 40 % of the mean annual
global fossil fuel emissions (Page et al., 2002). This had ma-
jor regional effects on health (Marlier et al., 2013) and cli-
mate (van der Werf et al., 2010).

Indonesian peat was sampled from three sites in the fire-
prone area of the Mega Rice Project (MRP): a project that
drained peatlands in Kalimantan for conversion to rice pro-
duction that was subsequently abandoned. The first site had
little evidence of ground disturbance with no indication of
past burning, while the other sites were in highly degraded
peat forest with reports of prior burn and logging events. The
samples were collected at a depth of 10–20 cm below the sur-
face and were cut into 10 cm× 10 cm× 10 cm blocks. The
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samples were dried stepwise in a microwave oven to a burn-
able moisture content.

Peat and organic soil can be a major fuel component for
boreal fires (Turetsky et al., 2011). Our boreal peat samples
were sub-humid boreal peat from the Hudson Bay Lowlands
of Canada, where most fires are caused by lightning. We
also burned temperate swampland peat collected in coastal
North Carolina, which is subject to accidental fires and occa-
sional prescribed burning. One North Carolina sample was
obtained from the site of the large Pains Bay Fire (http:
//www.inciweb.org/incident/2218/; Rappold et al., 2011) in
Alligator National Wildlife Refuge and the other from Green
Swamp Preserve near Wilmington, NC.

2.2.3 Open (three-stone), rocket stove, and gasifier
cooking fires

Domestic biofuel use is thought to be the second-largest
type of global biomass burning in a typical year (Akagi et
al., 2011). Approximately 2.8 billion people worldwide burn
solid fuels (primarily biomass) indoors for household cook-
ing and heating (Smith et al., 2013), and the smoke emis-
sions contribute to an estimated 2 million deaths annually
and chronic illness (WHO, 2009). Mitigating cooking fire
emissions could alleviate adverse health effects and substan-
tial climate impacts (Kirchstetter et al., 2004; Ramanathan
and Carmichael, 2008; Andreae and Ramanathan, 2013).

In this study, an experienced field researcher (L’Orange et
al., 2012a, b) simulated “field” cooking with four cookstove
types and for five different fuels starting with the cookstove,
pot, and water all at ambient temperature. Traditional three-
stone cooking fires are the most widespread globally and are
simply a pot positioned on three stones or bricks above a
continuously fed fuel center. The Envirofit Rocket G-3300
stove is an example of a common approach to reducing fuel
consumption per cooking task. The “rocket” type insulated
combustion chamber mixes cool air entering the stove with
the heated combustion air and optimizes heat transfer to the
pot via a vertical chimney (Bryden et al., 2005; MacCarty et
al., 2008). The EzyStove uses minimal material in a rocket
type design with a patented inner chamber to focus heat. The
Philips HD4012 “gasifier” type stove improves combustion
efficiency with forced-draft air delivered by an internal fan
(Roth, 2011).

A recent EPA study focused on the fuel efficiency of
various cooking technology options (Jetter et al., 2012),
and FLAME-4 purposely included some similar fuels (red
oak) and devices (three-stone, Envirofit G-3300 rocket stove,
Philips HD4012 gasifier) to connect that work with our more
detailed emissions speciation. The EzyStove we tested was
not included in the EPA study. Overall, fuel types for our
cooking fire experiments included red oak, Douglas fir, and
okote wood cut into 2 cm× 2 cm× 35.5 cm sticks and millet
stalks all at∼ 5–10 % moisture content. We also measured

the emissions from Douglas fir chips burned in the G-3300
rocket stove and Philips HD4012 gasifier stove.

2.2.4 Crop residue fires

Sugar cane is an important crop in some US states (LA, FL,
HI) and parts of other countries (Brazil, South Africa, Mex-
ico, etc.). Burning sugar cane before harvesting facilitates
harvesting and can also have major regional air quality im-
pacts (Lara et al., 2005). Globally, a broad range of other crop
residues are burned post-harvest – often “loose” in the field,
or in piles when associated with manual harvesting in the de-
veloping world (McCarty et al., 2007; Akagi et al., 2011).
The fires enable faster crop rotation with less risk of top-
soil loss; reduce weeds, disease, and pests; and return some
nutrients to the soil; but they are not yet well characterized
and have a large atmospheric influence (Streets et al., 2003;
Yevich and Logan, 2003; Chang and Song, 2010; Lin et al.,
2010; Oanh et al., 2011; Yokelson et al., 2011; Sinha et al.,
2014). The practice of burning agricultural residues on site
is seasonally and regionally dependent and in the US may
be unregulated or require permits (Melvin, 2012). The emis-
sions from crop residue (CR) fires are often underestimated
because (1) in common with all biomass burning, many of
the gases are unidentified or rarely measured and (2) some
algorithms for measuring burned area or active fire detection
from space may miss some of the small, short-lived burns
characteristic of crop residue fires. Published space-based es-
timates of the area burned in crop residue fires in the US
range from 0.26 to 1.24 Mha yr−1 (Randerson et al., 2012;
McCarty et al., 2009). In contrast Melvin (2012) found that
∼ 5 Mha of croplands were burned in the US in 2011 based
on state records, which would indicate that these fires ac-
count for the most burned area in the US. Better characteri-
zation of the emissions from these diverse fuels for various
burn conditions will address issue (1) and improve current
inventories and models.

We burned various crop materials that account for much
of the agricultural burning in the US (McCarty et al., 2007),
including sugar cane, rice straw, wheat straw from both
conventional and organic farms, hay, and alfalfa collected
from Louisiana (LA), California (CA), Washington (WA)
and Maryland (MD), and Colorado (CO), respectively. The
crop materials from CO were sampled from an organic farm
near Fort Collins and were burned to investigate the poten-
tial effects of agricultural chemicals on emissions of Cl-, N-,
P-, or S-containing species (Christian et al., 2010; Becker
et al., 2012; Eckhardt et al., 2007). Since crop residue fires
are globally significant, we also burned authentic samples of
millet from Ghana and rice straw from Taiwan, China, and
Malaysia.
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2.2.5 US shrubland and coniferous canopy fires

Temperate ecosystems in the US and Canada experience both
natural wildfires and prescribed fires, with the latter being ig-
nited to maintain habitats, reduce wildfire impacts, and open
land access (Biswell, 1999; Wade and Lunsford, 1989). The
effects of both wild and prescribed fires on air quality can
be significant on local and regional scales (Park et al., 2007;
Burling et al., 2011), necessitating a greater understanding of
the emissions from fires in ecosystems such as chaparral and
coniferous forests.

In a previous laboratory fire study extensive efforts were
made to reproduce complete fuel complexes for US pre-
scribed fires with some success (Yokelson et al., 2013a; Burl-
ing et al., 2010). In this study we included similar chaparral
fuels, but concentrated on just a part of the fuel complex for
fires in coniferous forest ecosystems (fresh canopy fuels).
Green boughs from MT ponderosa pine and Alaska (AK)
black spruce were burned primarily to further investigate pre-
vious smog chamber smoke aging results using the same fu-
els (Hennigan et al., 2011).

2.2.6 Tire fires

As the number of vehicles produced grew 5.1 % from 2011 to
2012, the estimated total number of vehicles in use globally
surpassed a billion (OICA, 2013). Parallel with this growth,
tire disposal is a significant environmental concern because
tires end up in landfills (including all non-biodegradable
components) or being burned and producing emissions that
are unfavorable to humans and the environment.

According to the US Scrap Tire Management Summary
2005–2009, 1946 of the 4002 tonnes of scrap tires generated
in 2005 were used for fuel (RMA, 2011). Tires are useful
as a fuel/coal substitute since the sulfur and nitrogen con-
tent is comparable to coal, but they produce more heat en-
ergy per unit mass (USEPA, 1997). Although∼ 48 % of US
scrap tires are recycled as fuel annually, the remainder, plus
tires amassed across decades, are disposed of by alterna-
tive means, including illegal dumps and informal or acciden-
tal fires that are notorious for becoming unmanageable and
long-lasting. Tire disposal is also a major concern in devel-
oping countries, where they may be used as fuel for mini-
mally regulated enterprises such as brick kilns (Christian et
al., 2010). To better characterize the emissions from tire fires,
we burned shredded tires identical to those involved in a ma-
jor dump fire near Iowa City, IA.

2.2.7 Trash fires

McCulloch et al. (1999) estimated that 1500 Tg of garbage
was produced for a world population of 4.5 billion with sig-
nificant portions disposed of by open burning or incineration.
Scaling to the current global population estimate of 7.05 bil-
lion (UNFPA, 2012), 2500 Tg of garbage is produced annu-

ally, and the impact of disposal on local and global scales
remains underevaluated due partly to the lack of small-burn
detection by satellite. During ACE-Asia (Asian Pacific Re-
gional Aerosol Characterization Experiment), Simoneit et
al. (2004a, b) observed that phthalates andn-alkanes they
attributed to trash burning accounted for∼ 10 % of ambient
organic aerosol mass in the central-west Pacific. In the US
alone, it is estimated that 12–40 % of households in rural ar-
eas burn garbage in their backyards (USEPA, 2006), and the
airborne emissions could play a critical role in chemical de-
position onto crops and soils. Lemieux et al. (1998, 2000,
2003) simulated open burning of household waste and con-
cluded that this is a large US source of carbonyl and poly-
chlorinated dibenzo-p-dioxins and polychlorinated dibenzo-
furan. Previous work has already established that garbage
burning is an important source of black carbon (BC), ozone
precursors, hydrogen chloride, particulate chloride, and a va-
riety of toxins, including dioxins; hence better evaluation of
this source is crucial (Costner, 2005; Christian et al., 2010;
Li et al., 2012; Lei et al., 2013; Wiedinmyer et al., 2014).

We ignited two fires that burned mixed, common waste
collected daily at the FSL and another fire to separately mea-
sure the emissions from burning plastic shopping bags. The
fuels we ignited for the garbage burns were intended to rep-
resent common household refuse with the understanding that
household waste is highly variable. The overall carbon frac-
tion for waste samples was determined by a procedure de-
scribed in detail elsewhere (Christian et al., 2010). Briefly,
the mass of each trash component was used to weight the
carbon content of each component to calculate overall car-
bon content (IPCC, 2006; USEPA, 2006) as shown Table S1
in the Supplement.

