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Abstract. We describe a hierarchical statistical state space
model for ozone profile time series. The time series are from
satellite measurements by the Stratospheric Aerosol and Gas
Experiment (SAGE) II and the Global Ozone Monitoring
by Occultation of Stars (GOMOS) instruments spanning the
years 1984–2011. Vertical ozone profiles were linearly inter-
polated on an altitude grid with 1 km resolution covering 20–
60 km. Monthly averages were calculated for each altitude
level and 10◦ wide latitude bins between 60◦ S and 60◦ N.
In the analysis, mean densities are studied separately for the
25–35, 35–45, and 45–55 km layers. Model variables include
the ozone mean level, local trend, seasonal oscillations, and
proxy variables for solar activity, the Quasi-Biennial Oscilla-
tion (QBO), and the El Niño–Southern Oscillation (ENSO).

This is a companion paper toKyrölä et al.(2013), where
a piecewise linear model was used together with the same
proxies as in this work (excluding ENSO). The piecewise
linear trend was allowed to change at the beginning of 1997
in all latitudes and altitudes. In the modelling of the present
paper such an assumption is not needed as the linear trend
is allowed to change continuously at each time step. This
freedom is also allowed for the seasonal oscillations whereas
other regression coefficients are taken independent of time.
According to our analyses, the slowly varying ozone back-
ground shows roughly three general development patterns.
A continuous decay for the whole period 1984–2011 is ev-
ident in the southernmost latitude belt 50–60◦ S in all alti-
tude regions and in 50–60◦ N in the lowest altitude region
25–35 km. A second pattern, where a recovery after an ini-
tial decay is followed by a further decay, is found at north-
ern latitudes from the equator to 50◦ N in the lowest alti-
tude region (25–35 km) and between 40◦ N and 60◦ N in the

35–45 km altitude region. Further ozone loss occurred after
2007 in these regions. Everywhere else a decay is followed
by a recovery. This pattern is shown at all altitudes and lati-
tudes in the Southern Hemisphere (10–50◦ S) and in the 45–
55 km layer in the Northern Hemisphere (from the equator
to 40◦ N). In the 45–55 km range the trend, measured as an
average change in 10 years, has mostly turned from nega-
tive to positive before the year 2000. In those regions where
the “V” type of change of the trend is appropriate, the turn-
ing point is around the years 1997–2001. To compare results
for the trend changes with the companion paper, we stud-
ied the difference in trends between the years from 1984 to
1997 and from 1997 to 2011. Overall, the two methods pro-
duce very similar ozone recovery patterns with the maximum
trend change of 10 % in 35–45 km. The state space method
(used in this paper) shows a somewhat faster recovery than
the piecewise linear model. For the percent change of the
ozone density per decade the difference between the results
is below three percentage units.

1 Introduction

Time series constructed from satellite remote sensing obser-
vations provide important information about variability and
trends in atmospheric chemical composition. Many satel-
lite time series provide global coverage of the measure-
ment and some of the data sets run from the 1980s. The
analysis of trends, both natural and anthropogenic, is com-
plicated by natural variability and forcing affecting strato-
spheric chemical compositions. In this study, the recov-
ery of stratospheric ozone from the depletion caused by
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chlorofluorocarbon (CFC) compounds is studied using a sta-
tistical time series model.

Slow background changes in stratospheric ozone are eas-
ily masked by both seasonal and irregular natural variabili-
ties. Thus, the requirements are stringent for the stability of
ozone observations. Self-calibrating occultation instruments
are good candidates for such a task. The observations anal-
ysed in this work consist of satellite measurements by the
SAGE II and GOMOS instruments, operational during 1984–
2005 and 2002–2012, respectively. The data set used here
spans the years 1984–2011. Vertical ozone profiles were lin-
early interpolated on an altitude grid with 1 km resolution
covering 20–60 km. Monthly averages were calculated for
each altitude level and 10◦ wide latitude bins between 60◦ S
and 60◦ N. Combining the observations from different in-
struments having different measurement principles is a chal-
lenge.Kyrölä et al.(2013) explain the data set and its con-
struction in more detail. Here the analysis is done with both
the original 1 km vertical spacing and by calculating mean
densities over 10 km intervals.

There is a wealth of literature concerning the analysis of
atmospheric time series. A good reference to stratospheric
ozone time series regression analysis isSPARC(1998). A re-
cent study that reviews the challenges and problems in trend
analysis of climatic time series was published byBates et al.
(2012), and a general trend analysis reference isChandler
and Scott(2011). For state space and functional analysis of
atmospheric time series of similar type to that performed
here, seeLee and Berger(2003) andMeiring (2007).

This paper studies the feasibility and practical implemen-
tation of a state space approach for atmospheric time se-
ries analysis by defining a dynamic linear model (DLM) for
stratospheric ozone time series. “Dynamic” means here that
the regression coefficients can evolve in time. This makes it
possible to describe and analyse smooth changes in the aver-
age background behaviour of ozone. Model variables include
the ozone mean level, local trend, seasonal oscillations, and
proxy variables for solar activity, the Quasi-Biennial Oscilla-
tion (QBO), and the El Niño–Southern Oscillation (ENSO).
We do not claim novelty in the presented methods them-
selves, but argue that they should be more extensively applied
in the analysis of climatic time series and provide a simple
framework for time series analyses that can be generalized to
more comprehensive studies. In this paper, we describe the
necessary steps for applying the methods.

A typical feature in atmospheric time series is that they
are not stationary but exhibit both slowly varying and abrupt
changes in the distributional properties. These are caused
by external forcing such as changes in the solar activity or
volcanic eruptions. Further, the data sampling is often non-
uniform – there are data gaps, and the uncertainty of the ob-
servations can vary. When observations are combined from
various sources there will be instrument and retrieval method
related biases. The differences in sampling lead to uncertain-
ties, too. Straightforward linear regression analysis leaves the

model residuals correlated as not all variability can be ex-
plained by a static linear structure. Usually this is compen-
sated by allowing some correlation structure to the model
observation error by using, e.g. an autoregressive model. If
the residual correlation is not accounted for, the model un-
certainty analyses are misleading. A simple autoregressive
process can explain some of the unmodelled systematic vari-
ations by correlated noise, again confusing the analyses. In
conclusion, much care in interpretation is needed for those
standard classical statistical time series methods that require
stationarity, such as the ARIMA (autoregressive integrated
moving average) approach. The more general approach dis-
cussed in this paper makes use of dynamic linear models and
Kalman filter type sequential estimation algorithms.

State space models, sometimes called hidden Markov
models or structural time series models, are well known and
documented in time series literature, e.g.Harvey (1990);
Hamilton(1994); Migon et al.(2005). Modern computation-
ally oriented references areDurbin and Koopman(2012) and
Petris et al.(2009). Here, we review the basic properties rel-
evant to the analysis of atmospheric ozone time series data
and explain the necessary steps to fit the model to monthly
time series observations and how to assess the uncertainties
in the trend estimation.

The structure of this paper is the following. The data sets
and the statistical model are described in Sect.2. Results of
the statistical time series analyses are given in Sect.3 and the
paper ends with discussion and conclusions in Sect.4. Ap-
pendixA contains mathematical and computational details.

