

Supplement of

Contributions of vehicular carbonaceous aerosols to $\mbox{PM}_{2.5}$ in a roadside environment in Hong Kong

X. H. H. Huang et al.

Correspondence to: J. Z. Yu (jian.yu@ust.hk)

Supplementary material for

Contributions of vehicular carbonaceous aerosols to PM_{2.5} in a roadside environment in Hong Kong

X. H. Hilda Huang¹, Q. J. Bian^{2,‡}, Peter K. K. Louie³, and Jian Zhen Yu^{1,2,*}

¹Institute for the Environment, ²Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China ³Hong Kong Environmental Protection Department, 47/F, Revenue Tower, 5 Gloucester Road, Wan Chai, Hong Kong, China

*Corresponding author. *Tel:* (852) 2358 7389, *Fax:* (852) 2358 1594, *Email: jian.yu@ust.hk* ‡Currently at Department of Atmospheric Science, Colorado State University, USA

This supplementary document contains one appendix, three tables and five figures.

Appendix 1. Equations to calculate $\%\overline{RB}$ and $\%\overline{RSD}$

 Table S1. Temperature program used for RT-OCEC analysis.

Table S2. Sampling duration, data capture rates and valid rates for individual month during

 May 2011–April 2012 at MK AQMS.

Table S3. The 1-hr average OC and EC concentrations in individual sampling months and the monthly average OC and EC contributions to the $PM_{2.5}$ mass at MK AQMS during the study period from May 2011 to April 2012.

Figure S1. Diurnal variations of OC (μ gC/m³) for weekdays, Saturdays and holidays at MK AQMS during the study period.

Figure S2. Diurnal variations of EC (μ gC/m³) for weekdays, Saturdays and holidays at MK AQMS during the study period.

Figure S3. The diurnal variation of averaged OC/EC ratios.

Figure S4. Regression lines of 5% lowest (OC/EC) data (n = 38) for January 2011 by

ordinary least squares (OLS), default Deming, and optimal Deming regression.

Figure S5. Deming regression results of the lowest 5% summer data by OC-to-EC ratio and all summer data.

Appendix 1. Equations to calculate $\%\overline{RB}$ and $\%\overline{RSD}$

$$\overline{C}_{l} = \frac{X_{l} + Y_{l}}{2} \tag{1}$$

$$\% RB_i = \frac{(Y_i - X_i) \times 100\%}{\bar{c}_i}$$
(2)

$$\%\overline{RB} = \frac{1}{n} \sum_{i=1}^{n} \frac{(Y_i - X_i) \times 100\%}{\overline{c_i}}$$
(3)

$$\% RSD_i = \frac{|\% RB_i|}{\sqrt{2}} \tag{4}$$

$$\%\overline{RSD} = \sqrt{\frac{1}{n}\sum_{i=1}^{n}\% RSD_i^2}$$
(5)

where the x and y are the comparative concentration values from different datasets and n is the total number of samples.

Gas	Temperature, °C	Hold Time, s
He	room temp.	10
He	600	95
He	840	90
He	no heat	30
He/O ₂	550	35
He/O ₂	650	45
He/O ₂	870	110
CalGas	no heat	120

 Table S1. Temperature program used for RT-OCEC analysis.

			-	
Month	No. of hours	No. of samples collected	Data capture rate, %	Data valid rate, %
May 2011	744	735	98.8	90.5
Jun. 2011	720	461	64.0	97.0
Jul. 2011	744	265	35.6	86.8
Aug. 2011	744	518	69.6	91.7
Sep. 2011	720	713	99.0	98.9
Oct. 2011	744	738	99.2	98.1
Nov. 2011	720	713	99.0	99.3
Dec. 2011	744	727	97.7	97.2
Jan. 2012	744	738	99.2	99.2
Feb. 2012	696	688	98.9	99.3
Mar. 2012	744	735	98.8	90.1
Apr. 2012	720	706	98.1	98.0

Table S2. Sampling duration, data capture rates and valid rates for individual month duringMay 2011–April 2012 at MK AQMS.

Table S3. The 1-hr average OC and EC concentrations in individual sampling months and the monthly average OC and EC contributions to the $PM_{2.5}$ mass at MK AQMS during the study period from May 2011 to April 2012.

Month	OC, μgC/m ³	EC, μgC/m ³	OC/PM _{2.5}	EC/PM _{2.5}
May 2011	7.1 (2.2–24.8)	4.9 (0.5–15.3)	20.8%	14.2%
Jun. 2011	3.8 (0.7–13.2)	3.8 (0.3–13.8)	17.7%	17.7%
Jul. 2011	3.5 (0.6–10.0)	4.0 (0.3–9.8)	15.5%	17.6%
Aug. 2011	4.3 (0.6–14.3)	4.1 (0.2–12.0)	15.8%	15.3%
Sep. 2011	6.2 (1.2–15.2)	4.4 (0.3–11.7)	16.8%	11.8%
Oct. 2011	7.8 (1.7–16.2)	4.4 (0.5–12.8)	19.8%	11.3%
Nov. 2011	8.0 (0.9–35.2)	4.6 (0.2–14.1)	23.2%	13.5%
Dec. 2011	13.6 (4.3–30.5)	4.5 (0.2–16.6)	27.5%	9.2%
Jan. 2012	10.8 (3.2–23.6)	4.2 (0.2–10.2)	29.3%	11.3%
Feb. 2012	9.0 (2.0–23.9)	4.1 (0.2–20.4)	29.3%	13.3%
Mar. 2012	7.3 (1.9–16.1)	4.3 (0.2–12.7)	21.2%	12.4%
Apr. 2012	6.7 (1.5–24.3)	4.6 (0.4–16.2)	19.4%	13.3%

Figure S1. Diurnal variations of OC (μ gC/m³) for weekdays, Saturdays and holidays at MK AQMS during the study period.

Figure S2. Diurnal variations of EC (μ gC/m³) for weekdays, Saturdays and holidays at MK AQMS during the study period. S-6

Figure S3. The diurnal variation of averaged OC/EC ratios. (The box length: the 25^{th} and the 75^{th} percentiles; the whiskers: the 10^{th} and the 90^{th} percentiles; the dot in the box: the average; the line in the box: the median; the circles: the minimum and maximum values).

Figure S4. Regression lines of 5% lowest (OC/EC) data (n = 38) for January 2012 by ordinary least squares (OLS), default Deming, and optimal Deming regression.

Figure S5. Deming regression results of the lowest 5% summer data by OC-to-EC ratio and all summer data.