2.3 Open-path FTIR data collection

The OP-FTIR deployed in FLAME-4 was used to measure
the emissions of a suite of trace gases and consisted of a
Bruker Matrix-M IR Cube spectrometer with a mercury–
cadmium–telluride (MCT) liquid nitrogen cooled detector
interfaced to a thermally stable 1.6 m base open-path White
cell. The optical path length was 58.0 m and infrared (IR)
spectra were collected at a resolution of 0.67 cm−1 cover-
ing the range 600–3400 cm−1. During stack burns the OP-
FTIR was positioned on the sampling platform so that the
open path spanned the width of the stack, allowing the con-
tinuously rising emission stream to be directly measured. For
stack burns, four interferograms were co-added to give sin-
gle ppbv detection limits at a time resolution of 1.5 s with
a duty cycle greater than 95 %. Spectral collection began a
few minutes before fire ignition and continued throughout
the fire. During the room burns, the OP-FTIR was removed
from the stack but remained on the sampling platform in the
combustion room. For the slower changing concentrations in
this portion of the experiment, we increased the sensitivity
by co-adding 16 interferograms (time resolution to 6 s) with
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continuous collection starting a few minutes before ignition
and continuing until all the smoke was exhausted from the
room. A pressure transducer and two temperature sensors
were located beside the White cell optical path, and their out-
puts were logged and used to calculate mixing ratios from the
concentrations determined from the IR absorption signals for
both experimental configurations.

Mixing ratios were determined for carbon dioxide (CO2),
carbon monoxide (CO), methane (CH4), ethyne (C2H2),
ethene (C2H4), propylene (C3H6), formaldehyde (HCHO),
formic acid (HCOOH), methanol (CH3OH), acetic acid
(CH3COOH), glycolaldehyde (C2H4O2), furan (C4H4O),
water (H2O), nitric oxide (NO), nitrogen dioxide (NO2),
nitrous acid (HONO), ammonia (NH3), hydrogen cyanide
(HCN), hydrogen chloride (HCl), and sulfur dioxide (SO2)
by multicomponent fits to selected sections of the IR trans-
mission spectra with a synthetic calibration nonlinear least-
squares method (Griffith, 1996; Yokelson et al., 2007) ap-
plying both the HITRAN (HIgh-resolution TRANsmission)
spectral database and reference spectra recorded at Pacific
Northwest National Laboratory (PNNL) (Rothman et al.,
2009; Sharpe et al., 2004; Johnson et al., 2006, 2010). The
selected spectral windows and hence interfering species de-
pend strongly on resolution, relative humidity, path length,
and concentration of the smoke. The spectral regions and
parameters are re-optimized for most applications, with cur-
rent ranges reported in the Supplement (Table S2), though we
caution against using our settings in other work. Although ni-
trous oxide (N2O) is fitted as part of the CO and CO2 analy-
sis, it is not reported because any enhancements are too small
to be resolved confidently at 0.67 cm−1 resolution. Even with
higher-resolution OP-FTIR, significant N2O enhancements
were not observed in smoke, confirming that it is at most a
minor product (Griffith et al., 1991).

OP-FTIR offers several important advantages in the study
of complex mixtures such as BB smoke. Each species ex-
hibits a unique pattern of multiple peaks imparting resistance
to interference from other species and aiding in explicit iden-
tification. The technique has no storage artifacts, it allows
flexible sampling volumes that target multiple molecules si-
multaneously in the same parcel of air, and it provides con-
tinuous high temporal resolution data (Burling et al., 2010;
Yokelson et al., 1996). Several million fitted retrievals pro-
vided real-time data for all 157 burns. On occasion a few of
the target compounds were not present in detectable quan-
tities during the course of certain fires. The uncertainties in
the individual mixing ratios vary by spectrum and molecule
and are dominated by uncertainty in the reference spectra (1–
5 %) or the detection limit (0.5–15 ppb), whichever is larger.
OP-FTIR retrieval validation employs two main approaches:
(1) interfacing the same FTIR to a closed cell that is chal-
lenged with appropriate pure and mixed gas standards at a
similar path (e.g., Akagi et al., 2013) and (2) comparison to
other techniques in well-mixed smoke (Goode et al., 1999;
Christian et al., 2004; Veres et al., 2010). Uncertainties in

fire-integrated amounts vary by molecule and fire, but are
usually near 5 % given the ppm-level concentrations. Uncer-
tainties closer to 10 % may occur for a few molecules such
as HONO (Veres et al., 2010). Fire-to-fire variability, even
for the same nominal fuel, is the dominant uncertainty (often
∼ 40 %) and is reported by fuel type and species throughout.

2.4 Overview of other instruments

A goal of the FLAME-4 study was to extensively character-
ize the gas and aerosol emissions; therefore, a comprehensive
suite of instrumentation was deployed. Here we list the other
instruments deployed during the campaign for reference pur-
poses, but the results will be presented elsewhere. Gas-phase
emissions were measured by OP-FTIR, a proton-transfer-
reaction time-of-flight mass spectrometer (PTR-TOF-MS),
two whole air sampling (WAS) systems, cartridge sampling
followed by gas chromatography–mass spectrometry (GC-
MS), cartridge sampling followed by two-dimensional gas
chromatography time-of-flight mass spectrometry (2D-GC-
TOF-MS), a total hydrocarbon analyzer (THC), criteria gas
monitors, and a proton-transfer-reaction (quadrupole) mass
spectrometer (PTR-QMS).

Particle-phase instruments were deployed to measure
aerosol chemistry, size distribution, optical properties, and
cloud-nucleating properties. Particle chemistry measure-
ments included gravimetric filter sampling of particulate
matter with aerodynamic diameter < 2.5 microns (PM2.5)
followed by elemental carbon (EC) and organic carbon
(OC) analyses and GC-MS and ion chromatography (IC)
of extracts; an aethalometer; a high-resolution time-of-flight
aerosol mass spectrometer (HR-TOF-AMS); laser ablation
aerosol particle time-of-flight (LAAP-TOF) single-particle
mass spectrometer; and a particle-into-liquid sampler micro-
orifice uniform-deposit impactor (PILS/MOUDI) to collect
samples for several types of electrospray MS analyses (Bate-
man et al., 2010). Particle mass was also measured by a ta-
pered element oscillating microbalance (TEOM™ 1405-DF).
Chemistry and structure at the microscopic level were probed
by collecting grids for scanning electron microscope (SEM)
and transmission electron microscope (TEM) analyses.

Optical properties were measured by several single par-
ticle soot photometers (SP2); a photoacoustic extinctiome-
ter (PAX); several photoacoustic aerosol absorption spec-
trometers (PASs), PASS-3d (ambient/denuded), PASS-UV,
the NOAA PAS system; and a broadband cavity-enhanced
absorption spectrometer (BBCEAS) (Washenfelder et al.,
2013).

Size distributions were measured by several scanning mo-
bility particle sizers (SMPS) and a fast mobility particle sizer
(FMPS). Cloud-nucleating properties of the aerosol were
measured by a cloud condensation nuclei counter (CCNC),
a continuous-flow diffusion chamber (CFDC) measuring ice
nuclei, and a hygroscopic tandem differential mobility an-
alyzer (H-TDMA). Supplement Table S3 provides a brief

Atmos. Chem. Phys., 14, 9727–9754, 2014 www.atmos-chem-phys.net/14/9727/2014/



C. E. Stockwell et al.: Trace gas emissions from combustion of fuels 9735

description of individual instrument capabilities, and results
from these instruments are reported elsewhere (e.g., Liu et
al., 2014; Saleh et al., 2014; Tkacik et al., 2014).

2.5 Emission ratio and emission factor determination

We calculated excess mixing ratios (denoted1X for each
species “X”) for all 20 gas-phase species measured using
OP-FTIR by subtracting the relatively small average back-
ground mixing ratio measured before each fire from all the
mixing ratios observed during the burn. The molar emission
ratio (ER) for each species X relative to CO (1X / 1CO)
is the ratio between the sum of the1X over the entire fire
relative to the sum of the1CO over the entire fire. A com-
parison of the sums is valid because the large entrainment
flow ensures a constant total flow, but very small adjustments
to these fire-integrated sums were made so they would rep-
resent the actual amount of emissions generated given the
small changes in the emissions density that resulted from
small changes in absolute temperature and pressure over the
course of some burns. Molar ER-to-CO ratios were calcu-
lated for all the species measured using OP-FTIR for all
157 burns. The emission ratios to CO were then used to de-
rive EFs in units of grams of species X emitted per kilo-
gram of dry biomass burned calculated by the carbon mass-
balance method (CMB), which assumes all of the burned car-
bon is volatilized and that all of the major carbon-containing
species have been measured (Ward and Radke, 1993; Yokel-
son et al., 1996, 1999; Burling et al., 2010):

EF(X)
(
g kg−1

)
= (1)

FC × 1000×
MWx

MWC
×

1X
1CO∑n

j=1

(
NCj ×

1Cj

1CO

) ,

whereFC is the measured carbon mass fraction of fuel (see
Table 1); MWx is the molecular weight of species X; MWC
is the molecular weight of carbon; NCj is the number of
carbon atoms in speciesj ; and 1Cj or 1X referenced to
1CO is the fire-integrated molar emission ratios for the re-
spective species. The denominator of the last term in Eq. (1)
estimates total carbon, and the species CO2, CO, and CH4,
which are all quantified by OP-FTIR, usually comprise 98–
99 % of the total carbon emissions for most fire types. By
ignoring the carbon emissions not measured by OP-FTIR,
emission factor estimates are typically inflated by a factor of
∼ 1–2 % (Andreae and Merlet, 2001; Yokelson et al., 2013a).
Because of EF dependence on assumed total carbon, slightly
different EFs will appear in papers describing other instru-
ments (Stockwell et al., 2014; Hatch et al., 2014). However,
these differences are only a few percent (except for peat and
sugar cane fires, where they average∼ 5 %) and insignificant
compared to other uncertainties in global BB. The set of EFs
based only on OP-FTIR data provides the most direct com-
parison to the field EFs which are based on a nearly identical
suite of species.