2 Materials and methods

2.1 Ozone time series from satellite observations

We use a combination of two ozone data sets. The first con-
sists of solar occultation measurements of ozone in the strato-
sphere and lower mesosphere from the SAGE II instrument
(Chu et al., 1989) operational during 1984–2005. The sec-
ond is the GOMOS instrument (Bertaux et al., 2010) that
measured ozone in the stratosphere, mesosphere and lower
thermosphere during 2002–2012 using stellar occultations.
The individual data sets have been homogenized to form a
combined time series from 1984 to 2011. The stability of the
SAGE II and GOMOS instruments, the construction of the
combined time series, data screening, bias correction, and
other issues are discussed in more detail in the companion
paper byKyrölä et al.(2013). Four proxy time series are used
for the solar flux, Quasi-Biennial Oscillations and ENSO.
Except for ENSO, these proxies are the same as used in the
companion paper. For ENSO we use the Multivariate ENSO
Index (MEI) from NOAA1.

1The MEI index is available fromhttp://www.esrl.noaa.gov/psd/
enso/mei/.
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2.2 Statistical time series model

A general linear state space model with Gaussian errors can
be written with an observation equation and a state evolution
equation as

yt = Ftxt + vt , vt ∼ Np(0,Vt ), (1)

xt = Gtxt−1 + wt , wt ∼ Nq(0,Wt ), (2)

whereyt is a vector of lengthp containing the observations
andxt is a vector of lengthq of unobserved states of the sys-
tem at timet . The state variables are used to describe the vari-
ous components of the time series model, such as mean level,
trend, seasonality and the effect of proxy variables. MatrixFt

is the observation operator mapping the unobserved states to
the observations and matrixGt is the model evolution oper-
ator giving the dynamics of the states. In this basic formula-
tion the uncertaintiesvt andwt are assumed to be Gaussian,
with observation uncertainty covarianceVt and model error
covarianceWt . Above,Np(0,Vt ) stands forp-dimensional
Gaussian distributions, with vector of zeros as mean andVt

as thep×p covariance matrix. The time indext will go from
1 toN , the length of the time series to be analysed. In the fol-
lowing, the matrices defining the model will mostly be time
invariant, i.e.Gt = G, etc., and we will usually drop the time
subscript, still retaining it in general formulas that are not
specific to this particular time series application.

In this work, we use a DLM to explain variability in the
ozone time series with four components: smooth locally lin-
ear trend, seasonal effect, effect of forcing via proxy vari-
ables, and noise that is allowed to have autoregressive cor-
relation. All components are built using the state space ap-
proach.

To describe the trend we start with a simple local level
and locally linear trend model that has two hidden states
xt = [µt ,αt ]

T , whereµt is the mean level andαt is the
change in the level from timet to time t + 1. In addition we
need stochastic terms for the observational error and for the
allowed change in the dynamics of the trend and the level.
These are defined by Gaussian “ε” terms below. The system
can be written by equations

yt = µt + εobs, εobs∼ N(0,σ 2
obs(t)), (3)

µt = µt−1 + αt−1 + εlevel, εlevel ∼ N(0,σ 2
level), (4)

αt = αt−1 + εtrend, εtrend∼ N(0,σ 2
trend). (5)

In terms of the state space equations (1) and (2) this becomes

Gtrend=

[
1 1
0 1

]
, Ftrend=

[
1 0

]
,

Wtrend=

[
σ 2

level 0
0 σ 2

trend

]
, Vt =

[
σ 2

obs(t)

]
. (6)

Depending on the choice of variancesσ 2
level andσ 2

trend, this
will define a smoothly varying background level of the data
series that is used to infer changes in atmospheric ozone.

Most atmospheric series exhibit seasonal variability. The
seasonality can be modelled using harmonic functions. If the
number of cyclic components iss, the full seasonal model
hass/2 harmonics. For thekth harmony, withk = 1, . . . , s/2,
we need to add two state variables. With monthly data we
haves = 12 and the corresponding blocks of the model and
observation matrices are

Gseas(k) =

[
cos(k2π/12) sin(k2π/12)

−sin(k2π/12) cos(k2π/12)

]
,

Fseas(k) =
[
1 0

]
andWseas(k) =

[
σ 2

seas(k) 0
0 σ 2

seas(k)

]
. (7)

Here the state equation matrices are independent of time
index t and we have used subscriptk to stand for the
harmonic component. The rationale behindGseas(k) is
that if we know the harmonicut,k = ak cos(k2π/12t) +

bk sin(k2π/12t) and, as an auxiliary state, its conjugate
u∗

t,k = −ak sin(k2π/12t)+bk cos(k2π/12t), with some con-
stantsak andbk, we can update the state with[
ut+1,k

u∗

t+1,k

]
= Gseas(k)

[
ut,k

u∗

t,k

]
, (8)

whereGseas(k) is defined in Eq. (7) and does not depend on
time t (e.g.Petris et al., 2009, Sect. 3.2.3). In our case the
seasonality can be adequately explained by two harmonics,
e.g. by yearly and half-a-year variation (k = 1 andk = 2),
which will increase the number of hidden states to be esti-
mated by four. In addition we need to define the error co-
variance matrixWseasfor the allowed time-wise variability
in the seasonal components. We note that there is no need for
a separate seasonal observation error matrixVseas, asVt is
used only in the observation equation (1), not in the model
equation (2) where the seasonal cycle is defined.

In the previous definitions, the state operatorG, the ob-
servation operatorF and the model error covarianceW have
been time invariant. The observation uncertainty covariance
Vt defined in Eq. (6) is, in our case, time dependent and
it will contain the known observation uncertainties. The in-
clusion of auxiliary proxy variables is done by augmenting
the observation matrixFt , making it time dependent. In the
following, the stratospheric ozone analysis will utilize four
proxy time series explaining parts of the natural variability:
one for the solar flux, two proxy variables for QBO, and one
for ENSO. This is achieved by adding the following compo-
nents into the system matrices:
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Gproxy =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

Fproxy(t) =
[
z1,t z2,t z3,t z4,t

]
and

Wproxy =


σ 2

z1 0 0 0
0 σ 2

z2 0 0
0 0 σ 2

z3 0
0 0 0 σ 2

z4

 , (9)

wherez1,t , z2,t , z3,t andz4,t contain the values of the four
proxy series at timet . With positive error variancesσ 2

zi this is
an extension of linear regression analysis into one with time-
varying coefficients. In our analysis, for simplicity, we set all
the elements of the model error covariance matrixWproxy to
zero to obtain time-invariant regression coefficients for the
proxy variables.

