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Abstract. We describe a hierarchical statistical state space35-45km altitude region. Further ozone loss occurred after
model for ozone profile time series. The time series are from2007 in these regions. Everywhere else a decay is followed
satellite measurements by the Stratospheric Aerosol and Gdsy a recovery. This pattern is shown at all altitudes and lati-
Experiment (SAGE) Il and the Global Ozone Monitoring tudes in the Southern Hemisphere (10=Spand in the 45—
by Occultation of Stars (GOMOS) instruments spanning the55 km layer in the Northern Hemisphere (from the equator
years 1984—-2011. Vertical ozone profiles were linearly inter-to 40° N). In the 45-55 km range the trend, measured as an
polated on an altitude grid with 1 km resolution covering 20— average change in 10 years, has mostly turned from nega-
60 km. Monthly averages were calculated for each altitudetive to positive before the year 2000. In those regions where
level and 10 wide latitude bins between 6@ and 60 N. the “V” type of change of the trend is appropriate, the turn-
In the analysis, mean densities are studied separately for thiag point is around the years 1997-2001. To compare results
25-35, 35-45, and 45-55 km layers. Model variables includé€for the trend changes with the companion paper, we stud-
the ozone mean level, local trend, seasonal oscillations, angkd the difference in trends between the years from 1984 to
proxy variables for solar activity, the Quasi-Biennial Oscilla- 1997 and from 1997 to 2011. Overall, the two methods pro-
tion (QBO), and the El Nifio—Southern Oscillation (ENSO). duce very similar ozone recovery patterns with the maximum
This is a companion paper Kyrola et al.(2013, where  trend change of 10 % in 35-45km. The state space method
a piecewise linear model was used together with the saméused in this paper) shows a somewhat faster recovery than
proxies as in this work (excluding ENSO). The piecewise the piecewise linear model. For the percent change of the
linear trend was allowed to change at the beginning of 19970zone density per decade the difference between the results
in all latitudes and altitudes. In the modelling of the presentis below three percentage units.
paper such an assumption is not needed as the linear trend
is allowed to change continuously at each time step. This
freedom is also allowed for the seasonal oscillations whereas
other regression coefficients are taken independent of timel Introduction
According to our analyses, the slowly varying ozone back-
ground shows roughly three general development patternsTime series constructed from satellite remote sensing obser-
A continuous decay for the whole period 1984—2011 is ey-vations provide important information about variability and
ident in the southernmost latitude belt 502&0in all alti-  trends in atmospheric chemical composition. Many satel-
tude regions and in 50-6® in the lowest altitude region lite time series provide global coverage of the measure-
25-35km. A second pattern’ where a recovery after an iniment and some Of the data sets run from the 1980s. The
tial decay is followed by a further decay, is found at north- @nalysis of trends, both natural and anthropogenic, is com-
ern latitudes from the equator to SR in the lowest alti-  Plicated by natural variability and forcing affecting strato-

tude region (25-35 km) and betweerf #0and 60 N in the ~ SPheric chemical compositions. In this study, the recov-
ery of stratospheric ozone from the depletion caused by
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chlorofluorocarbon (CFC) compounds is studied using a stamodel residuals correlated as not all variability can be ex-
tistical time series model. plained by a static linear structure. Usually this is compen-
Slow background changes in stratospheric ozone are easated by allowing some correlation structure to the model
ily masked by both seasonal and irregular natural variabili-observation error by using, e.g. an autoregressive model. If
ties. Thus, the requirements are stringent for the stability ofthe residual correlation is not accounted for, the model un-
ozone observations. Self-calibrating occultation instrumentsertainty analyses are misleading. A simple autoregressive
are good candidates for such a task. The observations angbrocess can explain some of the unmodelled systematic vari-
ysed in this work consist of satellite measurements by theations by correlated noise, again confusing the analyses. In
SAGE Il and GOMOS instruments, operational during 1984—conclusion, much care in interpretation is needed for those
2005 and 2002-2012, respectively. The data set used hetandard classical statistical time series methods that require
spans the years 1984—-2011. Vertical ozone profiles were linstationarity, such as the ARIMA (autoregressive integrated
early interpolated on an altitude grid with 1 km resolution moving average) approach. The more general approach dis-
covering 20-60km. Monthly averages were calculated forcussed in this paper makes use of dynamic linear models and
each altitude level and 2Qvide latitude bins between 6& Kalman filter type sequential estimation algorithms.
and 60 N. Combining the observations from different in-  State space models, sometimes called hidden Markov
struments having different measurement principles is a chalmodels or structural time series models, are well known and
lenge.Kyrdéla et al.(2013 explain the data set and its con- documented in time series literature, etldprvey (1990;
struction in more detail. Here the analysis is done with bothHamilton(1994; Migon et al.(2005. Modern computation-
the original 1 km vertical spacing and by calculating meanally oriented references aBurbin and Koopmai2012 and
densities over 10 km intervals. Petris et al(2009. Here, we review the basic properties rel-
There is a wealth of literature concerning the analysis ofevant to the analysis of atmospheric ozone time series data
atmospheric time series. A good reference to stratospheriand explain the necessary steps to fit the model to monthly
ozone time series regression analysiSPARC(1998. A re- time series observations and how to assess the uncertainties
cent study that reviews the challenges and problems in trenth the trend estimation.
analysis of climatic time series was publishedBates et al. The structure of this paper is the following. The data sets
(2012, and a general trend analysis referenc€gandler  and the statistical model are described in SRcResults of
and Scott(2011). For state space and functional analysis of the statistical time series analyses are given in Setd the
atmospheric time series of similar type to that performedpaper ends with discussion and conclusions in SEcAp-
here, seé¢.ee and Bergef2003 andMeiring (2007). pendixA contains mathematical and computational details.
This paper studies the feasibility and practical implemen-
tation of a state space approach for atmospheric time se-
ries analysis by defining a dynamic linear model (DLM) for 2 Materials and methods
stratospheric ozone time series. “Dynamic” means here that
the regression coefficients can evolve in time. This makes iR.1 Ozone time series from satellite observations
possible to describe and analyse smooth changes in the aver-
age background behaviour of ozone. Model variables includéVe use a combination of two ozone data sets. The first con-
the ozone mean level, local trend, seasonal oscillations, angists of solar occultation measurements of ozone in the strato-
proxy variables for solar activity, the Quasi-Biennial Oscilla- sphere and lower mesosphere from the SAGE Il instrument
tion (QBO), and the El Nifio—Southern Oscillation (ENSO). (Chu et al, 1989 operational during 1984—2005. The sec-
We do not claim novelty in the presented methods them-ond is the GOMOS instrumenBértaux et al. 2010 that
selves, but argue that they should be more extensively applietheasured ozone in the stratosphere, mesosphere and lower
in the analysis of climatic time series and provide a simplethermosphere during 2002-2012 using stellar occultations.
framework for time series analyses that can be generalized tohe individual data sets have been homogenized to form a
more comprehensive studies. In this paper, we describe theombined time series from 1984 to 2011. The stability of the
necessary steps for applying the methods. SAGE Il and GOMOS instruments, the construction of the
A typical feature in atmospheric time series is that they combined time series, data screening, bias correction, and
are not stationary but exhibit both slowly varying and abruptother issues are discussed in more detail in the companion
changes in the distributional properties. These are causepaper byKyrola et al.(2013. Four proxy time series are used
by external forcing such as changes in the solar activity orfor the solar flux, Quasi-Biennial Oscillations and ENSO.
volcanic eruptions. Further, the data sampling is often non-Except for ENSO, these proxies are the same as used in the
uniform — there are data gaps, and the uncertainty of the obeompanion paper. For ENSO we use the Multivariate ENSO
servations can vary. When observations are combined fronindex (MEI) from NOAAL,
various sources there will be instrument and retrieval method
related biases. The differences in sampling lead to uncertain- 1The MEI index is available frorhttp://www.esrl.noaa.gov/psd/
ties, too. Straightforward linear regression analysis leaves thenso/mei/
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2.2 Statistical time series model Most atmospheric series exhibit seasonal variability. The
seasonality can be modelled using harmonic functions. If the
A general linear state space model with Gaussian errors caqumber of cyclic components is the full seasonal model
be written with an observation equation and a state evolutiothass /2 harmonics. For theth harmony, withk =1, ..., s/2,
equation as we need to add two state variables. With monthly data we
v, = Fox; + s, v, ~ N, (0,V,), 1) haves = 12 and the corresponding blocks of the model and

