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Abstract. We apply an off-line process-based vegetation
model (the Yale Interactive Terrestrial Biosphere model) to
assess the impacts of ozone (O3) vegetation damage on gross
primary productivity (GPP) in the United States during the
past decade (1998–2007). The model’s GPP simulation is
evaluated at 40 sites of the North American Carbon Program
(NACP) synthesis. The ecosystem-scale model version re-
produces interannual variability and seasonality of GPP at
most sites, especially in croplands. Inclusion of the O3 dam-
age impact decreases biases of simulated GPP at most of
the NACP sites. The simulation with the O3 damage effect
reproduces 64 % of the observed variance in summer GPP
and 42 % on the annual average. Based on a regional grid-
ded simulation over the US, summertime average O3-free
GPP is 6.1 g C m−2 day−1 (9.5 g C m−2 day−1 in the east of
95◦ W and 3.9 g C m−2 day−1 in the west). O3 damage de-
creases GPP by 4–8 % on average in the eastern US and
leads to significant decreases of 11–17 % in east coast hot
spots. Sensitivity simulations show that a 25 % decrease in
surface O3 concentration halves the average GPP damage to
only 2–4 %, suggesting the substantial co-benefits to ecosys-
tem health that may be achieved via O3 air pollution control.

1 Introduction

The effects of tropospheric ozone (O3) damage on US forests
have been studied for half a century (Karnosky et al., 2007),
but the impacts of O3 on the North American carbon bal-
ance are still relatively poorly understood (Felzer et al., 2004;
Huntingford et al., 2011). O3 is a secondary pollutant pro-
duced in the troposphere during the photochemical oxida-
tion of carbon monoxide, methane, and volatile organic com-

pounds (VOCs) by the major tropospheric oxidant, the hy-
droxyl radical, in the presence of sunlight and nitrogen ox-
ides. Fossil-fuel, biofuel and biomass burning since the in-
dustrial and agricultural revolutions have greatly increased
the emissions of O3 precursors and led to an approximate
doubling of O3 levels over the US since the preindustrial.
Deposition through stomatal uptake is an important sink for
O3 but damages photosynthesis, reduces plant growth and
biomass accumulation, limits crop yields, and affects stom-
atal control over plant transpiration of water vapor between
the leaf surface and atmosphere (Ainsworth et al., 2012;
Hollaway et al., 2012).

Understanding the O3 pollution influence on the North
American forest sink is crucial to any effort to mitigate
climate change by stabilizing atmospheric carbon dioxide
(CO2) concentrations. Currently, North America is acting as
a net source of CO2 to the atmosphere (King et al., 2012),
mainly due to fossil-fuel combustion in the US and the de-
forestation in Mexico. Sequestration of atmospheric CO2 by
forest ecosystems is a major control on atmospheric CO2
abundance and its growth rate (Pan et al., 2011). Terrestrial
ecosystems of North America absorb the equivalent of about
35 % of North America’s fossil fuel based CO2 emissions,
representing a source-to-sink ratio of nearly 3 : 1. Forest re-
growth in the US is responsible for 30–70 % of this North
American CO2 sink, which varies significantly from year to
year (Pacala et al., 2001; Goodale et al., 2002; Pan et al.,
2011; King et al., 2012). However, O3 damage may in part
dampen the level of carbon sequestration by North American
ecosystems (Felzer et al., 2004, 2005).

Experimental studies that examine O3 impacts on plant
productivity are typically performed for individual vegeta-
tion types, on the scale of sites, and within a limited time
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period (e.g., Wittig et al., 2007; Feng et al., 2008; Lombar-
dozzi et al., 2013). For example, based on measurements re-
ported from over 100 studies, Wittig et al. (2007) estimated
that chronic O3 exposure depressed photosynthesis by 11 %
and stomatal conductance by 13 % for several tree species at
the ambient O3 level of∼ 45 ppbv relative to that in O3-free
air. The O3 damage effect is strongest for crops. With data
sets from∼ 50 peer-reviewed studies, Feng et al. (2008) es-
timated that elevated O3 levels significantly decrease wheat
photosynthetic rates by 20 % and stomatal conductance by
22 %. Emerging research has found that the O3 vegetation
damage effects may result in a loss of plant stomatal con-
trol, and a consequent decoupling of the stomatal response
from photosynthesis inhibition (Lombardozzi et al., 2012a,
b, 2013).