To allow autocorrelation in the residuals we use a first-
order autoregressive model (AR(1)). This is similar to the
Cochrane–Orcutt correction in classical multiple regression
(see e.g.Hamilton, 1994) used byKyrölä et al.(2013). How-
ever, in the DLM approach we can estimate the autocorre-
lation coefficient and the extra variance term together with
the other model parameters, not by a separate iteration, as
needed, e.g. by the Cochrane–Orcutt method. A first-order
autoregressive model for a state componentηt can be writ-
ten asηt = ρηt−1 + εAR, with εAR ∼ N(0,σ 2

AR), whereρ is
the AR coefficient andσ 2

AR is usually called the innovation
variance in classical time series literature. In DLM form, we
simply have

GAR =
[
ρ
]
,FAR =

[
1
]
, andWAR =

[
σ 2

AR

]
, (10)

and bothρ andσ 2
AR can be estimated from the observations.

The next step in DLM model construction is the combina-
tion of the selected individual model components into larger
model evolution and observation equations. For the model
evolution matrixG and the observation operatorFt we have

G =


Gtrend 0 0 0 0

0 Gseas(1) 0 0 0
0 0 Gseas(2) 0 0
0 0 0 Gproxy 0
0 0 0 0 GAR

 ,

Ft =
[
Ftrend Fseas(1) Fseas(2) Fproxy(t) FAR

]
, (11)

In our analyses, the state vectorxt has a total of 11 compo-
nents:

xt =
[
µt αt ut,1 u∗

t,1 ut,2 u∗

t,2

β1 β2 β3 β4 ηt ]
T , (12)

whereµt is the local mean,αt is the local trend, i.e. the local
change of the mean,ut,k andu∗

t,k are the states representing

the two seasonal harmonics, theβ are the regression coef-
ficients for the four proxy variables, andηt is an extra state
for the autoregressive component that “remembers” the value
of the observation from the previous time step. In this study,
the regression coefficients (β) are assumed not to depend on
time t . The full model error covariance matrixW is a diago-
nal matrix with the corresponding variances at the diagonal,

diag(W) =

[
0 σ 2

trend σ 2
seas σ 2

seas σ 2
seas σ 2

seas

0 0 0 0 σ 2
AR

]
, (13)

where the local level variance and the proxy regression coef-
ficient variances have been set to zero and the four seasonal
variances set to be all equal, to correspond to the simplifi-
cation assumed in the analyses. Lastly, as already stated, the
observation error covariance matrixVt , will be a 1×1 matrix
and equals the known observation uncertainty:Vt = σ 2

obs(t).
Next, the analysis will proceed to the specification of the
variance parameters and other parameters in the model for-
mulation (e.g. the AR coefficientρ above), and to the esti-
mation of the model states by state space methods.

2.3 Model parameter estimation

We have two kinds of unknowns, the model state variables
xt , one vector for each timet , and the auxiliary parameters
that define the model error covariance matrixW and the sys-
tem evolution matrixG. At first sight, this might seem to be
a vastly underdetermined system, as we have several model
parameters for each single observation. However, by the se-
quential nature of the equations, we can estimate the states
by standard recursive Kalman filter formulas.

Implicitly assumed in the state space equations (1) and
(2) is that the state at timet is statistically conditionally
independent of the history given the previous state at time
t − 1. When the model equation matrices are known, this
Markov property allows sequential estimation of the states
given the observations by famous Kalman formulas (see e.g.
Rodgers, 2000). We can use a Kalman filter for one-step-
ahead prediction of the state and a Kalman smoother for the
marginal probability distribution of the state at timet given
the whole time series of all observations (t = 1, . . . ,N ).
Marginal means that the uncertainty of the states at all other
times thant has been accounted for. In time series applica-
tions, the Kalman filter output can be used to calculate the
model likelihood function, needed in the estimation of the
auxiliary parameters, and the Kalman smoother provides an
efficient algorithm to estimate the model states and to de-
compose time series into parts given by the model formula-
tion. Thus, this high-dimensional problem is computationally
not much more intensive than a classical static multiple lin-
ear regression analysis. Furthermore, in the linear Gaussian
case, the probability distributions provided by the Kalman
formulas are exact, not approximations. Non-linear models
can be approached by linearization of the state equations, and
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non-Gaussian error models by, e.g. particle filter algorithms
(Doucet et al., 2001). More details on the DLM computations
can be found in AppendixA.

Next, we consider the model error covariance matrixW.
If we set all model error variances to zero it will change the
DLM model into an ordinary, non-dynamic, multiple linear
regression model. By using non-zero variances we can fit
a smoothly varying mean level, and the smoothness can be
controlled by the size of the variances. A simplification done
here is that we assumeW to be diagonal, and even some of
the diagonal elements are set to zero. In our case non-zero
elements are the variability of the trend,σ 2

trend, and the vari-
ances of seasonal variation,σ 2

seas(k), i.e. we will set the vari-
ance of the level and the four proxy variables to zero. Our
motivation for excluding dynamic variation from the proxies
is to use an as simple as possible dynamic model that would
have similar properties as the piecewise linear model in the
companion paper. By studying dynamic changes in the trend
and seasonal variation we will then either validate the static
linear approach or show that it is not appropriate.

A common procedure to estimate the elements of the
model error matrixW is based on the maximum likeli-
hood method using the likelihood function provided by the
Kalman filter. After the estimation, the obtained values could
be plugged into the system equations as known constants.
However, this plug-in method neglects the uncertainty in the
estimates. Instead, we will use an alternative method based
on Bayesian analysis (Gamerman, 2006; Petris et al., 2009;
Särkkä, 2013) and outline it shortly below in Sect.2.4.

2.4 Markov chain Monte Carlo analysis for model
parameters

The Markov chain Monte Carlo (MCMC) method provides
an algorithm to draw samples from the Bayesian posterior
uncertainty distribution of model parameters given the likeli-
hood function and the prior distribution (Gamerman, 2006).
As the Kalman filter likelihood provides the likelihood of
the auxiliary model parameters, marginalized over the un-
known model states, we can use it to draw samples from the
marginal posterior distribution of these parameters. We will
use an adaptive Metropolis algorithm ofHaario et al.(2006)
for the three unknown variance parameters (σtrend, σseas, σAR)
in the matrixW in Eq. (13) as well as for the autoregressive
parameterρ in the system evolution matrixG (Eq.10). After
obtaining this sample from the posterior distribution, we use
sampled parameter values, one by one, to simulate realiza-
tions of the model statesx1:N using the Kalman simulation
smoother (e.g.Petris et al., 2009). This allows us to account
for both the parameter and the model state uncertainties in the
trend analysis. Again, more computational details are given
in AppendixA.

For Bayesian analysis of the unknown model parameters,
prior distributions for the parameters must be specified. We
want the variances in the matrixW to reflect our prior knowl-

edge on the assumed variability in the processes captured by
the observations. As noted byGamerman(2006, Sect. 2.5.),
dynamic linear models offer intuitive means of providing
qualitative prior information in the form of the model equa-
tions and quantitative information by prior distributions on
variance parameters. By the estimation procedure we aim at
finding variance parameters that are consistent with the given
observation uncertainty, i.e. the model can predict the obser-
vations within their accuracy. This means that the scaled pre-
diction residuals that are used defining the likelihood func-
tion should behave like an independent Gaussian random
variable. We can assess these assumptions by different resid-
ual analysis diagnostics.