observation matrices are
x; =Gx;_1+wy, w; NNq(O,Wt)a 2

wherey; is a vector of lengtlp containing the observations Gggag) = [ cols(an/lz) sin(k2r/12) ]
andx; is a vector of lengtly of unobserved states of the sys- —sin(k2r/12)  costk2n/12)
tem at timer. The state variables are used to describe the vari- o2 0
ous components of the time series model, such as mean Ievéf,seask) = [1 0] andWseasi) = [osealfk } . (7)
trend, seasonality and the effect of proxy variables. Magrix seatt)
is the observation operator mapping the unobserved states {Qere the state equation matrices are independent of time
the observations and matri; is the model evolution oper- jndex + and we have used subscript to stand for the
ator giving the dynamics of the states. In this basic formula-parmonic component. The rationale behi@keag is
tion the uncertainties, andw, are assumed to be Gaussian, that if we know the harmoniar, = a coSk2r/12t) +
with observation uncertainty covarianve and model error 5, sin(k2r/12¢) and, as an auxiliary state, its conjugate
covarianceW;. Above, N, (0, V,) stands forp-dimensional ul, = —aySin(k2m /121)+by cogk2m /121), with some con-
Gaussian distributions, with vector of zeros as mean\gnd stantsq;, andby, we can update the state with
as thep x p covariance matrix. The time indexvill go from
1to N, the length of the time series to be analysed. In the fol-[u, 1 « Ur k
lowing, the matrices defining the model will mostly be time |:u;k+l,k:| = Gseast) [“?k} ’
invariant, i.e G, = G, etc., and we will usually drop the time
subscript, still retaining it in general formulas that are not WhereGseag) is defined in Eq.7) and does not depend on
specific to this particular time series application. time ¢ (e.g.Petris et al. 2009 Sect. 3.2.3). In our case the
In this work, we use a DLM to explain variability in the seasonality can be adequately explained by two harmonics,
ozone time series with four components: smooth locally lin-€.9. by yearly and half-a-year variatioh £ 1 andk = 2),
ear trend, seasonal effect, effect of forcing via proxy vari- which will increase the number of hidden states to be esti-
ables, and noise that is allowed to have autoregressive comated by four. In addition we need to define the error co-
relation. All components are built using the state space apvariance matrixVseasfor the allowed time-wise variability
proach. in the seasonal components. We note that there is no need for
To describe the trend we start with a simple local level @ separate seasonal observation error matggs asV; is
and locally linear trend model that has two hidden statesused only in the observation equatidt),(not in the model
x: = [us, o017, where u; is the mean level and; is the equation ) where the seasonal cycle is defined.
change in the level from timeto timer + 1. In addition we In the previous definitions, the state opera@rthe ob-
need stochastic terms for the observational error and for théervation operatdf and the model error covarianté have
allowed change in the dynamics of the trend and the levelbeen time invariant. The observation uncertainty covariance
These are defined by Gaussiari terms below. The system V; defined in Eq. €) is, in our case, time dependent and

®)

can be written by equations it will contain the known observation uncertainties. The in-
. N o2 3 clusion of auxiliary proxy variables is done by augmenting

Y1 = €obs cobs™~ N(0.05b51):  (3)  the observation matrif,, making it time dependent. In the
e = Wi—1+ 0r—1 + €level, €level ~ N (O, oé\,e,), 4) following, the stratospheric ozone analysis will utilize four
roxy time series explaining parts of the natural variability:

ot = 0—1+ €Etrends €trend ™~ N (0, Jt?end)' (5) proxy p agp \

. _ one for the solar flux, two proxy variables for QBO, and one
In terms of the state space equatiotisand @) this becomes  for ENSO. This is achieved by adding the following compo-
nents into the system matrices:

11
Gtrend= |:0 1:|, Ftrend= [1 0],

2
0
Wirend= [Gl%VEI 2 d:| . V= [Oozbs(z)] : (6)