Previous work has found that in the US region during
1989–1993, O3 pollution reduced net primary productivity
(NPP) by 3–7 % overall, and up to 13 % in hot spots in-
cluding the southeast and in the Midwest agricultural lands
(Felzer et al., 2004, 2005). The indirect CO2 radiative forc-
ing due to the vegetation damage effects of anthropogenic O3
increases since the industrial revolution may be as large as
+0.4 Wm−2 (Sitch et al., 2007), which is 25 % of the magni-
tude of the direct CO2 radiative forcing over the same period,
and of similar magnitude to the direct O3 radiative forcing.
Through this perturbation of the carbon cycle, O3 pollution
affects the climate system on considerably longer timescales
than its own atmospheric lifetime (Unger and Pan, 2012).
Over the past decade since this previous assessment surface
O3 levels in most of the US have decreased (Lefohn et al.,
2010) due to domestic emission reductions following the im-
plementation of air quality control legislation (Bloomer et
al., 2010). However, increasing O3 concentration is observed
over western US (Jaffe and Ray, 2007). Such a trend may
in part be related to the inter-continental flow from Asia
(Cooper et al., 2010) and the global increase in methane
(Rigby et al., 2008).

The major goal of this study is to assess O3 damage ef-
fects on gross primary productivity (GPP) in the US for the
recent decade 1998–2007 using a data-constrained vegeta-
tion model. In this work, we describe the implementation of
a semi-mechanistic O3 damage function (Sitch et al., 2007)
into the Yale Interactive Terrestrial Biosphere model (YIBs)
that includes enzyme-kinetic biophysics (Unger et al., 2013).
In the first stage of the study, we utilize eddy-derived GPP
flux measurements at 40 sites across the US and Canada that
have been collated for the North American Carbon Program
(NACP) site-level interim synthesis (Huntzinger et al., 2012;
Schaefer et al., 2012; Barr et al., 2013; Ricciuto et al., 2013)
to evaluate an off-line version of the vegetation model’s site
level GPP simulation and to assess the impact of surface O3
damage at those sites. In the second stage of the study, the
impacts of O3 damage on GPP throughout the entire US are
quantified using a regional configuration of the vegetation
model.

2 Methodology and data

2.1 Vegetation biophysics

Here, we apply an off-line version of the YIBs model that
previously was implemented into the NASA Goddard In-
stitute for Space Studies global chemistry–climate model
(Unger et al., 2013). The off-line model can be run at the
site-level or in regional mode for a designated region. The
vegetation biophysics module computes the photosynthetic
uptake of CO2 coupled with the transpiration of water vapor
at the 1 h physical integration time step of the off-line model.
The vegetation biophysics calculates C3 and C4 photosyn-
thesis using the well-established Michealis–Menten enzyme-
kinetics leaf model of photosynthesis (Farquhar et al., 1980;
von Caemmerer and Farquhar, 1981) and the stomatal con-
ductance model of Ball and Berry (Collatz et al., 1991). The
coupled photosynthesis/stomatal conductance leaf model has
been widely used to project terrestrial biosphere responses
to global change. The model is briefly summarized here for
transparency and completeness. The leaf model assumes that
the rate of net CO2 assimilation (Anet) in the leaves of C3
and C4 plants is limited by one of three processes: (i) the ca-
pacity of the ribulose 1,5-bisphosphate (RuBP) carboxylase-
oxygenase enzyme (Rubisco) to consume RuBP (Jc); (ii) the
capacity of the Calvin cycle and the thylakoid reactions to re-
generate RuBP supported by electron transport (Je); (iii) the
capacity of starch and sucrose synthesis to consume triose
phosphates and regenerate inorganic phosphate for photo-
phosphorylation in C3 and phosphoenolpyruvate (PEP) lim-
itation in C4 (Js). Jc, Je, andJs are described as functions of
the maximum carboxylation capacity (Vcmax) at the optimal
temperature, 25◦C, and the internal leaf CO2 concentration
(Ci). The gross rate of carbon assimilation from photosyn-
thesis (A) is given by the following:

A = min(Jc,Je,Js) (1)

Net carbon assimilation is given by the following:

Anet = A − Rd (2)

whereRd is the rate of dark respiration:

Rd = 0.015· Vcmax (3)

Leaf stomata control the uptake of CO2 vs. the loss of H2O.
At equilibrium, the stomatal conductance of water vapor
through the leaf cuticle (gs in mol [H2O] m−2 s−1) depends
on the net rate of carbon assimilation:

gs = m
Anet · RH

cs
+ b =

1

rs
(4)

wherem andb are the slope and intercept derived from em-
pirical fitting to the Ball and Berry stomatal conductance
equations, RH is relative humidity,cs is the CO2 concen-
tration at the leaf surface, andrs is the stomatal resistance
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to water vapor. Appropriate photosynthesis parameters for
the local vegetation type are taken from (Friend and Kiang,
2005) and the Community Land Model (Oleson et al., 2010)
with updates from Bonan et al. (2011) (Table 1). In both the
site-level and regional models, we apply these model PFT-
specific photosynthesis parameters and do not tune or cali-
brate to the local vegetation properties. The model calculates
evapotranspiration as a function of the stomatal conductance.
However, we do not consider the feedback of the changes
in evapotranspiration to the boundary-layer meteorology be-
cause we use prescribed meteorological variables from re-
analysis in the simulations.

The canopy radiative transfer scheme assumes a closed
canopy and layers the canopy for light stratification using
an adaptive number of layers (typically 2–16) (Friend and
Kiang, 2005). Each canopy layer distinguishes sunlit and
shaded regions for which the direct and diffuse photosyn-
thetically active radiation (PAR) is computed (Spitters et
al., 1986). The coupled photosynthesis and stomatal conduc-
tance equations are solved analytically using a cubic function
of Anet. Ci is calculated explicitly at the leaf level. Scaling of
the leaf to canopy level is through stratification of canopy
light levels and leaf area profiles. The photosynthetic up-
take of CO2 is accumulated into a carbon reserve pool, from
which other processes may allocate uses.

2.1.1 O3 damage effect on photosynthesis

O3 oxidizes cellular membranes and photosynthetic tissues
when it enters leaves through stomata, leading to reductions
in photosynthesis and GPP. O3 damage inhibits stomatal con-
ductance, which is closely related to the photosynthetic rate,
resulting in a reduction in transpiration. A semi-mechanistic
parameterization is employed to estimate the O3 damage ef-
fects to both photosynthesis and stomatal conductance (Sitch
et al., 2007). The exposure to O3 leads to reductions in pho-
tosynthesis:

A′
= F · Anet, (5)

whereF is the reduction fraction calculated as

F = 1− a · U>O3T, (6)

wherea is the O3 sensitivity coefficient derived from obser-
vations. Two cases are examined: high and low O3 sensitivity
following Sitch et al. (2007).U>O3T is the instantaneous leaf
uptake of O3 flux above a plant function type (PFT)-specific
threshold of O3T (Table 1),

U>O3T = max
[(

FO3 − O3T
)
,0

]
. (7)

HereFO3 is the O3 flux entering the leaf through the stomata,

FO3 =
[O3]

rb + κ · r ′
s
, (8)

where [O3] is the O3 concentration at the top of the canopy,
andrb is the boundary layer resistance. The stomatal resis-
tance to O3 is calculated based on stomatal resistance to wa-
ter rs with a ratio constantκ = 1.67. From Eq. (4), the de-
crease inAnet reduces the stomatal conductancegs propor-
tionally,

r ′
s =

1

g′
s

=
1

F · gs
. (9)

The r ′
s andg′

s are the O3-damaged stomatal resistance and
conductance, respectively. When the plant is exposed to [O3]
(Eq. 8), the excess O3 flux entering leaves (Eq. 7) causes
F < 1 (Eq. 6), decreasingAnet (Eq. 5) while increasing the
stomatal resistance (Eq. 9). The latter will act to reduce the
O3 uptake flux (Eq. 8) to protect the plant. Thus, the scheme
considers associated changes in both photosynthetic rate and
stomatal conductance. When photosynthesis is inhibited by
O3, the stomatal conductance decreases accordingly to re-
sist more air passing through the stomata, resulting in a de-
cline of the oxidant fluxes inside leaves, as described through
Eqs. (5)–(9). Consequently, this coupled scheme represents
the equilibrium state between the CO2 demand for vegetation
growth and the protection against O3 damage by plant. The
parameters for the scheme, including the O3 damage thresh-
old and sensitivity coefficients, were originally derived based
on the calibration of the MOSES vegetation model. Since
the MOSES model employs the (almost) identical Farquhar-
Ball-Berry photosynthesis/stomatal conductance scheme as
in the YIBs model, it is appropriate to adopt the same param-
eters as those derived in Sitch et al. (2007) (Table 1). Evalu-
ation of the YIBs simulated O3-induced GPP response with
available field and laboratory measurements across a range of
PFTs in Sect. 3.4 indicates that our assumption is reasonable.