Emissions from fires are highly variable due in part to
the naturally changing combustion processes, chiefly flam-
ing and smoldering, which depend on many factors such
as fuel geometry and moisture and environmental variables
(Bertschi et al., 2003b; Yokelson et al., 2011). To estimate the
relative amount of smoldering and flaming combustion that
occurred over the course of each fire, we calculated a fire
summed density-corrected modified combustion efficiency
(MCE) for the fire (Yokelson et al., 1996):

MCE =
1CO2

1CO2 + 1CO
=

1(
1+

(
1CO
1CO2

)) . (2)

Though flaming and smoldering combustion often occur si-
multaneously, a higher MCE value designates relatively more
flaming combustion (more complete oxidation), and lower
MCE designates more smoldering combustion. “Pure” flam-
ing combustion has an MCE of∼ 0.99, while pure smolder-
ing typically has an MCE of∼ 0.8 (usual range 0.75–0.84).
Thus, for example, an MCE of∼ 0.9 represents roughly
equal amounts of flaming and smoldering. MCE can also be
calculated for any point, or group of points, of special inter-
est during a fire or as a time series (Yokelson et al., 1996),
but that information is not explicitly presented in this paper.

2.6 Measurement strategy

Most biomass burning emissions inventories rely mainly on
the average (i.e., the mean) EF obtained at the average MCE
observed in airborne source measurements, when available,
since most of the smoke from most field fires is entrained
in a convection column, making airborne measurements the
most representative (Andreae and Merlet, 2001; Akagi et
al., 2011). For fires that may be dominated by poorly lofted
emissions, such as peat fires or residual smoldering combus-
tion (Bertschi et al., 2003b), a ground-based MCE could be
most representative. Laboratory fire experiments can provide
measurements not available from field experiments or signif-
icantly increase the amount of sampling for fire types rarely
sampled in the field, but it is important to assess the represen-
tativeness of lab fire emission factors. The assessment of lab-
derived EFs is not completely straightforward because BB
produces highly variable emissions since field fires burn in
a complex and dynamic environment that probably cannot
be fully characterized safely. Fortunately, one parameter that
correlates strongly with EFs, MCE, has been measured on
most field fires. “Ideal” lab fire simulations would burn with
a range of MCE similar to that observed in natural fires. This
is sometimes achieved, but is sometimes elusive due to dif-
ferences in fuel moisture, wind, scale, etc. (Yokelson et al.,
2013a). Thus, a second, more readily achieved goal is for the
lab fires to burn with a range in MCE that is broad enough
to determine the EF dependence on MCE and then use this
relationship to predict EFs at the field-average MCE (Chris-
tian et al., 2003). In addition, even if lab fires differ from field
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Figure 2. Excess mixing ratios of 19 trace gases vs. time for a complete sawgrass “stack” burn as measured by OP-FTIR.

Figure 3. Excess mixing ratios of sticky and non-sticky gases nor-
malized by their maximum mixing ratio (shown in legend) to have
a maximum value of one during a “room” burn of organic hay.
The stable non-sticky species shown are CO and CH4, while the
stickier species include HCl, NH3, glycolaldehyde, CH3COOH,
and HCOOH; the latter show a faster rate of decay than the stable
species CO and CH4.

fires in fire-integrated MCE, the ER-to-CO ratio for smolder-
ing compounds and the ER-to-CO2 ratio for flaming com-
pounds are useful (Akagi et al., 2011). Finally, in the sim-
plest approach the average ratio of each field EF to the corre-
sponding lab EF can be applied as a correction factor to ad-
just lab EFs (Yokelson et al., 2008). This approach was also
warranted for adjustments to fuel-specific lab EFs reported
in Yokelson et al. (2013a) because the results had the lowest

error of prediction. When lab EFs are adjusted, it is not ex-
pected for instance that the EF vs. MCE relationship will be
identical in the lab and field or always be highly correlated,
but simply that the adjustment procedure will nudge the EF
in the right direction. We can take the level of agreement be-
tween the lab-based predictions and the airborne-measured
averages (for species measured in both environments) as the
most realistic estimate of uncertainty in using lab equations
for species not measured in the field.

3 Results and discussion

We start this section by noting differences between stack
(n = 125) and room (n = 32) burns. Figure 2 shows temporal
profiles for the excess mixing ratios of the 19 gas-phase com-
pounds we report for a complete stack burn. Figure 3 shows
the excess mixing ratios of several gas-phase species during
a typical room burn and highlights differences in their tem-
poral behavior. For all gases in the room burn, a rapid rise
and peak in concentration following ignition occurs because
the OP-FTIR remained at a height of 17 m as described in
Sect. 2.3. Rapid vertical mixing and then anticipated slow
exchange from the combustion room account for the fast and
then gradual decline in concentration for non-sticky species
as revealed by the stable gases (e.g., CO and CH4) shown in
Fig. 3. The stickier gases undergo the same mixing processes,
but decay at faster rates as illustrated by NH3, CH3COOH,
HCOOH, and glycolaldehyde (decaying increasingly fast in
the order given). These fast decays introduced error into the
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preliminary emission ratios to CO that were used to calcu-
late provisional fire-integrated emission factors for each fire.
We assessed which gases were affected by this artifact by
plotting EF vs. MCE for each species for all 157 fires. If
the room burn EF fell significantly below the general trend,
we assumed it was due to losses on the lab walls or aerosol
surfaces. Supplement Tables S4 and S5 list all the stack and
room burn EFs/ERs for all species and the average EF/ER for
each fuel type along with uncertainties. The fuel type average
EF/ER in the tables for “non -sticky” species (namely CO2,
CO, CH4, C2H2, C2H4, C3H6, C4H4O, NO, NO2, HONO,
HCN, CH3OH, HCHO) are based on all 157 fires. Since the
room burn EF/ER values for stickier species (HCl, NH3, gly-
colaldehyde, CH3COOH, HCOOH, and SO2) are expected
to be lower limit estimates, the average fuel type EF/ER
for these species was calculated excluding room burn data.
Next, in the sections below we note significant features of
the OP-FTIR emission measurements and compare the emis-
sions from each fuel type to field data when possible.

3.1 Emissions from African and US grasses

We measured a range of emissions from 20 African sa-
vanna grass fires that includes the first EF for HCl
(0.26± 0.06 g kg−1) for this fuel type and additional gases
rarely measured for savanna fires such as SO2, HONO, and
glycolaldehyde (Sinha et al., 2003; Ferek et al., 1998; Trent-
mann et al., 2005). We also burned 30 fires with US grasses:
giant cutgrass (8), sawgrass (13), and wiregrass (9). Previ-
ously, Goode et al. (1999) reported OP-FTIR EFs for 13 trace
gases from three laboratory fires burning western US bunch-
grasses. Thus, our OP-FTIR data and the other anticipated
results from FLAME-4 represent a large increase in emis-
sions data for a major fuel component of fires across the US.

We discuss the chlorine emissions from grass fires first.
Comprehensive vegetation analyses compiled by Lobert et
al. (1999) show that grasses have much higher chlorine con-
tent on average than other common vegetative fuels. Thus,
grass fires would be expected to emit more chlorine per
unit biomass burned. The most studied chlorine-containing
compound emitted from BB is methyl chloride, which was
considered the largest natural contributor to organic chlo-
rine in the atmosphere in the global reactive chlorine emis-
sions inventory with about 50 % contributed by BB (RCEI,
Keene et al., 1999). HCl (an inorganic compound) was the
Cl-containing gas quantified by OP-FTIR in this study, and
BB emissions of HCl were not considered in the RCEI. HCl
is a “sticky” gas (Johnson et al., 2003; Komazaki et al., 2002;
Webster et al., 1994) that readily adheres to surfaces; there-
fore, open-path optical systems are ideal for measuring pri-
mary HCl smoke emissions. In addition, the EFs for HCl
for each FLAME-4 fuel type are positively correlated with
MCE, and the HCl mixing ratios consistently “track” with
CO2, SO2, and NOx as seen in Fig. 2. This confirms HCl
is a flaming compound, and, since grasses burn primarily by

flaming combustion, high HCl emissions would be expected
from this fuel. Our lab-average1HCl / 1CO ratio for sa-
vanna fires (the main global type of grass fire) is∼ 17 times
higher than the1CH3Cl / 1CO ratio reported for savanna
fires in Lobert et al. (1999) and still∼ 5 times higher after ad-
justing to the field-average MCE of savanna grasses (0.938;
see below). This indirect comparison suggests that HCl could
be a major Cl-containing gas emitted by BB and the emis-
sions could be significant. However, the gas-phase HCl mix-
ing ratios decayed rapidly during our room burn storage pe-
riods, and Christian et al. (2010) observed high-particulate
chloride with HCl below detection limits in the fresh emis-
sions from Mexican crop residue fires. At longer timescales,
particulate chloride has been observed to decrease as smoke
ages (Li et al., 2003; Pratt et al., 2011; Akagi et al., 2012).
Thus, both the rate at which HCl is initially incorporated into
the aerosol phase and the possibility that it is slowly reformed
in aging plumes via outgassing of chlorine from particles re-
main to be investigated in detail.

Chlorine emissions from BB can also be affected by depo-
sition of sea salt, which can increase the Cl concentration of
coastal vegetation (McKenzie et al., 1996). The highest aver-
age EF (HCl) for a fuel type during the FLAME-4 study was
for sawgrass (1.72± 0.34 g kg−1). Both the sawgrass and gi-
ant cutgrass were collected in a coastal wildlife refuge that
is much closer to the Atlantic coast (∼ 10 km) than the wire-
grass sampling location (∼ 165 km). The Cl content listed in
Table 1 and the measured EFs for HCl are consistent with
the distance from the coast for the US grasses. The African
grass EF (HCl) and Cl content were lower than we measured
for the coastal US grasses, but higher than the wiregrass val-
ues despite being collected further (225 km) from the coast,
confirming that other factors besides distance from the coast
effect grass Cl content.