Otren

Depending on the choice of variancg$§ , ando2,,4 this
will define a smoothly varying background level of the data
series that is used to infer changes in atmospheric ozone.
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1 000 the two seasonal harmonics, tfieare the regression coef-
01 00 ficients for the four proxy variables, ang is an extra state
Gpoy=19 o9 1 ol for the autoregressive component that “remembers” the value
0 0 0 1 of the observation from the previous time step. In this study,
- the regression coefficientg) are assumed not to depend on
Forog) = [e1r 220 230 24s] and time¢. The full model error covariance matri¥ is a diago-
(02 02 0 0 nal matrix with the corresponding variances at the diagonal,
0 o 0 0

Wproxy= 0 62 023 0 s (9)
z

2
L0000 ey 0000 a,fR], (13)
wherezi,, z2¢, 23, andz4, contain the values of the four
proxy series at time. With positive error vanancezs2 this is

an extension of linear regression analysis into one with time-
varying coefficients. In our analysis, for simplicity, we set all
the elements of the model error covariance mat¥ixoxy to
zero to obtain time-invariant regression coefficients for the
proxy variables.

P _ 2 2 2 2 2
dlag(W)—[O Otrend Oseas Tseas Pseas Oseas

where the local level variance and the proxy regression coef-
ficient variances have been set to zero and the four seasonal
variances set to be all equal, to correspond to the simplifi-
cation assumed in the analyses. Lastly, as already stated, the
observation error covariance matkix, will be a 1x 1 matrix

and equals the known observation uncertaiity= Ugbs(;)-
Next, the analysis will proceed to the specification of the

To allow autocorrelation in the residuals we use a firSt_variance parameters and other parameters in the model for
rder autoregressive model (AR(1)). This is similar to th ) o T
order autoregressive model (AR(1)) S 1S simrar to emulamon (e.g. the AR coefficiend above), and to the esti-

Cochrane—Orcutt correction in classical multiple regression_ .
(see e.gHamilton, 1994 used byKyréla et al.(2013. How- mation of the model states by state space methods.

ever, in the DLM approach we can estimate the autocorre, 3 podel parameter estimation

lation coefficient and the extra variance term together with

the other model parameters, not by a separate iteration, ag/e have two kinds of unknowns, the model state variables
needed, e.g. by the Cochrane-Orcutt method. A first-ordek,, one vector for each timg and the auxiliary parameters
autoregressive model for a state compongntan be writ-  that define the model error covariance matixand the sys-

ten asn, = pri—1+ €ar, With ear ~ N (0, 0%5), Wherep is  tem evolution matrixG. At first sight, this might seem to be
the AR coefficient an@ 25 is usually called the innovation a vastly underdetermined system, as we have several model
variance in classical time series literature. In DLM form, we parameters for each single observation. However, by the se-

simply have guential nature of the equations, we can estimate the states
5 by standard recursive Kalman filter formulas.
Gar = [p].Far = [1]. andWar = [0z ]. (10) Implicitly assumed in the state space equatichsand

(2) is that the state at time is statistically conditionally
and botho andaAR can be estimated from the observations. jndependent of the history given the previous state at time
The next step in DLM model construction is the combina- ; — 1. When the model equation matrices are known, this
tion of the selected individual model components into IargerMarkOV property allows sequential estimation of the states
model evolution and observation equations. For the mOdebiven the observations by famous Kalman formulas (See e.g.
evolution matrixG and the observation operater we have Rodgers 2000. We can use a Kalman filter for one-step-
ahead prediction of the state and a Kalman smoother for the
Gtrend 0 0 0 0 marginal probability distribution of the state at timgiven
0 Gseast) 0 0 0 the whole time series of all observations=(1,...,N).
G= 0 0 Gseas2) 0 0 1, Marginal means that the uncertainty of the states at all other
0 0 0 Goroxy O times thary has been accounted for. In time series applica-
0 0 0 0 Gar tions, the Kalman filter output can be used to calculate the
Fi =[Fend Fseasty Fseas> Fproyy FAR]. (11) model likelihood function, needed in the estimation of the
auxiliary parameters, and the Kalman smoother provides an
In our analyses, the state vectgrhas a total of 11 compo- efficient algorithm to estimate the model states and to de-

nents: compose time series into parts given by the model formula-

. . tion. Thus, this high-dimensional problem is computationally

xe=[w o w1 ouiy w2 upp not much more intensive than a classical static multiple lin-
Br B2 Bz Ba nl', (12)  ear regression analysis. Furthermore, in the linear Gaussian

case, the probability distributions provided by the Kalman
wherep;, is the local meany, is the local trend, i.e. the local formulas are exact, not approximations. Non-linear models
change of the meam, x andu;, are the states representing can be approached by linearization of the state equations, and
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non-Gaussian error models by, e.g. particle filter algorithmsedge on the assumed variability in the processes captured by
(Doucet et al.2007). More details on the DLM computations the observations. As noted Iamermar(2006 Sect. 2.5.),
can be found in AppendiA. dynamic linear models offer intuitive means of providing
Next, we consider the model error covariance maidix  qualitative prior information in the form of the model equa-
If we set all model error variances to zero it will change the tions and quantitative information by prior distributions on
DLM model into an ordinary, non-dynamic, multiple linear variance parameters. By the estimation procedure we aim at
regression model. By using non-zero variances we can fifinding variance parameters that are consistent with the given
a smoothly varying mean level, and the smoothness can bebservation uncertainty, i.e. the model can predict the obser-
controlled by the size of the variances. A simplification done vations within their accuracy. This means that the scaled pre-
here is that we assunW to be diagonal, and even some of diction residuals that are used defining the likelihood func-
the diagonal elements are set to zero. In our case non-zerion should behave like an independent Gaussian random
elements are the variability of the tremﬁend, and the vari-  variable. We can assess these assumptions by different resid-
ances of seasonal variationg, ., i.e. we will set the vari-  ual analysis diagnostics.
ance of the level and the four proxy variables to zero. Our As we are effectively looking for slowly varying trends
motivation for excluding dynamic variation from the proxies in the data, we will set prior constraints to variance param-
is to use an as simple as possible dynamic model that woul@ters to reflect this. For example, we might assume that the
have similar properties as the piecewise linear model in thechange within a month in the background level is on the av-
companion paper. By studying dynamic changes in the trengtrage some percentage of the overall time series mean. The
and seasonal variation we will then either validate the staticestimation procedure will then divide the observed variabil-
linear approach or show that it is not appropriate. ity into model components (level, trend, seasonality) in pro-
A common procedure to estimate the elements of theportions that reflect the prior choices. The standard model
model error matrixW is based on the maximum likeli- diagnostic tools, such as autocorrelation analysis and normal
hood method using the likelihood function provided by the probability plots, can be used to reveal possible discrepan-
Kalman filter. After the estimation, the obtained values couldcies in the model assumptions that have to be considered. As
be plugged into the system equations as known constant$he model residuals are calculated from one-step predictions,
However, this plug-in method neglects the uncertainty in thethe diagnostics will reveal both over-fit and a lack of fit.
estimates. Instead, we will use an alternative method based The model error covarianc®/ (Eq. 13) is time invari-
on Bayesian analysissamerman2006 Petris et al.2009 ant, with nonzero diagonal terms for the trend parameter, a