2.1.2 Vegetation structure

The YIBs vegetation model simulates eight PFTs, using ei-
ther C3 or C4 photosynthesis (Table 1). We apply two dif-
ferent sets of land cover and leaf area index (LAI) in the
simulations. The first set is the PFT-specific vegetation cover
fraction and LAI retrieved by the Moderate Resolution Imag-
ing Spectroradiometer (MODIS, Knyazikhin et al., 1998).
The value on a specific day is linearly interpolated from the
monthly means of the nearest two months based on the dis-
tance of this day to the middle dates of those two months.
The second set uses LAI from the Global Modeling and As-
similation Office (GMAO) Modern Era-Retrospective Anal-
ysis (MERRA) data set. The MERRA LAI is assimilated
based on radiance data retrieved by over 20 satellites (Rie-
necker et al., 2011) and is available on a daily scale from
1980 onwards. Since the MERRA LAI data set does not pro-
vide PFT-specific information, the actual site-level PFT is as-
sumed for the site level simulations. For the regional simula-
tions, the land cover is prescribed to the gridded International
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Table 1.Parameters for vegetation model and O3 damage scheme.

PFTa TDA GRAC3 GRAC4 SHR DBF ENF TRF CRO

Carboxylation C3 C3 C4 C3 C3 C3 C3 C3b C4b

Vmax25 33 43 24 25 30 43 75 40 40
(µmol m−2 s−1)

m 9 11 5 9 9 9 9 11 5
b 2 8 2 2 2 2 2 8 2
(mmol m−2 s−1)

O3T 1.6 5 5 1.6 1.6 1.6 1.6 5 5
(nmol m−2 s−1)

a (high) 0.1 1.4 0.735 0.1 0.15 0.075 0.15 1.4 0.735
(mmol−1 m−2)

a (low) 0.03 0.25 0.13 0.03 0.04 0.02 0.040.25 0.13
(mmol−1 m−2)

a Plant function types (PFTs) are tundra (TDA), C3 grassland (GRAC3), C4 savanna/grassland (GRAC4), shrubland (SHR),
deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), tropical rainforest (TRF), and cropland (CRO).
b For site-level simulations, we consider CRO to be a C4 plant. For regional simulation, we consider half CRO as C3 plants
(soybean) and the rest C4 plant (corn).

Satellite Land-Surface Climatology Project (ISLSCP, Hall et
al., 2006).

2.1.3 Meteorological forcing

For the site-level simulations, we use hourly in situ measure-
ments of surface meteorological variables, including surface
air temperature, specific humidity, wind speed, surface pres-
sure, and CO2 concentrations. There are some missing val-
ues in the measurements due to occasional instrument fail-
ure. We gap-fill the site-based observations with that from
the MERRA-land data (Reichle et al., 2011), which is inter-
polated to each site based on the site location.

For the regional simulations, the off-line YIBs model uses
hourly MERRA-land data climatic variables including the
following: surface air temperature, specific humidity, wind
speed, surface pressure, precipitation, direct PAR, and dif-
fuse PAR, and soil temperature and soil moisture at six soil
depths. The original data resolution of 0.5◦

× 0.667◦ by lati-
tude and longitude is degraded to 1◦

× 1.333◦ due to current
disk space limitation.