It is important to compare our FLAME-4 emissions data
for African grass fires to field and other laboratory mea-
surements of emissions from African savanna fires. Figure 4
shows our EF results with those reported for similar African
fuels burned at the FSL during February and March 2001
(Christian el al., 2003), airborne measurements from the SA-
FARI 2000 campaign (Yokelson et al., 2003a), and ground-
based measurements from prescribed savanna fires in KNP
(Wooster et al., 2011). We plot EFs for smoldering com-
pounds detected by all three sampling platforms vs. MCE,
providing an idea of the natural gradient in EFs that re-
sult from savanna fuels and the impact measurement ap-
proach has on the type of combustion surveyed. The ground-
based (long open-path FTIR), airborne (closed-cell FTIR),
and laboratory-based (open-path FTIR) emission factors can
be fit to a single trend. The airborne average EF (NH3) is
within the range of the ground-based EFs for NH3 at the air-
borne average MCE, but at the low end likely due partly to
natural variation in fuel nitrogen and partly because the cor-
rection for losses in the closed cell in the airborne system was
not fully developed until later (Yokelson et al., 2003b). Both
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Table 2. Summary of the comparison of emission factors and emission ratios (to CO) measured in the lab and field for savanna fuels and
projected emission factors for US grasses calculated at the savanna grass field-average MCE. Values in parentheses are one standard deviation.

African savanna grass US grasses

Species Field Yokelson Lab FLAME predict Lab EF predict/ Field Yokelson Lab FLAME-4 (ER) Field ER avg/ Lab FLAME predict at
et al. (2003a) (EF) at field-avg MCE (EF) Field EF avg et al. (2003a) (ER) Lab ER avgfield-avg MCE (EF)

MCE 0.938 0.938 – 0.938 0.978 – 0.938
Carbon dioxide (CO2) 1703 – – – – – –
Carbon monoxide (CO) 71.5 – – 1 1 1 –
Methane (CH4) 2.19 2.29 1.04 0.053 (0.012) 0.029 (0.012) 1.83 2.16
Acetylene (C2H2) 0.260 0.251 0.967 0.004 (0.001) 0.003 (0.001) 1.45 0.448
Ethylene (C2H4) 1.19 1.15 0.969 0.017 (0.003) 0.008 (0.004) 2.01 0.918
Methanol (CH3OH) 1.17 1.21 1.03 0.014 (0.003) 0.005 (0.004) 2.77 0.339
Formaldehyde (HCHO) 1.06 2.56 2.41 0.015 (0.004) 0.016 (0.008) 0.915 0.529
Acetic acid (CH3COOH) 2.42 4.05 1.68 0.016 (0.002) 0.013 (0.007) 1.26 0.873
Formic acid (HCOOH) 0.270 0.336 1.25 0.003 (0.002) 0.002 (0.001) 1.55 0.064
Ammonia (NH3) 0.280 0.691 2.47 0.007 (0.004) 0.006 (0.004) 1.19 0.709
Hydrogen cyanide (HCN) 0.530 0.301 0.569 0.009(0.003) 0.005(0.001) 1.70 0.561
Nitrogen oxides (NOx as NO) 3.37 3.20 0.950 – – – 2.16
Average 1.33 (0.65) 1.63 (0.54)
Hydrocarbon avg. 0.994 (0.044) 1.76 (0.28)
N-species avg. 1.33 (1.00) 1.45 (0.36)
OVOC avg. 1.59 (0.61) 1.62 (0.80)

Figure 4. Emission factors (g kg−1) of select smoldering species as
a function of MCE for FLAME-4 burns of African savanna fuels.
Also shown are laboratory data of Christian et al. (2003), ground-
based data of Wooster et al. (2011), and airborne data of Yokelson
et al. (2003a). The linear fit based on all data is shown.

field studies observed much lower average MCE than both
laboratory studies (likely due to higher fuel moisture, wind,
smoldering roots, etc.), but the MCE is shown to correlate
with much of the variation in EF.

Next, we exploit the MCE plot-based lab–field EF com-
parison as described in Sect. 2.6 to generate EFs from our lab
data that are more consistent with field studies. We plot lab
and field EFs vs. MCE together for African savanna grasses
in Fig. 5 with separate linear fits for comparison. The lin-
ear fit from the plot of lab EFs vs. MCE for each species is
used to calculate an EF at the average MCE (0.938) from air-
borne sampling of authentic African savanna fires reported in
Yokelson et al. (2003a). As shown in Table 2, this approach
yields lab-predicted EFs that are, on average, only 21 %
different from field values and have even better agreement
for hydrocarbon species (± 3 % including CH4, C2H2, and
C2H4). The lab–field comparison for nitrogen (N)-containing
species has a higher coefficient of variation. Part of the larger
variability could be the dependence of N-compound emis-
sions on fuel nitrogen content in addition to MCE (Burl-
ing et al., 2010; McMeeking et al., 2009). Better lab–field
agreement was obtained in an earlier application (Christian
et al., 2003) of this approach for several compounds such as
CH3COOH, but that study featured a broader range of lab
MCE that better constrained the fits. However, processing
the data by this method improves the representativeness of
the FLAME-4 EFs across the board.

As an alternative to the plot-based analysis, despite the
higher MCE of our lab fires, the ERs for smoldering species
to CO usually overlap with the field data at the one stan-
dard deviation level (Table 2, columns 5–7). This is important
since most of the compounds emitted by fires are produced
during smoldering, and the lab ERs (Table S5 in the Supple-
ment) can be considered reasonably representative of authen-
tic savanna fires if used this way directly. Some species with
“below-average agreement” using the EF approach do agree
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Figure 5.Comparison of EFs vs. MCE between FLAME-4 laboratory African grass fires (green) and airborne field measurements of African
savanna fires (blue) for specified hydrocarbons, selected nitrogen-containing species, and specified oxygenated species. Lines indicate linear
regression of lab-based (green solid line) and airborne (blue dashed line) measurements.

Figure 6. The ratio of our Kalimantan peat fire EFs to the EFs from
the single Sumatran peat fire of Christian et al. (2003). The upper
and lower bounds of the bars represent ratios based on the range
of our data, while the lines inside the bars represent the FLAME-4
study-average EF.

well using the ER approach and vice versa. Thus, neither ap-
proach is clearly preferred and both are adequate.

A comparison of our EFs for US grasses with field-
work is not possible due to the lack of the latter type of
measurements. However, it is likely that grass fires in the US
burn with an average MCE that is lower than our lab average
value of 0.961. This should have minimal impact on most
of the ERs to CO as discussed above; however, the lab EF
vs. MCE equations for US grasses could be used to calculate

EFs for US grasses at the African savanna field MCE (0.938)
as shown in the final column of Table 2.

3.2 Emissions from Indonesian, Canadian, and
North Carolina peat

FLAME-4 OP-FTIR data include the first emissions data for
HONO and NO2 for Indonesian peat fires (Table 3). The
smoke measurements on three peat samples from Kaliman-
tan represent a significant increase in information given the
one previous study of a single laboratory burned sample from
Sumatra (Christian et al., 2003). We also report EFs from
four fires burning extratropical peat, which, along with other
anticipated FLAME-4 results, adds significantly to the previ-
ous laboratory measurements of trace gases emitted by smol-
dering peat samples that were collected in Alaska and Min-
nesota (Yokelson et al., 1997). To our knowledge, all detailed
chemical characterization of peat fire smoke has been done
in the lab.

We discuss/compare the data now available for peat fire
emissions from tropical and extratropical ecosystems. The
average MCE of our Kalimantan peat fires (0.816) is com-
parable to the MCE reported for the Sumatran peat (0.838)
burned previously by Christian et al. (2003). Figure 6 shows
the ratio of our Indonesian peat EFs as compiled in the Sup-
plement (Table S4) to those of Christian et al. (2003) for
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Table 3. Comparison of emission factors (g kg−1) for three laboratory peat studies: Yokelson et al. (1997), Christian et al. (2003), and
FLAME-4. The average and one standard deviation are shown for each peat type during the study, and an overall regional EF is shown for
extratropical and Indonesian peat. Values in parentheses are one standard deviation.

Peat emissions

Species Peat Peat NC Peat AK Overall extratropical Kalimantan Sumatran Overall Indonesian
Canadian and MNa peat peat peatb peat

MCE 0.805 (0.009) 0.726 (0.067) 0.809 (0.327) 0.766 (0.061) 0.816 (0.065) 0.838 0.821(0.054)
Carbon dioxide (CO2) 1274 (19) 1066 (287) 1395 (52) 1190 (231) 1637 (204) 1703 1653 (170)
Carbon monoxide (CO) 197 (9) 276 (139) 209 (68) 238 (97) 233 (72) 210 227 (60)
Methane (CH4) 6.25 (2.17) 10.9 (5.3) 6.85 (5.66) 8.67 (4.27) 12.8 (6.6) 20.8 14.8 (6.7)
Acetylene (C2H2) 0.10 (0.00) 0.16 (0.08) 0.10 (0.00) 0.13 (0.06) 0.18 (0.05) 0.059 0.15 (0.07)
Ethylene (C2H4) 0.81 (0.29) 1.27 (0.77) 1.37 (0.51) 1.13 (0.56) 1.39 (0.62) 2.57 1.68 (0.78)
Propylene (C3H6) 0.50 (0.00) 1.17 (0.63) 2.79 (0.44) 1.36 (0.96) 1.49 (0.63) 3.05 1.88 (0.94)
Methanol (CH3OH) 0.75 (0.35) 2.83 (2.87) 4.04 (3.43) 2.34 (2.25) 3.24 (1.39) 8.69 4.60 (2.95)
Formaldehyde (HCHO) 1.43 (0.37) 1.41 (1.16) 1.99 (2.67) 1.51 (0.79) 1.25 (0.79) 1.40 1.29 (0.65)
Furan (C4H4O) 0.88 (0.04) 1.78 (1.84) – 1.42 (1.39) 0.89 (0.27) 1.91 1.15 (0.56)
Nitrous acid (HONO) 0.18 (0.00) 0.48 (0.50) – 0.38 (0.39) 0.10 – 0.10
Nitric oxide (NO) – 0.51 (0.12) – 0.51 (0.12) 1.85 (0.56) 1.00 1.57 (0.63)
Nitrogen dioxide (NO2) – 2.31 (1.46) - 2.31 (1.46) 2.36 (0.03) – 2.36 (0.03)
Hydrogen cyanide (HCN) 1.77 (0.55) 4.45 (3.02) 5.09 (5.64) 3.66 (2.43) 3.30 (0.79) 8.11 4.50 (2.49)
Acetic acid (CH3COOH) 1.86 (1.35) 8.46 (8.46) 7.29 (4.89) 5.59 (5.49) 7.65 (3.65) 8.97 8.09 (2.69)
Formic acid (HCOOH) 0.40 (0.06) 0.44 (0.34) 0.89 (1.50) 0.51 (0.27) 0.55 (0.05) 0.38 0.49 (0.11)
Glycolaldehyde (C2H4O2) – – 1.66 (2.64) 1.66 – – –
Hydrogen chloride (HCl) – 7.68× 10−3 – 7.68× 10−3 – – –
Ammonia (NH3) 2.21 (0.24) 1.87 (0.37) 8.76 (13.76) 3.38 (3.02) 1.39 (0.97) 19.9 7.57 (10.72)

a Source is Yokelson et al. (1997)
b Source is Christian et al. (2003).