Sarkka 2013 and outline it shortly below in Sec.4. common value for the four parameters defining the variabil-
ity in the seasonal components, and one value for the vari-
2.4 Markov chain Monte Carlo analysis for model ance defining the autoregressive component. For MCMC es-
parameters timation of the variance parameters, we use log-normal prior

distributions for the corresponding standard deviations. The
The Markov chain Monte Carlo (MCMC) method provides motivation for this is that the standard deviations are posi-
an algorithm to draw samples from the Bayesian posteriottive by definition so logarithmic scale is natural and com-
uncertainty distribution of model parameters given the likeli- monly used and it allows prior specification in meaningful
hood function and the prior distributioli@merman2006. units. If a random variable follows a log-normal distri-
As the Kalman filter likelihood provides the likelihood of bution logV (i, o2), then lodx) follows the standard Gaus-
the auxiliary model parameters, marginalized over the un-sian distributionN (i, 02). Because of this transformation,
known model states, we can use it to draw samples from thét is more intuitive to work with a log mean parameter, as
marginal posterior distribution of these parameters. We willin IogN(Iog(u),oz), whereu is now the approximate mean
use an adaptive Metropolis algorithmldéario et al (2006 of the untransformed and the scale parameter of the log-
for the three unknown variance parametetgf{d oseas OAR) normal distributiono can be interpreted as an approxima-
in the matrixW in Eqg. (L3) as well as for the autoregressive tion of the relative standard deviation of the original variable
parametep in the system evolution matri@ (Eq. 10). After in question. The prior distribution for the standard deviation
obtaining this sample from the posterior distribution, we useof the monthly level changeyeng Was set to be log-normal
sampled parameter values, one by one, to simulate realizawith the log mean equal to/12 % of the average level of
tions of the model states;.y using the Kalman simulation the ozone observations and having scale parameter 1. This
smoother (e.gPetris et al.2009. This allows us to account scale corresponds to a relatively wide (130 % S@jor un-
for both the parameter and the model state uncertainties in theertainty foroyeng. All the o parameters describe allowed
trend analysis. Again, more computational details are given
in AppendixA. 2This can be derived from the fact thatif~ logN (., o) then

For Bayesian analysis of the unknown model parametersits mean and variance arE(x) = exp(u +1/202) and D(x) =

prior distributions for the parameters must be specified. Weexp2.1) exp(o2) (exp(a2) — 1), see e.g. Wikipedia entry for the log-
want the variances in the mati¥ to reflect our prior knowl-  normal distribution.
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standard GaussiaN (0, 1). The other panels show means and 95 % probability envelopes (grey shading) of the DLM components related
to seasonality and to the proxy variables — solar, QBO and ENSO - i.e. the original proxy variables multiplied by the estimated regression
coefficients. For the proxy variables, thexis scaling is the percentage of the total ozone variability, i.e. the ozone observations were scaled

by their standard deviation, individually for each data set analysed. At 20 km we see a large number of missing observations, some possible
outliers, and a strong effect of the ENSO index. There is only a slight difference between DLM and linear models, however, although the
latter does not include ENSO.

by about same amount as it does in linear trend analyses — deresting trend features of the time series were studied by

let it not change if the data do not support it — but, also, plotting the estimated background level with uncertainty con-

should not capture too fine changes due to natural variabilfidence bounds, and drawing realizations from the posterior

ity that could be attributed, e.g. to the autoregressive residuatlistribution of the level term and checking the statistical sig-

error component in the model. nificance of hypothesized features. For example, statistical
The simple parameterization of the model error term with significance for the trend was assessed by checking whether

three unknown parameters was selected by performing ini95 % posterior probability region included zero value or not.

tial fits with different parameterizations, and using sensible

initial values refined by a maximum likelihood optimization. 2 5 Estimating trends

The models were then diagnosed by studying the residuals

by using normal probability plots and plots of the es‘t'matEdAtrend is a change in the statistical properties of background

autocorrelation function. When a good candidate model Wasate of the systemChandler and Scqt2011), the simplest
found, an MCMC analysis was used to study the uncertaintycaSe being linear trend, where, when applicable, we only

and identifiability of the variance parameters. Lastly, the in- need to specify the trend coefficient and its uncertainty. In the
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Figure 4. Some of the DLM model components for 10-9, 34 km, see Fig3 for explanation. We see noticeable difference between DLM
and linear regression fits drawn with a solid green line on the top panel.

Table 1. Specification of priors for auxiliary model parameters estimated by MCMC. The prior distributions for the model error standard
deviation parameters were log-normal, ddog(uw), o2) with values ofu ando given in the table. For simplicity, the same relative priors

are used in all the altitude—latitude regions. In Righe prior distributions are plotted together with MCMC chain histograms that estimate
the posterior distributions for one altitude-latitude region.