As we are effectively looking for slowly varying trends
in the data, we will set prior constraints to variance param-
eters to reflect this. For example, we might assume that the
change within a month in the background level is on the av-
erage some percentage of the overall time series mean. The
estimation procedure will then divide the observed variabil-
ity into model components (level, trend, seasonality) in pro-
portions that reflect the prior choices. The standard model
diagnostic tools, such as autocorrelation analysis and normal
probability plots, can be used to reveal possible discrepan-
cies in the model assumptions that have to be considered. As
the model residuals are calculated from one-step predictions,
the diagnostics will reveal both over-fit and a lack of fit.

The model error covarianceW (Eq. 13) is time invari-
ant, with nonzero diagonal terms for the trend parameter, a
common value for the four parameters defining the variabil-
ity in the seasonal components, and one value for the vari-
ance defining the autoregressive component. For MCMC es-
timation of the variance parameters, we use log-normal prior
distributions for the corresponding standard deviations. The
motivation for this is that the standard deviations are posi-
tive by definition so logarithmic scale is natural and com-
monly used and it allows prior specification in meaningful
units. If a random variablex follows a log-normal distri-
bution logN(µ,σ 2), then log(x) follows the standard Gaus-
sian distributionN(µ,σ 2). Because of this transformation,
it is more intuitive to work with a log mean parameter, as
in logN(log(µ),σ 2), whereµ is now the approximate mean
of the untransformedx and the scale parameter of the log-
normal distributionσ can be interpreted as an approxima-
tion of the relative standard deviation of the original variable
in question. The prior distribution for the standard deviation
of the monthly level changeσtrend was set to be log-normal
with the log mean equal to 1/12 % of the average level of
the ozone observations and having scale parameter 1. This
scale corresponds to a relatively wide (130 % SD)2 prior un-
certainty forσtrend. All the σ parameters describe allowed

2This can be derived from the fact that ifx ∼ logN(µ,σ2) then
its mean and variance areE(x) = exp(µ + 1/2σ2) and D(x) =

exp(2µ)exp(σ2)(exp(σ2)−1), see e.g. Wikipedia entry for the log-
normal distribution.
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change in one time interval of the model and data (month),
i.e. the unit forσtrend is 1cm−3. For the seasonal standard
deviation,σseas, we set the log mean parameter to 1 % of
the overall variability in the observed ozone values and the
scale parameter to 2 (corresponding to 730 % SD). For the
standard deviation of the AR(1) component (Eq.10), we use
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shown in Fig.1 for one zonal band and altitude region. The
prior for the trend variability would allow the trend to change
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Figure 2. DLM fit for average ozone at 40–50◦ N, 35–45 km. In the
upper panel the dots are the observations used in the analysis, the
solid line following the observations is the DLM fit obtained by a
Kalman filter. The smooth solid line is the background level compo-
nent of the model with 95 % probability envelope. The beginning of
GOMOS observations as well as the end of SAGE II are shown by
red vertical lines. In the lower left panel an analysis of the 10-year
trend is performed, showing the mean estimated trend and its 95 %
probability envelope. The lower right panel shows model diagnos-
tic analyses on the residuals by an estimated autocorrelation func-
tion (ACF) and by a normal probability plot. In the autocorrelation
function plot, dashed horizontal lines correspond to the approxima-
tive region where the coefficients do not significantly (95 %) deviate
from zero. The unit of lag is months.
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Fig. 3. Some of the DLM model components for 10◦ S–0◦ S, 20 km. The first panel has the observations
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et al. (2013) is drawn with a solid green line. The second panel downwards shows model residuals, scaled by

the estimated residual standard deviation, i.e. the variability in the y axis direction should be approximately

standard Gaussian N (0,1). The other panels show means and 95% probability envelopes (the grey shading)

of the DLM components related to seasonality and to the proxy variables, solar, Quasi-Biennial Oscillation,

and ENSO, i.e. the original proxy variables multiplied by the estimated regression coefficients. For the proxy

variables, the y axis scaling is the percentage of the total ozone variability, i.e. the ozone observations were

scaled by their standard deviation, individually for each data set analysed. At 20 km we see a large number

of missing observations, some possible outliers, and a strong effect of the ENSO index. There is only a slight

difference between DLM and linear models, however, although the latter does not include ENSO.
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Figure 3. Some of the DLM model components for 10–0◦ S, 20 km. The top panel has the observations and the level components as in
Fig. 2. In addition, the piecewise linear regression model used byKyrölä et al.(2013) is drawn with a solid green line. The second panel
shows model residuals, scaled by the estimated residual standard deviation, i.e. the variability in they axis direction should be approximately
standard GaussianN(0,1). The other panels show means and 95 % probability envelopes (grey shading) of the DLM components related
to seasonality and to the proxy variables – solar, QBO and ENSO – i.e. the original proxy variables multiplied by the estimated regression
coefficients. For the proxy variables, they axis scaling is the percentage of the total ozone variability, i.e. the ozone observations were scaled
by their standard deviation, individually for each data set analysed. At 20 km we see a large number of missing observations, some possible
outliers, and a strong effect of the ENSO index. There is only a slight difference between DLM and linear models, however, although the
latter does not include ENSO.

by about same amount as it does in linear trend analyses – or
let it not change if the data do not support it — but, also,
should not capture too fine changes due to natural variabil-
ity that could be attributed, e.g. to the autoregressive residual
error component in the model.

The simple parameterization of the model error term with
three unknown parameters was selected by performing ini-
tial fits with different parameterizations, and using sensible
initial values refined by a maximum likelihood optimization.
The models were then diagnosed by studying the residuals
by using normal probability plots and plots of the estimated
autocorrelation function. When a good candidate model was
found, an MCMC analysis was used to study the uncertainty
and identifiability of the variance parameters. Lastly, the in-

teresting trend features of the time series were studied by
plotting the estimated background level with uncertainty con-
fidence bounds, and drawing realizations from the posterior
distribution of the level term and checking the statistical sig-
nificance of hypothesized features. For example, statistical
significance for the trend was assessed by checking whether
95 % posterior probability region included zero value or not.

2.5 Estimating trends

A trend is a change in the statistical properties of background
state of the system (Chandler and Scott, 2011), the simplest
case being linear trend, where, when applicable, we only
need to specify the trend coefficient and its uncertainty. In the
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Figure 4. Some of the DLM model components for 10–0◦ S, 34 km, see Fig.3 for explanation. We see noticeable difference between DLM
and linear regression fits drawn with a solid green line on the top panel.

Table 1. Specification of priors for auxiliary model parameters estimated by MCMC. The prior distributions for the model error standard
deviation parameters were log-normal, logN(log(µ),σ2) with values ofµ andσ given in the table. For simplicity, the same relative priors
are used in all the altitude–latitude regions. In Fig.1 the prior distributions are plotted together with MCMC chain histograms that estimate
the posterior distributions for one altitude-latitude region.