species reported in both studies, displaying the range of our
emissions as well as the study average. The greatest variation
within the Indonesian peat fuels was that the single Sumatran
peat fire emitted∼ 14 times more NH3 per unit biomass
combusted than the average of the stack burn Kalimantan
samples, even though their MCE and percent nitrogen con-
tent were comparable (2.12 % for Sumatran peat vs. 2.27 %
for the Kalimantan peat). Comparing extratropical peat be-
tween studies, we find that 4.3-times-larger NH3 emission
factors were observed for the peat burned by Yokelson et
al. (1997) than from our FLAME-4 North Carolina and Cana-
dian stack peat burns. For the extratropical case, only part of
the higher levels seen earlier may be due to N content differ-
ences (0.63–1.28 % in FLAME-4 vs. 0.78–3.06 % in Yokel-
son et al., 1997). We suspect that part of the differences for
NH3 and other species seen in Fig. 6 (and discussed below)
may be due to subtle, compound-specific fuel chemistry dif-
ferences associated with the fact that the FLAME-4 samples
evolved chemically at (and were collected at) greater depths
than the samples burned earlier. Mineral content could vary
(Table 1), and different logging/land-use histories could af-
fect the incorporation of woody material. Another possible
cause involves the drying method. In the previous studies
the peat was allowed to air-dry to a very low moisture con-
tent (∼ 5 %) before ignition, whereas the FLAME-4 samples
were stored wet and cool and then microwaved lightly just
before ignition due to new United States Department of Agri-

Figure 7. Emission factors (g kg−1) for all nitrogen-containing
species measured in current Kalimantan and past Sumatran labo-
ratory peat fires (Christian et al., 2003). The Kalimantan peat room
burn includes NH3, a sticky species; thus the value should be con-
sidered a lower limit estimate.

culture (USDA) handling/storage restrictions. Drier peat may
be consumed relatively more by glowing combustion, which
could promote higher NH3 and CH4 emissions (Yokelson et
al., 1997, Fig. 3).

The emissions also differed between the FLAME-4 Kali-
mantan peat and the earlier Sumatran peat study for N-
containing gases that we measured other than NH3 as shown
in Fig. 7, namely HCN and NOx. The FLAME-4 Kalimantan
peat fire NOx emissions are 4.2 times higher than previously
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reported for Sumatran peat, which could impact the pre-
dictions of chemical transport models since NOx emissions
strongly influence O3 and SOA production in aging BB
plumes (Trentmann et al., 2005; Alvarado and Prinn, 2009;
Grieshop et al., 2009). Larger emissions of NOx from the
Kalimantan peat samples likely occurred because two of the
Kalimantan peat samples briefly supported spontaneous sur-
face flaming, whereas the Sumatran peat sample was com-
pletely burned by smoldering combustion, and NOx is pri-
marily produced during flaming combustion. The large range
in EF (HCN) observed (1.38–7.76 g kg−1) when consider-
ing all peat-burning studies adds uncertainty to any use of
this compound as a tracer for peat fires (Akagi et al., 2011).
Although there are noticeable differences between the Kali-
mantan and Sumatran laboratory fires, with this study we
have quadrupled the amount of data available on Indonesian
peat, which likely means the new overall averages presented
in Table 3 are closer to the regional averages than the limited
earlier data despite the high variability.

Sulfur emissions are also variable between peat fire stud-
ies. The lack of observed SO2 emissions from our Kaliman-
tan peat fires is noteworthy since earlier studies of Kaliman-
tan smoke attributed heterogeneous aerosol growth to SO2
emitted from peat fires, with support by unpublished labo-
ratory data (Gras et al., 1999). We did detect small amounts
of SO2 from one of three NC peat fires, but, despite a care-
ful search, no OCS was detected, which was the only sulfur-
containing compound detected in previous extratropical peat
fire studies (Yokelson et al., 1997).

The emissions of CH4 from biomass fires make a signifi-
cant contribution to the global levels of this greenhouse gas
(Simpson et al., 2006). The EFs for CH4 measured in BB
studies in general exhibit high variability with higher emis-
sions at lower MCE (Burling et al., 2010). We observed high
variability in EFs for CH4 at similar MCEs for our Kali-
mantan peat samples (range 5.72–18.83 kg−1) with our upper
end comparable to the EF for CH4 previously reported for
the Sumatran peat sample (20.8 g kg−1). Sumatran peat may
burn with high variability, but with only one sample there is
no probe of this. Emission factors for CH4 from extratropi-
cal peat are also consistently high (4.7–15.2 g kg−1). Taken
together, all the FLAME-4 results, earlier measurements of
the EFs for CH4 previously reported for peat, and, and field
measurements of fuel consumption by peat fires (Page et al.,
2002; Ballhorn et al., 2009) suggest that peat fires are a sig-
nificant source of CH4, an important infrared absorber in our
atmosphere (Forster et al., 2007; Worden et al., 2013).

3.3 Cooking fire emissions

Biofuel combustion efficiency and emissions depend on the
stove design, type and size of fuel, moisture, energy content,
and each individual’s cooking management (e.g., lighting
and feeding) (Roden et al., 2008). The fire-averaged emis-
sions of species we measured by OP-FTIR for four types of

Figure 8. Comparison of FLAME-4 three-stone, Envirofit G-3300
Rocket, and Philips HD4012 cookstove EFs to EFs reported during
performance testing by Jetter et al. (2012). The EzyStove was not
tested by Jetter et al. (2012). Each circle represents the FLAME-
4 fire-average EF of all fuel types measured with all components
starting at ambient temperatures compared to the Jetter et al. (2012)
data collected under regulated operating conditions.

stoves and five fuel types are reported in Table 4. From the
OP-FTIR data alone we report the first EF for HCN for open
cooking fires; the first EF for HCN, NO, NO2, HONO, gly-
colaldehyde, furan, and SO2 for rocket stoves; and the first
large suite of compounds for gasifier devices.

We begin with a brief discussion of the first HCN mea-
surements for cooking fires. HCN is emitted primarily by
biomass burning (Li et al., 2000) and can be used to es-
timate the contribution of BB in mixed regional pollution,
most commonly via HCN/ CO ratios (Yokelson et al., 2007;
Crounse et al., 2009). HCN was below the detection limit
in previous cooking fire studies using an FTIR system with
a short (11 m) path length, leading to speculation that the
HCN/ CO emission ratio was low for commonly used wood
cooking fuels (Akagi et al., 2011). In FLAME-4, the higher-
sensitivity FTIR and longer path length allowed FTIR de-
tection of HCN on a few cooking fires, and the HCN/ CO
emission ratio (1.72× 10−3

± 4.08× 10−4) is about a factor
of 5 lower than most other BB fuels burned in this study –
excluding peat, which had anomalously high HCN/ CO ra-
tios up to (2.26× 10−2). The divergent HCN/ CO ratios for
these two types of BB should be considered when using HCN
to probe pollution sources in areas where one or both types
of burning are important (e.g., Mexico, Indonesia).

Since minimizing cooking fire fuel consumption is a
paramount concern for global health, air quality, and climate,
it is of great interest to compare the FLAME-4 cooking fire
results, which are of unprecedented detail, to a major cook-
stove performance study by Jetter et al. (2012). We assess
the validity of synthesizing results from these two important
studies using the handful of gases measured in both stud-
ies (CO2, CO, and CH4). In Fig. 8 we have averaged emis-
sions for all fuels for these three species by stove type for the
traditional three-stone fires, the Envirofit rocket stove, and
the Philips gasifier stove and compared to identical stoves
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Table 4.Fire-average emission factors (g kg−1) for cookstoves. The average emission ratios to CO for smoldering compounds are also shown
for three-stone traditional cooking fires.

Traditional and advanced cooking stoves

Species
Three stone (EF) Envirofit G3300 rocket (EF) EzyStove (EF) Philips HD4012(EF)

Doug fir Okote Red oak ER avg (SD) Doug fir Okote Red oak Millet Red oak Doug fir

MCE 0.963 0.968 0.972 0.968 (0.004)0.974 0.966 0.985 0.950 0.985 0.984
Carbon dioxide (CO2) 1640 1589 1628 – 1662 1586 1661 1503 1656 1682
Carbon monoxide (CO) 39.8 33.5 30.2 – 28.1 35.8 15.9 49.9 16.3 17.3
Methane (CH4) 1.27 1.37 1.29 0.067 (0.010) 0.90 1.32 0.23 2.64 0.41 0.37
Acetylene (C2H2) 0.41 1.07 0.41 0.020 (0.013) 0.055 1.26 0.052 0.42 0.23 0.16
Ethylene (C2H4) 0.39 1.03 0.37 0.018 (0.012) 0.11 0.83 0.063 0.84 0.21 0.16
Propylene (C3H6) bdl 0.11 0.058 0.002 (0.001) bdl bdl bdl bdl 0.012 0.006
Water (H2O) 0.10 0.14 0.15 0.006 (0.002) 0.15 0.14 0.14 0.089 0.19 0.23
Methanol (CH3OH) 0.70 0.057 0.90 0.014 (0.012) 0.56 0.066 0.43 0.77 0.81 0.087
Formaldehyde (HCHO) 0.63 0.24 0.50 0.012 (0.005) 0.51 0.25 0.21 0.82 0.40 0.21
Formic acid (HCOOH) 0.14 0.037 0.32 0.003 (0.003) 0.17 0.038 0.15 0.13 0.24 0.050
Acetic acid (CH3COOH) 0.63 bdl 4.16 0.036 (0.040) 0.72 bdl 1.74 1.98 2.99 0.076
Furan (C4H4O) 0.087 bdl 0.087 0.001 (0.000) bdl bdl bdl bdl 0.016 bdl
Glycolaldehyde (C2H4O2) 0.094 bdl 0.15 0.002 (0.001) 0.18 bdl bdl bdl 0.11 0.26
Nitric oxide (NO) 0.34 0.24 0.42 – 0.48 0.29 0.65 1.03 0.57 0.61
Nitrogen dioxide (NO2) 1.04 0.94 1.49 – 1.14 bdl 0.98 bdl 1.57 1.66
Hydrogen cyanide (HCN) bdl 0.061 0.059 0.002 (0.000) bdl 0.043 bdl bdl bdl bdl
Nitrous acid (HONO) 0.18 0.51 0.22 0.005 (0.003) bdl 0.66 bdl bdl bdl bdl
Ammonia (NH3) 0.019 bdl 0.023 0.001 (0.000) 0.021 7.09× 10−4 0.022 0.23 0.018 0.011
Hydrogen chloride (HCl) bdl bdl bdl – bdl bdl bdl bdl bdl bdl
Sulfur dioxide (SO2) bdl 0.52 bdl – bdl bdl bdl bdl bdl bdl

Note: “bdl” indicates mixing ratio was below detection limit.