Estimated parameter Prior mean Prior scaler
Trend standard deviationieng 1/12 % of @y mean 1
Seasonal standard deviatioReas 1 % of O3 variability 2

Autoregressive standard deviatienng 30 % of O3 variability 2

Autoregressive coefficienp, prior is Gaussiamv (0.45, 0.52) truncated tdo0, 1]

companion papekyrola et al, 2013 the trend and a change Eq. 3). Posterior sampling from the background level pro-

in the trend is studied by using a piecewise linear model withvides an efficient method for studying uncertainties in differ-

a predefined change point. Natural systems evolve continent trend estimates.

uously in time and it is not always appropriate to approxi- Temporal changes in the system can be studied by visu-
mate the background evolution with a constant, or piecewisally inspecting the background level and its estimated uncer-
linear, trend. Within the state space dynamic linear modeltainty. We can draw samples from the posterior distribution

framework, the trend can be defined as the change in the e®f the levelu, to assess hypotheses about the evolution of
timated background level, i.e. the changeuindefined in  the process. For example, in Segtwe study the change in
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the mean ozone level in 10-year periods. We take into acfrom the level component using MCMC analysis to account
count the uncertainty in the model prediction and in the esti-for the uncertainty in the variance parameters. Looking at the
mated variance parameters by sampling possible backgrounobservations in a 10-year perspective, the trend has been sta-
levelsu, from its posterior uncertainty distribution. We will tistically significantly negative up to the year 1997, as the
do this consecutively and, for each sampled realization, calgrey area stays below zero. After 1997, the 10-year trend
culate the 10-year change in the mean ozone for each timdoes not statistically differ from zero. After the DLM decom-
t as trendr) = ;160 — i—60 (time units in months). This  position, the model residual term is assumed to be uncorre-
sample of trends provides us direct way to analyse trends bjated Gaussian noise. The two lower right panels in Big.
calculating, for example, the mean 10-year trend with 95 %show residual diagnostics. These are used to look for devi-
uncertainty limits. The general procedure is the following: ations from the modelling assumptions. If the scaled residu-
. . i . als pass the check of being independent and Gaussian with
1. Using MCMC with the Ka'maf‘ filter I'kel_'hOOd’ Pro- ynit variance, then the fit agrees with our assumptions and
dgce_ a _sample from t.h.e marginal posteno_r probab|l|ty modelling results are consistent with the data. In this case
d|str|but|9n of the a‘_JX'“aW parameters.deflnmg the er- the residuals are almost perfectly uncorrelated Gaussian with
ror covariance matridV and model matriG. unit variance. The normal probability plot compares empiri-

2. Draw one realization of the matric€&andW using the @l quantiles (i.e. order statistics) of the residual to those ob-
posterior distribution provided by MCMC in the previ- tained from the theoretical Gaussian distribution and in the

ous step. case of normally distributed residuals, the points should stay
_ o _ mostly on a straight line, as they do here.
3. Simulate one realization of the model statgy using The results from MCMC analysis for the same data set as

the Kalman simulation smoother assuming fix@@nd  in Fig. 2, are shown in Figl. The figure has the prior proba-
W from the previous step and calculate trend-relatedpility distributions together with marginal posterior distribu-
statistics of interest from this realization. tions as MCMC chain histograms for the estimated auxiliary
4. Repeat from step 2 to calculate summaries from the posandEI parameters (re'ferre'déa'm Appendle). We see tha’.[
terior distribution of the quantity of interest. the parameter posterior d|str|but|ons are mostly det_er_mlned
by the data and not by the prior. The standard deviation of
the trend,oyeng, IS estimated to be relatively small, which
3 Results supports the search for smooth background variability. This
behaviour is typical for all the fits done. The variability in the
The model parameters were fitted separately to each data setgasonal component has more uncertainty, and it also varies
i.e. to each height interval and zonal band. We performednore between the fits for different altitude—latitude regions.
the analyses using vertical average profile data with both th&he autoregressive parametegg andp have narrow pos-
original interpolated 1 km altitude grid and by forming aver- terior distributions relative to the prior, i.e. these values can
aged ozone densities for three altitude regions: 25-35, 35—-4%e accurately obtained from the data.
and 45-55km. The POwide zonal bands start from 68 Figures3 and4 show the fitted model components for two
and go to 60N. By considering each zonal band indepen- individual altitudes, 20 and 34 km, both at 10-8) For the
dently and summing several altitudes, we have tried to resseasonal cycle, we plot the sum of the observed seasonal
duce the model to a minimum one that still shows interestingcomponentsy, 1+u, 2 in Eq. (12); for proxies we ploB;z; ;,
long-term changes and is consistent with our assumptions.e. the proxy coefficient times the value of the proxy. These
Initially, a multivariate estimation was considered by fitting fits are provided by the Kalman smoother as in the case of
several altitudes and zonal bands together, but this complithe mean level:,. At 20 km, we see a strong effect of ENSO.
cated the analyses considerably and did not gain additionalhe total variability explained by ENSO is about 20 % (i.e.
insight. In principle, we could use the observations in moreits effect is betweer-10 and 10 %), which is similar to the
refined resolution and model several time series in one eseffects of the seasonal variation and of the QBO. Although
timation step, and even use the individual satellite retrievalSENSO was not used bigyrola et al.(2013, the fit by linear
instead of spatio-temporal averages. regression, shown with a solid green line in the upper panel,
Figure2 shows an example of our modelling results in the does agree reasonably well with the DLM level. At 34 km,
combined altitude—latitude region, 4090, 35-45km. The there is a clear difference between the DLM fit and the piece-
original data are displayed together with DLM estimates andwise linear analysis with change point fixed at year 1997.
with the estimated mean level compongntthat is used to  Non-linear changes in the background level are not captured
make statistical inference about the trend. The fits are obby the two-piece linear model. Among the proxy variables,
tained by a Kalman smoother (Egs1-A7 in AppendixA) the two QBOs, combined in the figure, have the most signif-
and the 95 % uncertainty regions by combination of a simula-icant effect, explaining approximately 10 % of the total vari-
tion smoother (EqsA8-A12) and MCMC. A separate panel ability in ozone at that region.
(on the lower left side) displays the decadal trend obtained
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Figure 5. The effects of seasonal variation and of the proxy index variables on the variability of ozone. Here 100 % means the observed
standard deviation of ozone at each latitude altitude bin. The colouring corresponds to the range of variability during the whole observation
period 19842011 of each model component given as percentages with respect to the total variability in ozone. We see, e.g. that the ENSC
index significantly affects the ozone variability only at 20 km near the equator, where the effect is about 20 %, also shown in the lowest panel
of Fig. 3. The maximal solar effect is always less than 10 %. Note that the colour scales differ.