Estimated parameter Prior meanµ Prior scaleσ

Trend standard deviation,σtrend 1/12 % of O3 mean 1
Seasonal standard deviation,σseas 1 % of O3 variability 2
Autoregressive standard deviation,σAR 30 % of O3 variability 2

Autoregressive coefficient,ρ prior is GaussianN(0.45,0.52) truncated to[0,1]

companion paper (Kyrölä et al., 2013) the trend and a change
in the trend is studied by using a piecewise linear model with
a predefined change point. Natural systems evolve contin-
uously in time and it is not always appropriate to approxi-
mate the background evolution with a constant, or piecewise
linear, trend. Within the state space dynamic linear model
framework, the trend can be defined as the change in the es-
timated background level, i.e. the change inµt defined in

Eq. (3). Posterior sampling from the background level pro-
vides an efficient method for studying uncertainties in differ-
ent trend estimates.

Temporal changes in the system can be studied by visu-
ally inspecting the background level and its estimated uncer-
tainty. We can draw samples from the posterior distribution
of the levelµt to assess hypotheses about the evolution of
the process. For example, in Sect.3 we study the change in
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the mean ozone level in 10-year periods. We take into ac-
count the uncertainty in the model prediction and in the esti-
mated variance parameters by sampling possible background
levelsµt from its posterior uncertainty distribution. We will
do this consecutively and, for each sampled realization, cal-
culate the 10-year change in the mean ozone for each time
t as trend(t) = µt+60− µt−60 (time units in months). This
sample of trends provides us direct way to analyse trends by
calculating, for example, the mean 10-year trend with 95 %
uncertainty limits. The general procedure is the following:

1. Using MCMC with the Kalman filter likelihood, pro-
duce a sample from the marginal posterior probability
distribution of the auxiliary parameters defining the er-
ror covariance matrixW and model matrixG.

2. Draw one realization of the matricesG andW using the
posterior distribution provided by MCMC in the previ-
ous step.

3. Simulate one realization of the model statex1:N using
the Kalman simulation smoother assuming fixedG and
W from the previous step and calculate trend-related
statistics of interest from this realization.

4. Repeat from step 2 to calculate summaries from the pos-
terior distribution of the quantity of interest.

3 Results

The model parameters were fitted separately to each data set,
i.e. to each height interval and zonal band. We performed
the analyses using vertical average profile data with both the
original interpolated 1 km altitude grid and by forming aver-
aged ozone densities for three altitude regions: 25–35, 35–45,
and 45–55 km. The 10◦ wide zonal bands start from 60◦ S
and go to 60◦ N. By considering each zonal band indepen-
dently and summing several altitudes, we have tried to re-
duce the model to a minimum one that still shows interesting
long-term changes and is consistent with our assumptions.
Initially, a multivariate estimation was considered by fitting
several altitudes and zonal bands together, but this compli-
cated the analyses considerably and did not gain additional
insight. In principle, we could use the observations in more
refined resolution and model several time series in one es-
timation step, and even use the individual satellite retrievals
instead of spatio-temporal averages.

Figure2 shows an example of our modelling results in the
combined altitude–latitude region, 40–50◦ N, 35–45 km. The
original data are displayed together with DLM estimates and
with the estimated mean level componentµt that is used to
make statistical inference about the trend. The fits are ob-
tained by a Kalman smoother (Eqs.A1–A7 in AppendixA)
and the 95 % uncertainty regions by combination of a simula-
tion smoother (Eqs.A8–A12) and MCMC. A separate panel
(on the lower left side) displays the decadal trend obtained

from the level component using MCMC analysis to account
for the uncertainty in the variance parameters. Looking at the
observations in a 10-year perspective, the trend has been sta-
tistically significantly negative up to the year 1997, as the
grey area stays below zero. After 1997, the 10-year trend
does not statistically differ from zero. After the DLM decom-
position, the model residual term is assumed to be uncorre-
lated Gaussian noise. The two lower right panels in Fig.2
show residual diagnostics. These are used to look for devi-
ations from the modelling assumptions. If the scaled residu-
als pass the check of being independent and Gaussian with
unit variance, then the fit agrees with our assumptions and
modelling results are consistent with the data. In this case
the residuals are almost perfectly uncorrelated Gaussian with
unit variance. The normal probability plot compares empiri-
cal quantiles (i.e. order statistics) of the residual to those ob-
tained from the theoretical Gaussian distribution and in the
case of normally distributed residuals, the points should stay
mostly on a straight line, as they do here.

The results from MCMC analysis for the same data set as
in Fig. 2, are shown in Fig.1. The figure has the prior proba-
bility distributions together with marginal posterior distribu-
tions as MCMC chain histograms for the estimated auxiliary
model parameters (referred asθ in AppendixA). We see that
the parameter posterior distributions are mostly determined
by the data and not by the prior. The standard deviation of
the trend,σtrend, is estimated to be relatively small, which
supports the search for smooth background variability. This
behaviour is typical for all the fits done. The variability in the
seasonal component has more uncertainty, and it also varies
more between the fits for different altitude–latitude regions.
The autoregressive parametersσAR andρ have narrow pos-
terior distributions relative to the prior, i.e. these values can
be accurately obtained from the data.

Figures3 and4 show the fitted model components for two
individual altitudes, 20 and 34 km, both at 10–0◦ S. For the
seasonal cycle, we plot the sum of the observed seasonal
components,ut,1+ut,2 in Eq. (12); for proxies we plotβizt,i ,
i.e. the proxy coefficient times the value of the proxy. These
fits are provided by the Kalman smoother as in the case of
the mean levelµt . At 20 km, we see a strong effect of ENSO.
The total variability explained by ENSO is about 20 % (i.e.
its effect is between−10 and 10 %), which is similar to the
effects of the seasonal variation and of the QBO. Although
ENSO was not used byKyrölä et al.(2013), the fit by linear
regression, shown with a solid green line in the upper panel,
does agree reasonably well with the DLM level. At 34 km,
there is a clear difference between the DLM fit and the piece-
wise linear analysis with change point fixed at year 1997.
Non-linear changes in the background level are not captured
by the two-piece linear model. Among the proxy variables,
the two QBOs, combined in the figure, have the most signif-
icant effect, explaining approximately 10 % of the total vari-
ability in ozone at that region.
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Fig. 5. The effects of seasonal variation and of the proxy index variables on the variability of ozone. Here
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panel of Fig. 3. The maximal solar effect is always less than 10%. Note that the colour scales differ.
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Figure 5. The effects of seasonal variation and of the proxy index variables on the variability of ozone. Here 100 % means the observed
standard deviation of ozone at each latitude altitude bin. The colouring corresponds to the range of variability during the whole observation
period 1984–2011 of each model component given as percentages with respect to the total variability in ozone. We see, e.g. that the ENSO
index significantly affects the ozone variability only at 20 km near the equator, where the effect is about 20 %, also shown in the lowest panel
of Fig. 3. The maximal solar effect is always less than 10 %. Note that the colour scales differ.

Figure5 shows the effects of the fitted variable for the sea-
sonal variation and of the proxy index variables on the total
observed variability of ozone. We calculated, using the data
with 1 km altitude spacing, the range of variability during the
whole observation period 1984–2011 of each model compo-
nent given as percentages with respect to the mean ozone
value. The ENSO index has a significant effect (about 20 %
of the variability) only at 20 km near the equator. Near 60 km
and at higher latitudes, almost all of the ozone variability can
be attributed to seasonality. The maximal solar effect is al-
ways less than 10 %.