2.1.4 Surface [O3]

Hourly and daily maximum 8 h average surface [O3] rep-
resentative of the present day climate (∼ 2005) are taken
from previous simulations using NASA Model-E2 (Shindell
et al., 2013). The global model has 2◦

× 2.5◦ latitude by lon-
gitude horizontal resolution with 40-vertical layers extend-
ing to 0.1 hPa. The gas-phase chemistry and aerosol mod-
ules are fully integrated, so that these components interact
with each other and with the physics of the climate model
(Bell et al., 2005; Shindell et al., 2006, 2013; Unger, 2011).
The model surface O3 is validated using measurements
from 73 Clean Air Status and Trends Network (CASTNET)

sites operated by the United States Environmental Protection
Agency (EPA) (http://epa.gov/castnet/javaweb/ozone.html)
and∼ 1200 monitor sites managed by the EPA AIRDATA
(http://www.epa.gov/airdata/). These sites are operated on
the county level scale. The CASTNET provides hourly [O3]
at rural sites from 1996–2005. The AIRDATA network pro-
vides daily maximum 8 h average (MDA8) [O3], covering
both urban and rural regions. We use AIRDATA data for the
year 2005.

2.2 Simulations

2.2.1 Site-level runs

We configure a site-level version of the YIBs model for the
40 eddy covariance flux tower sites described in detail in the
NACP synthesis (Fig. S1 in the Supplement and Appendix
Table A1, Schaefer et al., 2012). Meteorological measure-
ments are available for a wide range of time periods across
the different sites ranging from the minimum of 1 year at
Fermi Lab (US-IB1) and the maximum of 15 years at Har-
vard Forest (US-HA1). These sites cover a range of different
vegetation types including the following: evergreen needle-
leaf forest (ENF), deciduous broadleaf forest (DBF), grass-
lands, croplands, closed shrublands, mixed forests, perma-
nent wetlands, and woody savannas. Table S1 in the Sup-
plement summarizes how the NACP vegetation types are
mapped onto the eight model PFTs. For the site-level simula-
tions, we assume C4 photosynthetic pathway for all cropland
sites, which are mainly corn (Schaefer et al., 2012). The lo-
cal site LAI values are not available. As a result, we use the
MERRA or MODIS LAI for the simulations.

For each site, a group of six sensitivity simulations are per-
formed (Table 2). We conduct the first four runs using differ-
ent combinations of meteorological and vegetation forcings,
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to assess the sensitivity of the results to local vs. reanaly-
sis meteorological forcing and LAI (Table 2). Two, MET-
merra_LAImodis and METmerra_LAImerra, use hourly me-
teorology from MERRA-land reanalyses alone. The other
two, METsite_LAImodis and METsite_LAImerra, use site-
based meteorology with gap-filled MERRA reanalysis. Sim-
ulations use two data sets of LAI: (1) METmerra_LAImerra
and METsite_LAImerra use LAI from the MERRA-land re-
analyses, which provide non PFT-specific LAI that we assign
to the local PFT type at each site (Table A1), while (2) MET-
merra_LAImodis and METsite_LAImodis use PFT-specific
LAI retrieved by the MODIS. Later analyses show that MET-
site_LAImerra has the lowest biases relative to other O3-
free simulations. We perform two additional site-level sim-
ulations, which use the same forcings as that for MET-
site_LAImerra but with the impact of O3 uptake on photo-
synthesis. These two experiments, METsite_LAImerra_HO3
and METsite_LAImerra_LO3, use either high or low O3 sen-
sitivity as defined by the coefficienta in Table 1.

To quantify the performance of the vegetation model, we
estimate theχ2 for each site following the method described
in Schaefer et al. (2012),

χ2
=

1

n

n∑
i=1

(
ri

εi

)2

, (10)

where

ri = (GPPsi − GPPoi) . (11)

is the difference between the pair of simulated and observed
GPPs.εi are the observational uncertainties resulting from
turbulence, gap-filling, flux partitioning, andu∗ threshold de-
termination (Barr et al., 2013).n is the length of observations
(e.g., the number of days for the daily variables). The lower
theχ2, the smaller the model biases. Ifχ2 < 1, the simulation
bias is on average smaller than the measurement uncertainty,
indicating a good performance of the model. Here, we define
a reasonable performance ofχ2 < 4, when the residual is less
than twice the measurement uncertainty. We also calculate
the root mean square error (RMSE) as follows:

RMSE=

√√√√1

n

n∑
i=1

(GPPsi − GPPoi)
2. (12)