Figure5 shows the effects of the fitted variable for the sea- uncertainty region. The results for the background curve can
sonal variation and of the proxy index variables on the totalbe roughly divided into three classes. The simplest case, a
observed variability of ozone. We calculated, using the datacontinuous decay of ozone during the period 1984-2011, is
with 1 km altitude spacing, the range of variability during the evident in the southernmost latitude band (50-8pin all
whole observation period 1984-2011 of each model compoaltitude regions. A continuous decay is also present in 50—
nent given as percentages with respect to the mean ozor@0® N in the lowest altitude region (25-35km). The second
value. The ENSO index has a significant effect (about 20 %class, a recovery between an initial decay and a final decay,
of the variability) only at 20 km near the equator. Near 60 kmis seen from the equator to 50N in the lowest altitude re-
and at higher latitudes, almost all of the ozone variability cangion (25-35 km) and at 40-60l and 35—45 km. The third
be attributed to seasonality. The maximal solar effect is al-class covering the rest of the cases shows decay and recov-
ways less than 10 %. ery. In the Southern Hemisphere all altitudes and latitudes

The key results of this paper can be found in F&yand7 (10-50 S) belong to this class. In the Northern Hemisphere
where we show fits to the ozone time series for 12 latitudeall latitudes in 45-55km and latitudes from the equator to
belts and for three altitude regions (25-35km, 35-45 and40° N belong to this class.

45-55 km). We have shown the data points from the merged In Fig. 8 the results of decadal trend analyses are collected
SAGE II-GOMOS time series, the DLM fit and the slowly and plotted separately for the three altitude ranges. The cal-
varying background levek,. Overall, it is easy to see that culations are explained in Se@t5and as final step 7 in Ap-
the fits usually follow very accurately the data points. Therependix A. The colouring shows the trend, i.e. the average
are a few scattered outliers, but it is difficult to find any spe- change int5 years around each time axis point. Blue colour
cific pattern for these deviations. As in FR.the solid trend means a negative and red a positive trend. The change is
line is the estimated mean leyg] and it is shown with 95%  most visible at higher altitudes (45-55 and 35-45 km). At the
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Figure 6. All fits collected for the Northern Hemisphere. The three altitude regions as columns, Northern Hemisgheoeal®ands as
rows starting from the northernmost zone. The smooth solid curve shows the estimated background level with 95 % probability envelope. The
dots are the observations used in the analysis. The solid line following the observations is the DLM fit obtained by Kalman filter formulas.
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Figure 8. The 10-year trend in percentage chapgear from the DLM fits for each altitude region and zonal band. One individual trend
analysis is shown in the lower left panel of Fy.
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Figure 9. To compare DLM results to linear regression analysi&Kymola et al. (2013 we reproduce its Figure 16 by using the DLM
approach. The left panel shows the change in ozone trends in % per decade between the periods 1997-2011 and 1984-1997. The shad
area indicate regions where the trend difference is nonzero with over 95 % posterior probability. The right panel shows the differences (in
% decadél) between the numbers that produce the contour plot on the left panel and the correspondingyobié iet al.(2013 (Fig. 16).

lower altitudes (25—-35km) there are some visible changesistics, both temporal and spatial, of SAGE Il and GOMOS
but they are mostly masked by a larger variability and the(Toohey et al.2013.
noise level of the satellite observations at these altitudes. The One particular feature of interest in the data is the sug-
northernmost (50-6MN) and the southernmost (6058  gested stratospheric ozone recovery due to the prohibition
zones differ significantly from the other zones. Looking at of CFC compounds by the Montreal treaty in 1987. Sev-
the individual plots (Figst and7), we see some evidence of eral studies indicate a possible turning point around the year
instrument-related differences and one possible explanation997 (Newchurch et aJ.2003 Jones et a]2009 Steinbrecht
comes from the different non-uniform sampling character-et al, 2009. According to our analyses, significant changes
in the average background level of ozone can be seen at
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Figure 10. Comparing DLM and the linear model. Six examples of DLM vs. piecewise linear model fits using data with 1 km altitude
resolution. The solid black line is the piecewise linear trend fimdla et al.(2013. The smooth solid blue line is the background level
component of the DLM model with 95% probability envelope. At 40>80and 44 km the methods agree. In the other panels we see
differences of various degrees.

mid-latitudinal regions (40-2(5 and 20-4®N) and in the  performed. The results of the piecewise linear trend analysis
altitude range 35-55 km. In these regions the trend, measureid Kyréla et al.(2013 are in agreement to some extent with
as average change in 10 years, has mostly turned from nedhe results here, but the DLM analysis suggests that the trend
ative to positive before the year 2000. Further, in those gechange point depends on latitude and altitude, as shown in
ographical regions where the “V" type shape of the changeFig. 8. Also, there is some evidence against using a simple
is appropriate, the turning point is around the years 1997-wo-piece linear model to describe the background changes.
2001. The change points and trend features have variationo further compare the methods, we studied the difference
by latitude and altitude. In the Tropics one can see that then trend between the years from 1984 to 1997 and from
change of trend year was much earlier than at mid-latitudes1997 to 2011 using the DLM method. Figure 16kKfrola

This suggests that a model with fixed change point in all re-et al. (2013 corresponds to our Fi@ (left panel). Overall,
gions, as used biyrola et al.(2013, does not capture all the DLM method produces somewhat larger differences (i.e.
features in the trends. In some regions there are signs of reaster ozone recovery) in before- and after-1997 trends. This
duction of ozone after the year 2007. Near the equator thalifference varies and is at most 3220 years. An opposite
long-term background changes are mostly masked by irregueffect is seen in the southern most latitude band (5050

lar variations in the ozone concentration. where the DLM method suggests stronger decline of ozone
than the linear method. The uncertainty (as a standard de-
3.1 Comparison with piecewise linear analysis viation of the estimated change) in DLM trend difference is