The key results of this paper can be found in Figs.6 and7
where we show fits to the ozone time series for 12 latitude
belts and for three altitude regions (25–35 km, 35–45 and
45–55 km). We have shown the data points from the merged
SAGE II–GOMOS time series, the DLM fit and the slowly
varying background levelµt . Overall, it is easy to see that
the fits usually follow very accurately the data points. There
are a few scattered outliers, but it is difficult to find any spe-
cific pattern for these deviations. As in Fig.2, the solid trend
line is the estimated mean levelµt and it is shown with 95 %

uncertainty region. The results for the background curve can
be roughly divided into three classes. The simplest case, a
continuous decay of ozone during the period 1984–2011, is
evident in the southernmost latitude band (50–60◦ S) in all
altitude regions. A continuous decay is also present in 50–
60◦ N in the lowest altitude region (25–35 km). The second
class, a recovery between an initial decay and a final decay,
is seen from the equator to 50N in the lowest altitude re-
gion (25–35 km) and at 40–60◦ N and 35–45 km. The third
class covering the rest of the cases shows decay and recov-
ery. In the Southern Hemisphere all altitudes and latitudes
(10–50◦ S) belong to this class. In the Northern Hemisphere
all latitudes in 45–55 km and latitudes from the equator to
40◦ N belong to this class.

In Fig. 8 the results of decadal trend analyses are collected
and plotted separately for the three altitude ranges. The cal-
culations are explained in Sect.2.5and as final step 7 in Ap-
pendix A. The colouring shows the trend, i.e. the average
change in±5 years around each time axis point. Blue colour
means a negative and red a positive trend. The change is
most visible at higher altitudes (45–55 and 35–45 km). At the
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Fig. 6. All fits collected for the northern hemisphere. The three altitude regions as columns, northern hemi-

sphere 10◦ zonal bands as rows starting from the northernmost zone. The smooth solid curve shows the esti-

mated background level with 95% probability envelope. The dots are the observations used in the analysis. The

solid line following the observations is the DLM fit obtained by Kalman filter formulas.
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Figure 6. All fits collected for the Northern Hemisphere. The three altitude regions as columns, Northern Hemisphere 10◦ zonal bands as
rows starting from the northernmost zone. The smooth solid curve shows the estimated background level with 95 % probability envelope. The
dots are the observations used in the analysis. The solid line following the observations is the DLM fit obtained by Kalman filter formulas.
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Fig. 7. All fits collected for the southern hemisphere. The three altitude regions as columns, southern hemi-

sphere 10◦ zonal bands as rows starting from the equatorial zone. See Fig. 6 for explanation.
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Figure 7. All fits collected for the Southern Hemisphere. The three altitude regions as columns, Southern Hemisphere 10◦ zonal bands as
rows starting from the equatorial zone. See Fig.6 for explanation.
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Fig. 8. Ten-year trend in percentage change / year from the DLM fits for each altitude region and zonal band.

One individual trend analysis is shown in the lower left panel of Fig. 2.
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Figure 8. The 10-year trend in percentage change/ year from the DLM fits for each altitude region and zonal band. One individual trend
analysis is shown in the lower left panel of Fig.2.
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periods 1997–2011 and 1984–1997. The shaded area indicate regions where the trend difference is non zero

with over 95% posterior probability. The right panel shows the differences (in %/decade) between the numbers

that produce the contour plot on the left panel and the corresponding one in Kyrölä et al. (2013) (Fig. 16).
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Figure 9. To compare DLM results to linear regression analysis inKyrölä et al. (2013) we reproduce its Figure 16 by using the DLM
approach. The left panel shows the change in ozone trends in % per decade between the periods 1997–2011 and 1984–1997. The shaded
area indicate regions where the trend difference is nonzero with over 95 % posterior probability. The right panel shows the differences (in
% decade−1) between the numbers that produce the contour plot on the left panel and the corresponding one inKyrölä et al.(2013) (Fig. 16).

lower altitudes (25–35 km) there are some visible changes,
but they are mostly masked by a larger variability and the
noise level of the satellite observations at these altitudes. The
northernmost (50–60◦ N) and the southernmost (60–50◦ S
zones differ significantly from the other zones. Looking at
the individual plots (Figs.6 and7), we see some evidence of
instrument-related differences and one possible explanation
comes from the different non-uniform sampling character-

istics, both temporal and spatial, of SAGE II and GOMOS
(Toohey et al., 2013).

One particular feature of interest in the data is the sug-
gested stratospheric ozone recovery due to the prohibition
of CFC compounds by the Montreal treaty in 1987. Sev-
eral studies indicate a possible turning point around the year
1997 (Newchurch et al., 2003; Jones et al., 2009; Steinbrecht
et al., 2009). According to our analyses, significant changes
in the average background level of ozone can be seen at
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Fig. 10. Comparing DLM and the linear model. Six examples of DLM vs. piecewise linear model fits using data

with 1 km altitude resolution. The solid black line is the piecewise linear trend from Kyrölä et al. (2013). The

smooth solid blue line is the background level component of the DLM model with 95% probability envelope.

At 40◦ N–50◦ N and 44 km the methods agree. In the other panels we see differences of various degrees.
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Figure 10. Comparing DLM and the linear model. Six examples of DLM vs. piecewise linear model fits using data with 1 km altitude
resolution. The solid black line is the piecewise linear trend fromKyrölä et al.(2013). The smooth solid blue line is the background level
component of the DLM model with 95 % probability envelope. At 40–50◦ N and 44 km the methods agree. In the other panels we see
differences of various degrees.

mid-latitudinal regions (40–20◦ S and 20–40◦ N) and in the
altitude range 35–55 km. In these regions the trend, measured
as average change in 10 years, has mostly turned from neg-
ative to positive before the year 2000. Further, in those ge-
ographical regions where the “V" type shape of the change
is appropriate, the turning point is around the years 1997–
2001. The change points and trend features have variations
by latitude and altitude. In the Tropics one can see that the
change of trend year was much earlier than at mid-latitudes.
This suggests that a model with fixed change point in all re-
gions, as used byKyrölä et al.(2013), does not capture all
features in the trends. In some regions there are signs of re-
duction of ozone after the year 2007. Near the equator the
long-term background changes are mostly masked by irregu-
lar variations in the ozone concentration.