Figure 9. Excess mixing ratio profiles of CO and CO2 for both
a traditional three-stone cooking fire (104) and a more advanced
“rocket” design stove (115) showing cleaner combustion and
shorter time to reach a steady state in the stove. The profiles of MCE
vs. time are included for both stove types.

burning red oak fuel in the performance testing reported by
Jetter et al. (2012). We show the ratio of our fire-average
(ambient start) EF to the EF reported by Jetter et al. (2012)
specific to different operating conditions in their tests: i.e.,
when the cookstove had (1) an ambient temperature start, (2)
hot start, and (3) when water in the cooking pot started from a

Figure 10. Open cooking fire, fire-averaged emission factors of
CH4 as a function of MCE for current and past laboratory and field
measurements together with the recommended global averages. Er-
ror bars indicate one standard deviation of the EF for each study
where available.

simmer. The FLAME-4 emissions of CO2, CO, and CH4 for
the traditional three-stone and Envirofit rocket designs agree
very well with the performance-oriented emissions data for
ambient- and hot-start conditions. We obtained higher emis-
sions than Jetter et al. (2012) for the Philips gasifier type
stove, but the three-stone and rocket designs are much more
widely used than the gasifier globally, and, in general, lower
performance may have more relevance to real world use (see
below). In any case, the comprehensive emissions speciation
in FLAME-4 can be combined with the performance testing
by Jetter et al. (2012) to better understand the major currently
used global cooking options with reasonable confidence. We
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Figure 11. Emission factors of NH3 as a function of MCE for
“feed” crop residue fuels (triangles), “food” crop residue fuels (cir-
cles), and older millet samples (squares). Also shown are the lines
of best fit from food fuels (green) and feed fuels (blue).

note that our focus was comprehensive emissions speciation,
but point out that our traditional three-stone fires took the
longest time to reach a steady state, consumed the most fuel,
and produced higher mixing ratios of pollutants for their re-
spective fuel types as shown in Fig. 9.

We now compare our FLAME-4 OP-FTIR-based open
cooking fire EFs to field measurements of the EFs from three-
stone cooking fires for the few trace gases measured fairly
widely in the field (essentially CO2, CO, and CH4). Fig-
ure 10 shows study-average EFs for CH4 vs. MCE for a num-
ber of studies, including field data from Zambia (Bertschi et
al., 2003a), Mexico (Johnson et al., 2008; Christian et al.,
2010), and China (Zhang et al., 2000); laboratory data from
FLAME-4 and Jetter et al. (2012); and recommended global
averages (Andreae and Merlet, 2001; Akagi et al., 2011;
Yevich and Logan, 2003). The range of MCE demonstrates
the natural variability of cooking fire combustion conditions.
We observe a strong negative correlation of EF (CH4) with
MCE (R2

= 0.87) that includes all the studies. However, the
Jetter et al. (2012) study and especially FLAME-4 are off-
set to higher MCE than the field average. As discussed ear-
lier, this may reflect more efficient stove use sometimes ob-
served in lab studies. More representative lab EFs can read-
ily be calculated from the MCE plot-based comparison (de-
scribed in Sect. 2.6). The FLAME-4 EFs agree well with the
field data after adjustment by this approach, and we use it
to project EFs for species not measured in the field, namely
HCN (0.071 g kg−1) and HONO (0.170 g kg−1), which we
report for the first time, to our knowledge, for open cook-
ing. The1HONO/ 1NOx ratio is ∼ 13 %, confirming that
HONO is an important part of the cooking fire NOx budget.
As noted above for other BB types, the lab ERs of smoldering
compounds to CO are also fairly representative and included
for open cooking in Table 4.

We also compare with the limited field measurements of
rocket stove emissions. The FLAME-4 EFs of species avail-
able for comparison generally agree within one standard de-

viation of the Christian et al. (2010) field Patsari cookstove
data. Thus, despite the small sample size, we conclude that
the FLAME-4 ERs, EFs, and measurements to be presented
elsewhere (such as aerosol optical properties) for these ad-
vanced cookstoves can likely be used directly with some
confidence to assess the atmospheric impact of using these
stoves.

3.4 Emissions from crop residue fires

FLAME-4 provides the first comprehensive emissions data
for burning US crop residue and greatly expands the emis-
sions characterization for global agricultural fires. The EFs
and ERs for all the CR fuels burned during FLAME-4 are
compiled in Tables S4 and S5 in the Supplement. Upon initial
assessment of these data, a distinction between two groups
emerges. To illustrate this, the EF dependence on MCE for
NH3 emitted by burning CR fuels is illustrated in Fig. 11. The
EFs for NH3 from alfalfa and organic hay are much larger
than for the other crops at all MCE, which makes sense as
these crops are high in N (Table 1) and are grown partly to
meet the high protein needs of large livestock. The EF (NH3)
for millet was smaller than for the other CR fuels. The mil-
let EF could differ because of inherent low N content (Ta-
ble 1) or possible N losses since the samples were collected
a year prior to burning. Alfalfa, hay, and millet were also
outliers in the EF vs. MCE plots made for other trace gases.
The remaining fuels, sugar cane, and especially rice straw
and wheat straw, are associated with important crops grown
for human nutrition, and these three were grouped together to
compare laboratory CR fire emissions to the limited available
field data as detailed later.

Crops are domesticated “grasses” that would be expected
to have high Cl content. The use of agricultural chemicals
could further increase Cl content and/or Cl emissions. HCl is
the Cl-containing species we could measure with OP-FTIR,
and its emissions are correlated with flaming combustion as
noted earlier. The highest CR EF (HCl) (0.923 g kg−1) was
observed for the CR (Maryland wheat straw) with the high-
est Cl content (2.57 %). As seen in Table 1, the Cl content
of the two conventional wheat straw samples varied signif-
icantly, with the sample from the east shore of MD being
much higher than the inland sample from WA. However, even
though the organic wheat straw from Colorado had much
lower Cl content than the conventional wheat straw from
MD, it was significantly higher in Cl than the conventional
wheat straw from WA that was also sampled closer to the
coast. This confirms our earlier statement that Cl content can
depend on more than the distance from the coast for sim-
ilar vegetation. In addition, the high variability in Cl indi-
cates that measuring the extent to which agricultural chemi-
cals may contribute to vegetation Cl content and/or Cl emis-
sions would require a more precise experiment where only
the applied chemical regime varies. Nevertheless, we confirm
above-average initial emissions of HCl for this fuel type.
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Table 5. Summary of the comparison of emission factors and emission ratios (to CO) measured in the lab and field for crop residue fuels.
Values in parentheses are one standard deviation.

Crop residue

Species Field Akagi et Lab FLAME-4b predict Lab EF predict/ Field Akagi Lab FLAME-4 (ER) Field ER avg/
al. (2011)a (EF) at field-avg MCE (EF) Field EF avg et al. (2011) (ER) Lab ER avg

MCE 0.925 0.925 – 0.925 0.946 –
Carbon dioxide (CO2) 1664 – – – – –
Carbon monoxide (CO) 85.6 – – – – –
Methane (CH4) 5.01 3.66 0.730 0.102 (0.051) 0.072 (0.018) 1.42
Acetylene (C2H2) 0.230 0.346 1.50 0.003 (0.001) 0.005 (0.003) 0.542
Ethylene (C2H4) 1.16 1.40 1.21 0.014 (0.007) 0.017 (0.006) 0.787
Propylene (C3H6) 0.496 0.605 1.22 0.004 (0.002) 0.004 (0.002) 0.920
Methanol (CH3OH) 2.67 1.97 0.738 0.027 (0.014) 0.017 (0.008) 1.60
Formaldehyde (HCHO) 1.85 2.02 1.10 0.020 (0.010) 0.024 (0.011) 0.840
Acetic acid (CH3COOH) 4.52 4.07 0.901 0.025 (0.012) 0.019 (0.013) 1.32
Formic acid (HCOOH) 1.00 0.669 0.669 0.007 (0.004) 0.003 (0.003) 2.36
Nitric oxide (NO) 2.06 1.49 0.721 – – –
Nitrogen dioxide (NO2) 3.48 1.71 0.491 – – –
Nitrogen oxides (NOx as NO) 3.64 2.08 0.572 – – –
Ammonia (NH3) 1.76 1.15 0.654 0.034 (0.017) 0.016 (0.011) 2.07
Hydrogen cyanide (HCN) 0.160 0.399 2.49 0.002 (0.001) 0.005 (0.002) 0.421
Absolute average 1.00 (0.54) 1.23 (0.64)
Hydrocarbon avg. 1.17 (0.32) 0.918 (0.370)
N-species avg. 0.986 (0.847) 1.24 (1.16)
OVOC avg. 0.851 (0.191) 1.53(0.64)

a Supplement Table 13 in Akagi et al. (2011).
b Fuels grouped as food sources as detailed in Sect. 3.4.