about 1.5 % 10 year on the average. For the piecewise linear
Kyrold et al.(2013 analysed the trend change point by calcu- Model it is approximately 0.5 % larger. Because of this rela-
lating several fixed piecewise linear regression analyses antvely large uncertainty, the differences between DLM and
choosing the one that provided largest difference betweefi€cewise linear trend analysis are mostly not statistically
before and after the point change in the linear trend. In theSignificant. The right panel in Fig shows the difference
DLM approach the trend can change its value continuouslyn the r_esults between the linear and the DLM .approach. The
and we can analyse directly where the most likely Changesmalyss for the b(.efore-and.-after-1997 trend differs mostly at
points are. One use of a DLM model would be the identifi- the lowest and highest Ia_tltudes ar_ld at the equator. At the
cation of possible trend change points, and provide hypotheSOUthernmost zone the difference is the largest and can be
ses on which a traditional static regression analysis would bé&ttributed to the ability of the DLM method to dynamically
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State space equations Model components
t time index t=1,..., N
pix,0): y =Fx, + v, v~ Ny(0,V)) y:  observations at time 7 p vector
(il 0): %, = Gix, +w w, ~ N, (0. W,) x;  hidden model states at time ¢ q vector
P X1, 8) X =Gk o ' KA F,  observation operator P X q matrix
G;  model operator g X g matrix
l V;  observation error covariance matrix ~ p x p matrix
Kalman filter recursion W, model error covariance matrix g X g matrix
. ] static parameter vector k vector
Step 1 o p
pxily, 0) = N(x;, Cr)
pxelxi—1, yi—1,60) = N, Cr)
Kalman filter likelihood
Step 4 N

—21log p(y1:n10) = const + Z [(y, — F,ff,)TC;,l(yz — FiXp) + 103(\Cy.1|)j|

=1

Kalman smoother recursion

Step 2 p(x(lyin, 0) = N&:, Cr) ‘
Simulation smoother MCMC algorithm
Step 3 sample: p(xi:n|y1:n, 0) ‘ ‘Steps sample: p(0|y1.n)

2

sample: p(x1:n, 0]y1:n)
sample: p(x1.n|y1:3)

Monte Carlo sampling

Step 6

Posterior predictive inference of trends

Step 7 sample: p(trend(x1:x)|y1:n)

Figure 11. A flowchart showing the dependencies of the DLM calculations explained in Appéndix

adapt to changing seasonal patterns in the observations, sde Conclusions
Fig. 7. However, this might be caused by the different spatio-

fcemporal sampling of the_two instruments. Fgrther .anallysis,We have shown that a dynamic linear model (DLM) is well
is beyond the scope of this paper — see the discussion in thg i q for modelling ozone time series. In contrast to some
companion papen@rpla etal, 2013. classical time series analyses, DLM does not require station-
Flg_ure 19 shqws SIX exam_ples of th.e ..DLM approach vs. arity, it allows for missing observations and takes uncertain-
t_he piecewise linear model f|t§ froKyroIa et ql.(2013. In ties in the observations into account. By using Markov chain
five of the cases the conclusions disagree In some reSPeyonte Carlo (MCMC) simulation analysis, the uncertainty
In these cases the DLM trend has more variability than the, e stryctural variance parameters can be accounted for.
f|xed-p0|nt model trend — the linear model may miss SOMEeThe state space method directly includes a model error term,

wise linear mo‘?'e' may cause Spurious res_ults_. In some CaS&t the model. The analysis allows full statistical uncertainty
the change point is later th‘?n at the beginning of the Yealyyantification, and it is extendible to more refined analyses, if
1997. However, at those regions where the one.—change—ponﬂmse seem necessary. Here, a relatively straightforward and
model is valid, the conclusions are the same with both mod+, o o4a1ly simple analysis reveals interesting features and,
elling approaches. also, validates the more ad hoc choices used in piecewise
linear global analyses, such as in the companion paper by
Kyrola et al.(2013.
Trend analysis can be a delicate matter and it is always
challenging to give causal explanations. With a properly
set up DLM model we can detect smooth changes in the

www.atmos-chem-phys.net/14/9707/2014/ Atmos. Chem. Phys., 14, 98Y25 2014
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background state. By using proxy variables we can filter out
the effect of known external forcing, such as the solar effect.
The DLM analysis provides a method to detect and quantify
trends, but the statistical model itself does not provide expla-
nations. It can verify that the observations are consistent with
the selected model. Model diagnostics will eventually falsify
wrong models and other badly selected prior specifications.
We used a local linear trend model with two harmonic
functions for the seasonal effect and four proxy time series
for the solar flux, Quasi-Biennial Oscillations and ENSO.
An autoregressive model component was used to account for
possible residual autocorrelation. The results show a statis-
tically significant change point in the combined SAGE Il-
GOMOS time series approximately after year 1997 at al-
titudes 35-55km and mid-latitudes, between 50-2@&nd
20-50 N. This change point in time varies with latitude and
altitude. There are locations where the estimated changes are
opposite to those expected and the length of the data set is
still short relative to some cycles of natural variability in
the atmospheric processes. At the southernmost zones anal-
ysed here (60-50) the DLM method shows larger decline
of ozone. This might be attributed to the sampling differ-
ences of the two instruments, which is better handled by the
DLM method. In many regions the behaviour of the mean
ozone concentration is too complicated to allow for a sim-
ple piecewise linear description. Compared to the two-piece
fixed change point linear model used in the companion pa-
per, we see stronger recovery of ozone in many regions — the
difference is up to 3% decade.

Atmos. Chem. Phys., 14, 9708725 2014
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Appendix A: Statistical computations for a DLM model and a diagonal matrix with some large vakién the diago-
nal. Note that the only matrix inversion required in the above

As DLM calculations are based on standard Kalman filter al-formulas is the one related to the observation prediction co-
gorithms, they can be programmed by most numerical analyariance matrixC, ,, which is of size 1 1 when we analyse
ysis software such as Matlab or the statistical language Rynivariate time series.
Some additional effort is needed for the parameter estimation
by MCMC. We have used Matlab and checked the resultsStep 2
with the R package DLMRetris et al.2009. The Matlab
code we used for the DLM analyses, including the MCMC The Kalman filter provides distributions of the states at each
part, is available fronhttp://helios.fmi.fi/i~lainema/dimMWe  time ¢ given the observations up to the current time. As
will briefly describe the computations here. A flowchart of we want to do analysis that accounts for all of the ob-
the steps necessary in the computations is given inlHigd ~ servations, we need to have the distributions of the states
concise account of the state space approach and Kalman filtéer each time, given all the observationg.y. By the lin-
based estimation in time series trend analysis can be found iarity of the model, these distributions are again Gaussian,
Sect. 5.5 ofChandler and Scot201]) — for even more de- p(x(|y1.n,0) = N(x,,C,). Using the matrices generated by
tails we refer to already cited literaturegrvey, 199Q Petris  the Kalman forward recursion, the Kalman smoother back-
et al, 2009 Durbin and Koopma2012). ward recursion will give us these so-called smoothed states