We validate the simulated O3 damage effect with measure-
ments from literature. Field and laboratory experiments may
have different [O3] compared to the ambient level we used
complicating the validation. As a result, we perform 14 ad-
ditional sensitivity simulations for each of NACP sites. All
tests use meteorological and vegetation forcings the same as
METsite_LAImerra (Table 2), except for the different [O3]
and O3 sensitivity. These experiments are divided into two
groups, seven in each, using either low or high O3 sensitivity.
In each group, simulations are performed with constant [O3]

at 20, 40, 60, 80, 100, 120, 140 ppbv, respectively. We do
not include diurnal and seasonal variations of [O3] in these
sensitivity simulations as that in METsite_LAImerra for two
reasons. First, field measurements for the O3 vegetation dam-
age are usually performed with fixed [O3] during the growth
season (e.g., Ishii et al., 2004; Zhang et al., 2012). Second,
the diurnal cycles and seasonality of [O3] are very different
for different sites (Bloomer et al., 2010), making it difficult to
apply a uniform temporal cycle for all the NACP sites. The
reductions in GPP at these simulations are compared with
results from field measurements at the corresponding [O3]
level.

2.2.2 Regional run over US

A gridded version of the YIBs model at 1◦
× 1.333◦ lati-

tude by longitude horizontal resolution for the US region is
driven with MERRA meteorological forcings for the period
1998–2007. In the regional model, vegetation cover types are
from the ISLSCP and LAI is form the MERRA-land reanal-
ysis. We assign the MERRA LAI to the corresponding PFT
types defined by ISLSCP (Fig. S2 in the Supplement). The
18 ISLSCP land types are converted to 8 PFTs used in the
model (Table S1 in the Supplement). Some of the ISLSCP
land types, such as the deciduous needleleaf forest, are not
represented in the YIBs model. However, the coverage of
these types is very small in the US (Fig. S2 in the Supple-
ment) and will not influence the regional simulation after the
conversion to the model types. For the regional simulation,
we assume that the total crop area in each crop grid cell is
split 50 % C3 and 50 % C4 to account for the dominance of
both soybean (C3) and corn (C4) crops in the central and
northern US agricultural regime. We perform two simulation
cases with high and low O3 damage sensitivity. Finally, to un-
derstand how the O3 vegetation damage effect may respond
to possible future changes in [O3], we perform four addi-
tional sensitivity experiments with±25 % changes in [O3]
for each O3 sensitivity case.

3 Results and discussion

3.1 Evaluation of O3-free GPP at NACP sites

We first compare the monthly mean LAI from MERRA and
MODIS at each NACP site (Fig. S3 in the Supplement). For
each site, the MERRA LAI is averaged for the period when
GPP measurements are available. The two data sets show
similar annual cycles at several sites but are inconsistent for
7 out of 20 ENF sites (CA-Ca1, CA-Ca2, CA-Ca3, CA-NS1,
US-Me2, US-Me3, and US-Me5) and 2 out of 5 shrubland
sites (US-SO2 and US-Ton). In addition, for grasslands and
croplands, the data sets exhibit different seasonality. It must
be emphasized that the MERRA and MODIS LAI represent
the average state in the retrieval product grid cells and as such
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Table 2.Description of the site-level simulations.

Meteorology Vegetation (LAI)

ID Simulationsa Site MERRA MODIS MERRA Incl. Oc
3

1 METmerra_LAImodis Yes Yes
2 METsite_LAImodisb Yes Yes Yes
3 METmerra_LAImerra Yes Yes
4 METsite_LAImerrab Yes Yes Yes
5 METsite_LAImerra_LO3b Yes Yes Yes Lowd

6 METsite_LAImerra_HO3b Yes Yes Yes High d

a The name of each simulation is composed of at least two words. The prefix indicates the source of meteorological
forcings. The suffix or the second word indicates the sources of vegetation forcings.
b For simulations with prefix “SITE” use site-based meteorological forcings, which are gap-filled with MERRA-land
reanalyses.
c Ambient [O3] is applied at each site.
d Low and high indicate the sensitivity of GPP to [O3] defined by the coefficienta in Table 1.

may not represent the local LAI for the actual PFT species at
each site.