Other notable features of the CR fire emissions are dis-
cussed next. Of all our FLAME-4 fuels, sugar cane fires had
the highest average EF for formaldehyde, glycolaldehyde,
acetic acid, and formic acid. Glycolaldehyde is considered
the simplest “sugar-like” molecule; it has been reported as
a direct BB emission in laboratory-, ground-, and aircraft-
based measurements by FTIR, and its atmospheric chem-
istry (including as an isoprene oxidation product) has been
discussed therein (Yokelson et al., 1997; Akagi et al., 2013;
Ortiz-Montalvo et al., 2012; Johnson et al., 2013). In Fig. 12,
we show the EFs for glycolaldehyde as a function of MCE
for our FLAME-4 CR fires, all remaining FLAME-4 fuels, a
series of airborne measurements from US field campaigns (in
2009–2011) (Johnson et al., 2013), and older laboratory mea-
surements of smoldering rice straw (Christian et al., 2003).
The FLAME-4 CR fires have significantly higher EFs than
the pine-forest understory and shrubland fires discussed in
Johnson et al. (2013), but rice straw fire measurements by
Christian et al. (2003) adjusted to reflect the new PNNL ref-
erence spectrum have even higher EFs for both glycolalde-
hyde and acetic acid in comparison to our current sugar cane
measurements. The higher EFs in the previous lab study are
consistent with the lower MCE that resulted from burning
the rice straw in dense piles similar to those observed in In-
donesia, where manual harvesting is common (Christian et
al., 2003).

Next we compare the FLAME-4 CR fire EFs to the lim-
ited field data available. Although CR fire emissions are un-
doubtedly affected by crop type and burning method (loosely

Figure 12. Glycolaldehyde EFs as a function of MCE shown for
current FLAME-4 CR, all remaining FLAME-4 fuels, a series of
airborne measurements from US field campaigns, and laboratory
rice straw measurements, with error bars representing one standard
deviation of the EF where available.

packed and mostly flaming vs. piled and mostly smoldering),
this type of specificity has not been implemented in atmo-
spheric models to our knowledge. All available ground-based
and airborne field measurements of CR fire EFs were aver-
aged into a single set of EFs for burning crop residue in the
field by Akagi et al. (2011) in their Supplement Table 13.
The average ratio of our FLAME-4 MCE plot-based EF pre-
dictions for 13 overlapping species to the field EF is close to
1, with the good agreement reflecting some cancellation of
positive and negative offsets (Table 5). The lab and field ERs
are also shown to agree very well. The mostly small differ-
ences that do occur between the FLAME-4 lab-predicted EFs
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and the field studies could be due to differences in fuel, burn-
ing conditions, and sampling regions. The field CR fire EFs
are all from Mexico (Yokelson et al., 2009, 2011; Christian
et al., 2010), while FLAME-4 measured EFs for a variety
of fuels from Colorado, Washington, California, Louisiana,
China, Taiwan, and Malaysia (see Sect. 2.2.4). Data from
recent airborne campaigns sampling US CR fires, includ-
ing SEAC4RS (Studies of Emissions, Atmospheric Compo-
sition, Clouds and Climate Coupling by Regional Surveys,
www.nasa.gov/mission_pages/) and BBOP (Biomass Burn
Observation Project,www.bnl.gov/envsci/ARM/bbop), will
provide valuable comparisons to our FLAME-4 CR fire EF
at a later date.

3.5 Emissions from US shrubland and coniferous
canopy fires

We burned fresh boughs from the following coniferous vege-
tation that is widespread in the western US and Canada: pon-
derosa pine, black spruce, and juniper. The canopy of these
trees/shrubs is sometimes consumed in prescribed burns,
but that is more commonly the case in wildfires, especially
crown fires. However, these fuels were not burned to sim-
ulate real, complete wildfire fuel complexes: rather they
were of interest as an extension of FLAME-3 smog cham-
ber experiments investigating organic aerosol (OA) trans-
formations (Hennigan et al., 2011). In FLAME-3 black
spruce produced the most SOA upon aging, while pon-
derosa pine produced the least SOA. The SOA results for
these and other fuels from FLAME-4 will be reported sep-
arately (Tkacik et al., 2014). The OP-FTIR data (Tables S4
and S5 in the Supplement) are of value to characterize the
starting conditions in the smog chambers. For instance, in
FLAME-4 the ponderosa pine burns were characterized by a
lower MCE (0.917± 0.032, range 0.839–0.952), hence more
smoldering-dominated burns than the black spruce burns
(MCE 0.951± 0.012, range 0.933–0.970). Both ponderosa
pine and spruce boughs were also burned in the lab fire
study of Yokelson et al. (2013a), and, collectively with the
FLAME-4 measurements, we now have more detailed in-
formation on the initial emissions from these fuels than was
available during the FLAME-3 campaign.

There are just a few published field measurements of emis-
sions from chaparral fires, which include (1) airborne mea-
surements of EFs reported by Burling et al. (2011) for 16 of
the trace gas species also measured in this work for 5 Cali-
fornia chaparral fires and (2) a limited number of trace gases
reported by Radke et al. (1991) and Hardy et al. (1996) for
prescribed chaparral burns. For these published field studies
as a group the average MCE is 0.935± 0.011.We combined
the seven chamise and three manzanita burns from FLAME-4
to represent chaparral fuels and obtained a slightly lower lab-
average MCE of 0.929± 0.017 (spanning a range of 0.903–
0.954; see Table S4 in the Supplement). The lab MCE and
EFs agree well with the MCE and EFs from field measure-

ments, which suggests that FLAME-4 measurements can
be used directly and confidently, including for species and
properties not yet measured in the field. The emissions data
from recent field studies of wildfires (SEAC4RS, BBOP) that
burned some coniferous canopy and chaparral fuels can be
compared with our FLAME-4 EFs in the future.

3.6 Emissions from tire fires

To our knowledge, FLAME-4 presents the first compre-
hensive emissions data for burning tires. Emissions are af-
fected by fuel composition, and tires are composed of nat-
ural and synthetic rubber, carbon black, fabric, reinforcing
textile cords, steel-wired fibers, and a number of chemical
accelerators and fillers added during the manufacturing pro-
cess (Mastral et al., 2000). One such additive is sulfur, which
is essential during the vulcanization process in creating rigid
and heat-resistant tires. The sulfur could be emitted during
combustion of tires in various forms, including SO2, which is
a monitored criteria air pollutant chiefly because atmospheric
oxidation of SO2 results in acid rain and sulfate aerosol par-
ticles, which are a major climate forcing agent with adverse
effects on human health (Schimel et al., 1996; Lehmann and
Gay, 2011; Rohr and Wyzga, 2012). For the two tire burns
conducted during FLAME-4 the average MCE was 0.963:
burns dominated by flaming combustion. SO2 is a product of
flaming combustion (see Fig. 2 or Lobert et al., 1991), and
our tire samples likely contained high amounts of S that was
efficiently converted to SO2 by the high MCE burns, result-
ing in a very high average EF (SO2) of 26.2± 2.2 g kg−1.
To put this in perspective, our second-largest EF (SO2) arose
from giant cutgrass (3.2 g kg−1), which was about 3 times the
typical FLAME-4 EF (SO2) of ∼ 1 g kg−1. About∼ 48 % of
the scrap tires generated in the US in 2005 (RMA, 2011)
were used as fuel (coal substitute), and this was the fate of
∼ 20 % of the scrap tires in Canada in 2004 (Pehlken and
Essadiqi, 2005). However, our calculations suggest that tire
combustion only contributed∼ 0.5 % of SO2 emissions for
the US and Canada in 2005 (Smith et al., 2011). Mean-
while, combustion of fossil fuels, specifically coal, was es-
timated to account for 56 % of the world SO2 emissions
in 1990 (Smith et al., 2001). Despite the low total global
significance compared to coal, it is quite possible for the
SO2 and other combustion products from tire burning to
have important local effects (http://thegazette.com/2012/06/
01/how-is-iowa-city-landfill-fire-affecting-air-quality/).

Many species – including HONO, NO2, HCN,
CH3COOH, HCOOH, and furan – were quantified for
the first tire burn (∼ 500 g) but fell below the detection
limit during the second smaller fire (∼ 50 g). For one such
species, gas-phase HONO, tire burning produced the largest
EF (1.51 g kg−1) of the entire study. Daytime photolysis
of HONO serves to form NO and the atmospheric oxidant
OH on a timescale of 10–20 min (Schiller et al., 2001).
To normalize for differences in the nitrogen content of
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fuels shown in Table 1, it is useful to compare1HONO to
1NOx. The ER(1HONO/ 1NOx) for tire burns (19 %) is
incidentally within the typical range of∼ 3–30 % for BB
studies compiled in Akagi et al. (2011). The EF of HONO
(1.51 g kg−1) and NOx as NO (3.90 g kg−1) were among
the largest for this study, while the EF (HCN) was small
(0.36 g kg−1) and NH3 remained below the detection limit
even in the bigger tire fire. These results suggest that much
of the fuel nitrogen is converted to NOx and HONO and
that the mid-range N content estimated for tires by Martínez
et al. (2013) shown in Table 1 (0.57 %) is large enough to
support the observed EF.

3.7 Emissions from burning trash and plastic bags

Published measurements of trash-burning emissions are rare.
The FLAME-4 measurements are the first to report an EF
for glycolaldehyde for trash burning. Since it is difficult to
be confident about waste simulation, we first assess the rel-
evance of the FLAME-4 trash fire simulations by compari-
son to the limited previous data. The emissions from burn-
ing simulated military waste were evaluated in two previous
studies for a number of species not measured by OP-FTIR,
including polycyclic aromatic hydrocarbons, particulate mat-
ter, several volatile organic compounds (VOCs), polychlori-
nated or brominated dibenzodioxins, and furans (Aurell et
al., 2012; Woodall et al., 2012). These two studies are not dis-
cussed further here. In Table S6 in the Supplement we show
the EFs from the two trash burns in FLAME-4 and “overlap-
ping” previously published garbage burning EFs, including
those from 72 spot field measurements of fires in authentic
Mexican landfills reported by Christian et al. (2010), an air-
borne campaign that sampled a single dump fire in Mexico
(Yokelson et al. 2011), and a single previous laboratory sim-
ulation (Yokelson et al., 2013a).