3.1 Comparison with piecewise linear analysis

Kyrölä et al.(2013) analysed the trend change point by calcu-
lating several fixed piecewise linear regression analyses and
choosing the one that provided largest difference between
before and after the point change in the linear trend. In the
DLM approach the trend can change its value continuously
and we can analyse directly where the most likely change
points are. One use of a DLM model would be the identifi-
cation of possible trend change points, and provide hypothe-
ses on which a traditional static regression analysis would be

performed. The results of the piecewise linear trend analysis
in Kyrölä et al.(2013) are in agreement to some extent with
the results here, but the DLM analysis suggests that the trend
change point depends on latitude and altitude, as shown in
Fig. 8. Also, there is some evidence against using a simple
two-piece linear model to describe the background changes.
To further compare the methods, we studied the difference
in trend between the years from 1984 to 1997 and from
1997 to 2011 using the DLM method. Figure 16 ofKyrölä
et al. (2013) corresponds to our Fig.9 (left panel). Overall,
the DLM method produces somewhat larger differences (i.e.
faster ozone recovery) in before- and after-1997 trends. This
difference varies and is at most 3 %/ 10 years. An opposite
effect is seen in the southern most latitude band (50–60◦ S),
where the DLM method suggests stronger decline of ozone
than the linear method. The uncertainty (as a standard de-
viation of the estimated change) in DLM trend difference is
about 1.5 %/ 10 year on the average. For the piecewise linear
model it is approximately 0.5 % larger. Because of this rela-
tively large uncertainty, the differences between DLM and
piecewise linear trend analysis are mostly not statistically
significant. The right panel in Fig.9 shows the difference
in the results between the linear and the DLM approach. The
analysis for the before-and-after-1997 trend differs mostly at
the lowest and highest latitudes and at the equator. At the
southernmost zone the difference is the largest and can be
attributed to the ability of the DLM method to dynamically
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Model components
t time index t = 1, . . . , N

yt observations at time t p vector
xt hidden model states at time t q vector
Ft observation operator p × q matrix
Gt model operator q × q matrix
Vt observation error covariance matrix p × p matrix
Wt model error covariance matrix q × q matrix
θ static parameter vector k vector

Kalman smoother recursion

p(xt | y1:N, θ ) = N(̃x t , C̃t )

Simulation smoother

sample: p(x1:N | y1:N, θ)

MCMC algorithm

sample: p(θ | y1:N)

Monte Carlo sampling

sample: p(x1:N, θ | y1:N)

sample: p(x1:N | y1:N)

Posterior predictive inference of trends

sample: p(trend(x1:N)| y1:N)

Kalman filter likelihood

−2 log p(y1:N |θ) = const +
N∑

t=1

[
(yt − Ft x̂t )

T C−1
y,t (yt − Ft x̂t ) + log(|Cy,t |)

]

State space equations

p(yt |xt , θ) : yt = Ft xt + vt , vt ∼ Np(0, Vt )

p(x t |xt−1, θ) : xt = Gt xt−1 + wt , wt ∼ Nq(0, Wt )

Kalman filter recursion

p(xt |yt, θ) = N(x t , Ct )

p(xt |xt−1, yt−1, θ) = N(̂x t , Ĉt )

Step 1

Step 4

Step 2

Step 3 Step 5

Step 6

Step 7

Fig. 11. A flowchart showing the dependencies of the DLM calculations explained in Appendix A.
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Figure 11.A flowchart showing the dependencies of the DLM calculations explained in AppendixA.

adapt to changing seasonal patterns in the observations, see
Fig. 7. However, this might be caused by the different spatio-
temporal sampling of the two instruments. Further analysis
is beyond the scope of this paper – see the discussion in the
companion paper (Kyrölä et al., 2013).

Figure10 shows six examples of the DLM approach vs.
the piecewise linear model fits fromKyrölä et al.(2013). In
five of the cases the conclusions disagree in some respect.
In these cases the DLM trend has more variability than the
fixed-point model trend – the linear model may miss some
important features in the data, and the rigidness of the piece-
wise linear model may cause spurious results. In some cases
the change point is later than at the beginning of the year
1997. However, at those regions where the one-change-point
model is valid, the conclusions are the same with both mod-
elling approaches.

4 Conclusions

We have shown that a dynamic linear model (DLM) is well
suited for modelling ozone time series. In contrast to some
classical time series analyses, DLM does not require station-
arity, it allows for missing observations and takes uncertain-
ties in the observations into account. By using Markov chain
Monte Carlo (MCMC) simulation analysis, the uncertainty
in the structural variance parameters can be accounted for.
The state space method directly includes a model error term,
which makes the analysis more robust to mis-specification
of the model. The analysis allows full statistical uncertainty
quantification, and it is extendible to more refined analyses, if
those seem necessary. Here, a relatively straightforward and
conceptually simple analysis reveals interesting features and,
also, validates the more ad hoc choices used in piecewise
linear global analyses, such as in the companion paper by
Kyrölä et al.(2013).

Trend analysis can be a delicate matter and it is always
challenging to give causal explanations. With a properly
set up DLM model we can detect smooth changes in the

www.atmos-chem-phys.net/14/9707/2014/ Atmos. Chem. Phys., 14, 9707–9725, 2014
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background state. By using proxy variables we can filter out
the effect of known external forcing, such as the solar effect.
The DLM analysis provides a method to detect and quantify
trends, but the statistical model itself does not provide expla-
nations. It can verify that the observations are consistent with
the selected model. Model diagnostics will eventually falsify
wrong models and other badly selected prior specifications.

We used a local linear trend model with two harmonic
functions for the seasonal effect and four proxy time series
for the solar flux, Quasi-Biennial Oscillations and ENSO.
An autoregressive model component was used to account for
possible residual autocorrelation. The results show a statis-
tically significant change point in the combined SAGE II–
GOMOS time series approximately after year 1997 at al-
titudes 35–55 km and mid-latitudes, between 50–20◦ S and
20–50◦ N. This change point in time varies with latitude and
altitude. There are locations where the estimated changes are
opposite to those expected and the length of the data set is
still short relative to some cycles of natural variability in
the atmospheric processes. At the southernmost zones anal-
ysed here (60–50◦ S) the DLM method shows larger decline
of ozone. This might be attributed to the sampling differ-
ences of the two instruments, which is better handled by the
DLM method. In many regions the behaviour of the mean
ozone concentration is too complicated to allow for a sim-
ple piecewise linear description. Compared to the two-piece
fixed change point linear model used in the companion pa-
per, we see stronger recovery of ozone in many regions – the
difference is up to 3 %/ decade.

Atmos. Chem. Phys., 14, 9707–9725, 2014 www.atmos-chem-phys.net/14/9707/2014/
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Appendix A: Statistical computations for a DLM model

As DLM calculations are based on standard Kalman filter al-
gorithms, they can be programmed by most numerical anal-
ysis software such as Matlab or the statistical language R.
Some additional effort is needed for the parameter estimation
by MCMC. We have used Matlab and checked the results
with the R package DLM (Petris et al., 2009). The Matlab
code we used for the DLM analyses, including the MCMC
part, is available fromhttp://helios.fmi.fi/~lainema/dlm/. We
will briefly describe the computations here. A flowchart of
the steps necessary in the computations is given in Fig.11. A
concise account of the state space approach and Kalman filter
based estimation in time series trend analysis can be found in
Sect. 5.5 ofChandler and Scott(2011) – for even more de-
tails we refer to already cited literature (Harvey, 1990; Petris
et al., 2009; Durbin and Koopman, 2012).