We start with the state space equatiohs?j, system ma- forr =N, N —1,...,1by using the following equations and
tricesF;, G;, V,, W,, and the model state, according to  Settingry.1 andNy 1 to zero:
definitions in Sect2.2 We follow the Bayesian statistical
approach, where we are interested in the joint posterior unk-r = Gr — G/K;F; auxiliary variable (A8)
certainty distribution of the model states.y and the un-  , — F,TC\T}vt +LTry - (A9)
known parameters defining the system matrices, given the " 7
observationgy 1.y for the whole time series. We collect the Ne=F; CyiFr+Li Nials - (A10)
extra static parameters (i.e. unknowns in addition to the stat&, =, + G,r, smoothed state mean (A11)
x1.n) into vectord and write this probability distribution as
p(x1.n,0|y1:n). Inthe present case, this parameter vector is
four-dimensional® = [otrend, seas 9AR. P17 - Step 3

¢, =C,—C,N,C, smoothed state covariance (A12)

Step 1 In order to study trends, we still need the full joint distri-

bution of all the states given all the observations and the
parameters, i.ep(x1.5|y1:n,0). This distribution does not
have a closed-form solution. Instead, we can simulate real-
‘izations from it using a so-called simulation smoother al-
gorithm (Durbin and Koopman2012 Sect. 4.9). The state
space system equationk) @nd @) provide a direct way to
recursively produce realizations of both the states and the ob-
gervations. However, these will be independent of the orig-
inal observationsDurbin and Koopmar(2012 provide a
simple way to produce samples from the distributidr, ~
p(x1n|y1n,0). Briefly, the simulation smoother algorithm

X, =G;x;—1 prior mean forx,, (A1) s the following. First, sample from the state space equa-
C, = G,C,_1G! +W;, prior covariance fox;, (A2) tions to get¥1:y andyi.y. Then, use the Kalman smoother
with the new observationg;.y to get smoothed statds.y .
Lastly, add the state residual process to the original smoothed
and then the posterior state and its covariance using thetates to obtainry \ = ¥1.v — ¥1.y +%1.n. This can be re-

(The steps refer to the flowchart in Figl) If we as-
sume that the initial distributions at time=0 are avail-
able, then the Kalman filter forward recursion (see e.
Rodgers 2000 can be used to calculate the distribution
of the state vectox; given the observations up to time
p(x:|y11,0) = Nx;,C;), which is Gaussian for each=
1,2,...,N. This consists of first calculating, as prior, the
mean and covariance matrix of one-step-ahead predicte
statesp(x;|x;_1, y1:—1,0) = N(x;,C;) and the covariance
matrix of the predicted observatios, ; as

Cy:= F,at FtT +V,; covariance for predicting; (A3)

Kalman gain matrix, as peated and used to study possible realizations of the model

K, =C,Ffc;! Kalman gain, (A4) states, for example possible mean level dynamics as done in
7 o , our ozone trend studies.

v, =y, — F;x, prediction residual, (A5)

x; =X, +K,v, posterior mean fox,, (A6) Step 4

C, = ét —K ,F,ét posterior covariance for;. (A7)

So far, the parameter vect# has been assumed fixed.
These equations are iterated foe 1,..., N. As initial val- To estimate it, we need the marginal likelihood function
ues, we can usgg =0 andCp =«l, i.e. a vector of zeros p(y1.n|0), i.e. the distribution of the observations, given the
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parameter, with the stadg .y uncertainty accounted for, i.e. Step 6

integrated out. Fortunately, this likelihood is available as a

by-product of the Kalman filter calculations for each fied ~ As final steps in our DLM calculations, we can combine the
By the assumed Markov property of the state space equaSimU|ati0n smoother and the MCMC OUtpUtS to produce sam-
tions, this marginal likelihood function can be evaluated se-ples from the joint posterior distributiop(x1.x,0|y1:n), as
quentially as a product of the individual time wise marginal Well as from the marginal posterior distribution of the state,

likelihoods as p(x1.n|y1:n), where the uncertainty i has been accounted
for.
. or
py1n1®) = p(y10) [ [ p(yily1i-1.0). (A13)  step7

=2

These individual one-step-ahead predictive distributions oiLaStly' a sample from th|§ last d's”'b“t_'of‘ is used for the
the observations are provided by the Kalman filter. In the casx%rend gnalyses by calculating trend ;tansycs that depend on
of a linear Gaussian model this likelihood is proportional to he estimated model states, as explained in Ze5t.

(ignoring a constant that does not depend on the model pa-

rameters)

p(y1n|0) (A14)

1Y S T :
exp{—2 > [(yz ~F®)" Cy 7 (v — i) +log(|Cy ¢ D] } ’
t=1

wherex; is the one-step-ahead mean prediction of the state
andC, ; is the covariance matrix of predicted observation,
both obtained by the Kalman filter formulas, given above in
Egs. A1) and @A3).

Step 5

With this likelihood function and with a prior distribution
for the parameter vect#, a MCMC simulation can be per-
formed to produce a sample of parameter values from the
marginal posterior distributiop(#|y1.y). Thus, we can es-
timate and study the uncertaintyrby the MCMC. We use

an adaptive version of the random walk Metropolis—Hastings
(MH) algorithm by Haario et al.(2006. It is a sequential
Monte Carlo algorithm that proposes a value for the param-
eter vector from a suitably constructed proposal distribution
and then either accepts or rejects it depending on the ratio
of the posterior distribution at the proposed value to that cal-
culated using the previously accepted value. By the Bayes
formula, the posterior distribution is, up to a normalizing
constant, equal to the likelihood times the prior. The basic
idea behind MCMC is the fact that the acceptance proba-
bility depends only on the ratio of the posterior at two pa-
rameter values, and this will cancel out the hard-to-calculate
proportional constant in the Bayes formula for the posterior
distribution. SegGamermarn(2006 for more details on the
MCMC methodology. A MCMC Matlab toolbox used in the
calculations is available frorhttp://helios.fmi.fi/~lainema/
mcmcl
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