The first FLAME-4 trash fire simulation had much higher
HCl, HCHO, and glycolaldehyde and lower NOx, NH3, and
SO2 than the second simulation. The average of the two
FLAME-4 burns and most of the trash fire EFs we measured
in FLAME-4 are well within the range observed in the field
for hydrocarbons and the oxygenated organic compounds ex-
cept for acetic acid, which had mixing ratios below the de-
tection limit in FLAME-4. The increase in estimated car-
bon content between studies accounts for the considerable
increase in EF (CO2) for the FLAME-4 burns. The EFs re-
ported in Table S6 in the Supplement for field data assumed
an overall carbon fraction of 40 %, while an estimated value
of ∼ 50 % was calculated for FLAME-4 waste. There were
significantly lower emissions of N-containing compounds
and HCl in the FLAME-4 trash burn simulations compared to
the Mexican landfill fires. The single laboratory trash fire EF
(HCl) reported by Yokelson et al. (2013a) (10.1 g kg−1) and
the higher of two EFs for HCl from FLAME-4 (1.52 g kg−1)
lie close to the upper and lower end of the actual Mexican
landfill fire results (1.65–9.8 g kg−1). Based on the EF (HCl)

Figure 13. Excess mixing ratio profiles of CO and CO2 for the
FLAME-4 plastic bag burn characterized by a large long-lived ratio
of 1CO2 / 1CO corresponding to strong flaming combustion.

of pure polyvinyl chloride (PVC) reported in Christian et
al. (2010), we expected a higher EF (HCl) correlated to the
high PVC mass percentage (9.8 %) in our simulated trash
sample that contained PVC. The EF (HCl) is affected by the
combustion factor of the PVC itself, and the actual percent
burned may have been low during our simulation. The differ-
ences between the emissions of Mexican landfill fires and our
laboratory garbage fires likely reflect the general difficulty of
simulating real-world landfill content; in particular we likely
underrepresented a nitrogen source such as food waste in lab
simulations. While a more realistic representation of com-
plex, real-world waste would have been ideal, the FLAME-4
data should be useful for enhancing our knowledge of the
emissions from some components of this globally important
but undersampled source.

We burned one trash component separately in one fire:
namely plastic shopping bags. Much of the plastic produced
globally ends up in landfills with alternative means of dis-
posal including incineration, open burning, or use as an al-
ternative household fuel in developing countries. It has been
estimated that 6.6 Tg CO2 was generated from the inciner-
ation of plastics in waste in 2011 in the US and that incin-
eration is the disposal method for 7–19 % of waste in the
US, generating an estimated 12 Tg CO2 annually (USEPA,
2013). Shopping bags primarily consist of high- and low-
density polyethylene (HDPE, LDPE) with a carbon content
of 86 %, the highest value in this study (USEPA, 2010). The
EF (CO2) of 3127 g kg−1 is slightly larger than that from
shredded tires (2882 g kg−1). During the single burn of pure
plastic bags, flaming combustion dominated more than in
any other FLAME-4 fire, as can be seen in the high MCE
(0.994), the steady high ratio of1CO2 / 1CO (Fig. 13), and
by the fact that many smoldering combustion species re-
mained below the OP-FTIR detection limit. In this respect,
plastic bags are higher-quality fuel than biomass although
less-controlled combustion of mixed refuse, or a mix of plas-
tics and biomass, would likely result in less efficiency and
greater EFs for smoldering species.

Atmos. Chem. Phys., 14, 9727–9754, 2014 www.atmos-chem-phys.net/14/9727/2014/



C. E. Stockwell et al.: Trace gas emissions from combustion of fuels 9747

4 Conclusions

We used open-path FTIR to measure the emissions of 20 of
the most abundant trace gases produced by laboratory burn-
ing of a suite of locally to globally significant biomass fu-
els, including African savanna and US grasses; crop residue;
temperate, boreal, and Indonesian peat; traditional cooking
fires and cooking fires in advanced stoves; US coniferous
and shrubland fuels; shredded tires; and trash. We report fire-
integrated ERs to CO and EFs (grams of compound emitted
per kilogram of fuel burned) for each burn. The fire-type av-
erage EFs and ERs for sticky species (HCl, NH3, HCOOH,
CH3COOH, glycolaldehyde, SO2) are computed without the
data from the room burns (due to losses on aerosol or lab sur-
faces) as indicated in Tables S4 and S5 in the Supplement.

Many of the fire types simulated have large global signifi-
cance, but were not sampled extensively in the past. The fire
types simulated that have been subject to extensive past study
were sampled with new instrumental techniques in FLAME-
4. In either case it is necessary to establish the relevance of
the lab simulations by comparison to field data when avail-
able. The emissions from field fires depend on a large number
of fuel and environmental variables and are therefore highly
variable. Laboratory biomass burning can sometimes occur
with a different average ratio of flaming to smoldering com-
bustion than is observed for field fires in similar fuels. Smol-
dering combustion produces the great majority of measured
emitted species, and we find that our ER-to-CO ratios for
smoldering compounds are normally similar to field results.
Based on lab–field comparisons, we conclude that our lab-
measured EFs for some of the fires can be adjusted to bet-
ter represent typical open burning. We describe a straight-
forward procedure for making these adjustments when war-
ranted. For some fuels there is only lab emissions data avail-
able (e.g., peat and tires), and we must rely solely on that.
In other cases (e.g., rocket stoves and chaparral) both the
lab ERs and EFs can be used directly to supplement field
data. For some fuels (e.g., African grasses and crop residue)
the ERs can be used directly, and we provide a procedure
to adjust the lab EFs that is based on analysis of the over-
lap species and has a characterized uncertainty. Thus, all the
FLAME-4 results for various species and properties, espe-
cially those yet unmeasured in field studies, should be useful
to enhance the understanding of global biomass burning. As
mentioned above, this is important in part because the smoke
characterization in FLAME-4 featured the first use of many
instruments, the first sampling with some instruments for cer-
tain fuels, and the first use of dual smog chambers to char-
acterize the chemical evolution of smoke during simulated
aging.

For tropical peat (a major global fuel type) there are very
few data even after we quadrupled the number of samples
burned as part of FLAME-4. Significant differences in EFs
between FLAME-4 Kalimantan peat and Sumatran peat from
Christian et al. (2003) include∼ 14-times-greater NH3 emis-

sions from the Sumatran peat even though each study re-
ported similar nitrogen contents (2.12 and 2.27 %). Other
emissions were also variable from Canadian, North Car-
olina, and Indonesian peat. These variable emissions could
reflect differences in sampling depth; chemical, microbial,
and physical weathering; drying and ignition methods; and
land-use history. This highlights the need for field measure-
ments and underscores the challenge of developing robust
emissions data for this fuel type. Despite the high variability,
the large increase in sampling should increase confidence in
the mean emission factors for this fuel type. In addition, in all
the lab peat fires studied, the emissions of HCN, NH3, and
CH4 were elevated in comparison to the average for other
types of biomass burning.

Emissions were quantified for open cooking fires and sev-
eral improved cooking stoves. We obtained good agreement
for the few species that were also measured in a major cook-
stove performance study, indicating that our far more de-
tailed emissions characterization in FLAME-4 can be closely
linked to the performance results. This should enable a more
comprehensive assessment of the economic and air quality
issues associated with cooking technology options. Some of
the gas-phase species (HONO, HCN, NOx, glycolaldehyde,
furan, and SO2) are reported for rocket stoves (a common
type of improved stove) for the first time, and these emission
data can be used directly without an adjustment procedure.
A large set of EFs for gasifier type stoves is also reported for
the first time. We report the first1HCN/ 1CO ER for open
cooking fires, which dominate global biofuel use. The low
HCN/ CO ER from cooking fires and the high HCN/ CO
ER from peat fires should be factored into any source appor-
tionment based on using HCN as a tracer in regions featuring
one or both types of burning.

We report the first extensive set of trace gas EFs for US
crop residue fires, which account for the largest burned area
in the US. We report detailed EFs for burning rice straw
from the US and several Asian countries where this is a ma-
jor pollution source. Burning food crop residues produced
clearly different emissions from feed crop residues. Feed
crop residues had high N content, and burning alfalfa pro-
duced the highest NH3 emissions of any FLAME-4 fire.
Burning sugar cane produced the highest emissions of glyco-
laldehyde and several other oxygenated organic compounds,
possibly related to high sugar content. Increased knowledge
of agricultural fire emissions should improve atmospheric
modeling at local to global scales.

In general, for a wide variety of biomass fuels, the emis-
sions of HCl are positively correlated with fuel Cl content
and MCE and larger than assumed in previous inventories.
The HCl emissions are large enough that it could be the
main chlorine-containing gas in very fresh smoke, but par-
titioning to the aerosol could be rapid. The emission factors
of HCl and SO2 for most crop residue and grass fires were
elevated above the study average for these two gases, con-
sistent with their generally higher fuel Cl/S and tendency to
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burn by flaming combustion. The linkage observed between
fuel chemistry or specific crops and the resulting emissions
illustrates one advantage of lab-based emissions research.
In contrast, our laboratory simulation of garbage burning in
FLAME-4 returned an EF (HCl) (1.52 g kg−1) near the lower
end of actual landfill fire measurements (1.65 g kg−1), possi-
bly because a large fraction of the added polyvinyl chloride
did not burn. Lower N emissions from lab garbage burning
than in Mexican landfills could be linked to missing N in
our waste simulation, but we do not have nitrogen analy-
sis of authentic waste to verify this. The average SO2 EF
from burning shredded tires was by far the highest for all
FLAME-4 fuels at 26.2 g kg−1. High SO2 emissions together
with high EFs for NOx and HONO are consistent with high
sulfur and nitrogen content of tires and a tendency to burn
by flaming combustion. Finally, we note that this paper gives
an overview of the FLAME-4 experiment and the trace gas
results from OP-FTIR alone. Much more data on emissions
and smoke properties will be reported separately.

The Supplement related to this article is available online
at doi:10.5194/acp-14-9727-2014-supplement.
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