We start with the state space equations (1–2), system ma-
tricesFt , Gt , Vt , Wt , and the model statext according to
definitions in Sect.2.2. We follow the Bayesian statistical
approach, where we are interested in the joint posterior un-
certainty distribution of the model statesx1:N and the un-
known parameters defining the system matrices, given the
observationsy1:N for the whole time series. We collect the
extra static parameters (i.e. unknowns in addition to the state
x1:N ) into vectorθ and write this probability distribution as
p(x1:N ,θ |y1:N ). In the present case, this parameter vector is
four-dimensional:θ = [σtrend,σseas,σAR,ρ]

T .

Step 1

(The steps refer to the flowchart in Fig.11.) If we as-
sume that the initial distributions at timet = 0 are avail-
able, then the Kalman filter forward recursion (see e.g.
Rodgers, 2000) can be used to calculate the distribution
of the state vectorxt given the observations up to timet ,
p(xt |y1:t ,θ) = N(Sxt ,SCt ), which is Gaussian for eacht =

1,2, . . . ,N . This consists of first calculating, as prior, the
mean and covariance matrix of one-step-ahead predicted
statesp(xt |xt−1,y1:t−1,θ) = N(̂xt , Ĉt ) and the covariance
matrix of the predicted observationsCy,t as

x̂t = GtSxt−1 prior mean forxt , (A1)

Ĉt = Gt
SCt−1GT

t + Wt prior covariance forxt , (A2)

Cy,t = Ft ĈtFT
t + Vt covariance for predictingyt (A3)

and then the posterior state and its covariance using the
Kalman gain matrixK t as

K t = ĈtFT
t C−1

y,t Kalman gain, (A4)

vt = yt − Ft x̂t prediction residual, (A5)

Sxt = x̂t + K tvt posterior mean forxt , (A6)

SCt = Ĉt − K tFt Ĉt posterior covariance forxt . (A7)

These equations are iterated fort = 1, . . . ,N . As initial val-
ues, we can useSx0 = 0 andSC0 = κI , i.e. a vector of zeros

and a diagonal matrix with some large valueκ in the diago-
nal. Note that the only matrix inversion required in the above
formulas is the one related to the observation prediction co-
variance matrixCy,t , which is of size 1×1 when we analyse
univariate time series.

Step 2

The Kalman filter provides distributions of the states at each
time t given the observations up to the current time. As
we want to do analysis that accounts for all of the ob-
servations, we need to have the distributions of the states
for each time, given all the observationsy1:N . By the lin-
earity of the model, these distributions are again Gaussian,
p(xt |y1:N ,θ) = N(x̃t , C̃t ). Using the matrices generated by
the Kalman forward recursion, the Kalman smoother back-
ward recursion will give us these so-called smoothed states
for t = N,N −1, . . . ,1 by using the following equations and
settingrN+1 andNN+1 to zero:

L t = Gt − GtK tFt auxiliary variable (A8)

r t = FT
t C−1

y,tvt + LT
t rt+1 -„- (A9)

Nt = FT
t C−1

y,t Ft + LT
t Nt+1L t -„- (A10)

x̃t = x̂t + Ĉt rt smoothed state mean (A11)

C̃t = Ĉt − ĈtNt Ĉt smoothed state covariance. (A12)

Step 3

In order to study trends, we still need the full joint distri-
bution of all the states given all the observations and the
parameters, i.e.p(x1:N |y1:N ,θ). This distribution does not
have a closed-form solution. Instead, we can simulate real-
izations from it using a so-called simulation smoother al-
gorithm (Durbin and Koopman, 2012, Sect. 4.9). The state
space system equations (1) and (2) provide a direct way to
recursively produce realizations of both the states and the ob-
servations. However, these will be independent of the orig-
inal observations.Durbin and Koopman(2012) provide a
simple way to produce samples from the distributionx∗

1:N ∼

p(x1:N |y1:N ,θ). Briefly, the simulation smoother algorithm
is the following. First, sample from the state space equa-
tions to getx̌1:N andy̌1:N . Then, use the Kalman smoother
with the new observationšy1:N to get smoothed states˜̌x1:N .
Lastly, add the state residual process to the original smoothed
states to obtainx∗

1:N = x̌1:N − ˜̌x1:N + x̃1:N . This can be re-
peated and used to study possible realizations of the model
states, for example possible mean level dynamics as done in
our ozone trend studies.

Step 4

So far, the parameter vectorθ has been assumed fixed.
To estimate it, we need the marginal likelihood function
p(y1:N |θ), i.e. the distribution of the observations, given the
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parameter, with the statex1:N uncertainty accounted for, i.e.
integrated out. Fortunately, this likelihood is available as a
by-product of the Kalman filter calculations for each fixedθ .
By the assumed Markov property of the state space equa-
tions, this marginal likelihood function can be evaluated se-
quentially as a product of the individual time wise marginal
likelihoods as

p(y1:N |θ) = p(y1|θ)

N∏
t=2

p(yt |y1:t−1,θ). (A13)

These individual one-step-ahead predictive distributions of
the observations are provided by the Kalman filter. In the case
of a linear Gaussian model this likelihood is proportional to
(ignoring a constant that does not depend on the model pa-
rameters)

p(y1:N |θ) ∝ (A14)

exp

{
−

1

2

N∑
t=1

[
(yt − Ft x̂t )

T C−1
y,t (yt − Ft x̂t ) + log(

∣∣Cy,t

∣∣)]} ,

wherex̂t is the one-step-ahead mean prediction of the state
andCy,t is the covariance matrix of predicted observation,
both obtained by the Kalman filter formulas, given above in
Eqs. (A1) and (A3).

Step 5

With this likelihood function and with a prior distribution
for the parameter vectorθ , a MCMC simulation can be per-
formed to produce a sample of parameter values from the
marginal posterior distributionp(θ |y1:N ). Thus, we can es-
timate and study the uncertainty inθ by the MCMC. We use
an adaptive version of the random walk Metropolis–Hastings
(MH) algorithm by Haario et al.(2006). It is a sequential
Monte Carlo algorithm that proposes a value for the param-
eter vector from a suitably constructed proposal distribution
and then either accepts or rejects it depending on the ratio
of the posterior distribution at the proposed value to that cal-
culated using the previously accepted value. By the Bayes
formula, the posterior distribution is, up to a normalizing
constant, equal to the likelihood times the prior. The basic
idea behind MCMC is the fact that the acceptance proba-
bility depends only on the ratio of the posterior at two pa-
rameter values, and this will cancel out the hard-to-calculate
proportional constant in the Bayes formula for the posterior
distribution. SeeGamerman(2006) for more details on the
MCMC methodology. A MCMC Matlab toolbox used in the
calculations is available fromhttp://helios.fmi.fi/~lainema/
mcmc/.

Step 6

As final steps in our DLM calculations, we can combine the
simulation smoother and the MCMC outputs to produce sam-
ples from the joint posterior distributionp(x1:N ,θ |y1:N ), as
well as from the marginal posterior distribution of the state,
p(x1:N |y1:N ), where the uncertainty inθ has been accounted
for.

Step 7

Lastly, a sample from this last distribution is used for the
trend analyses by calculating trend statistics that depend on
the estimated model states, as explained in Sect.2.5.
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