The long-term monthly mean O3-free GPP from the simu-
lation METsite_LAImerra is compared with observations at
NACP sites (Figs. 1 and S4 in the Supplement). The sim-
ulations capture the magnitude and seasonality of GPP for
most sites especially for deciduous broadleaf and cropland.
The largest model overestimate (factor of 3–8) occurs at two
ENF sites, CA-SJ1 and CA-SJ2 in North Central Canada
(Fig. S4 in the Supplement). For the grassland sites, the
model–observation correlation is low because the seasonal-
ity is not well captured, especially for US-ARM (in Great
Plains) and US-Var (in California), where the modeled maxi-
mum GPP occurs in summer (July), 2–3 months later than in
the measurements (April) (Fig. S4 in the Supplement). This
incorrect model seasonality is a result of the MERRA LAI
(compare Fig. S3 in the Supplement) that does not begin to
increase rapidly until after May and is not consistent with the
local LAI at the site. In reality, California grasslands exhibit
rapid growth in spring then mature and die after April or May
(Chiariello, 1989). The grasslands in the Great Plains may
have up to six different phenological groups, including some
species active in spring (e.g., in US-ARM) while some others
peak in summer (e.g., in US-Shd) (Henebry, 2003). On the
annual mean basis, the correlation coefficient between simu-
lated GPP and observations at all 40 sites is 0.65. The corre-
lation is higher (0.81) for summer (June–August, Fig. S5 in
the Supplement). The annual GPP averaged over all 40 sites
is 3.8 g C m−2 day−1, 27 % higher than the observational av-
erage (3.0 g C m−2 day−1).

Among the 40 NACP sites, 22 have reasonable perfor-
mance withχ2 < 4 for the simulation METsite_LAImerra
(Fig. 2a). For these sites, 12 are ENF with the best (χ2

= 1.2)
at site US-Dk3 (Fig. S4 in the Supplement). The ENF sites
usually have multiple years of measurements and provide
good samples for testing the consistency between simula-
tions and observations. Simulations at other four DBF, three
cropland, and three shrubland sites haveχ2 < 4. Compared
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Figure 1. Comparison between monthly average GPP in the YIBs
simulations and NACP observations grouped by PFT type (where
in situ measurements are available). The red lines indicate linear
regression between observations and simulation results. The regres-
sion fits and correlation coefficients are shown on each panel. The
land types include evergreen needleleaf forest (ENF), deciduous
broadleaf forest (DBF), shrublands (SHR), grasslands (GRA), and
croplands (CRO). The model–observation comparison for each site
is shown in Fig. S4 in the Supplement.

with the 24 land surface models in Schaefer et al. (2012),
the YIBs model shows significant improvement at the crop
PFT sites (χ2 < 4.1 vs.χ2 > 6). YIBs simulates GPP with
χ2 < 4 at 22 sites in total compared to 16 sites for the en-
semble simulations in Schaefer et al. (2012). YIBs GPP sim-
ulation is weaker (χ2 > 4) at 18 sites including eight ENF
sites, two DBF, and two shrubland PFT sites. The common
feature of the biases at these sites is the overestimation of
peak GPP during summer (e.g., CA-SJ1, CA-SJ2, CA-Mer,
Fig. S4 in the Supplement). It is possible that the model does
not represent the full realism of the biophysical processes
accurately. However, we assert that the most likely cause of
the model overestimate is the uniform application of model
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PFT-specific photosynthesis parameters that are not tuned to
local site level vegetation parameters and, for instance, do not
take into account plant species and age. Similar to the multi-
model results in Schaefer et al. (2012), YIBs performance is
weakest at the five grassland sites. In this case, the bias is
mainly due to the delayed LAI seasonality in the MERRA
satellite data set (Figs. S3 and S4 in the Supplement). In gen-
eral, application of the remotely sensed LAI is a source of
error because the gridded satellite data may not represent the
local site changes in plant growth and phenology, especially
for vegetation types with low biomass. The limitation of the
satellite LAI spatial resolution implies that the model is un-
able to resolve GPP variability for sites in close proximity.
For example, sites CA-SJ1, CA-SJ2, and CA-SJ3 are located
close to each other. Simulations at these sites have similar
magnitude in simulated GPP while observations show dis-
tinct variability between the sites.

We compareR2, RMSE, andχ2 for the different sensitiv-
ity experiments in order to ascertain which combination of
meteorological and LAI forcings best reproduces the mea-
sured GPP over North America (Table 3 and Fig. 3). The
sites CA-Let, CA-NS1, US-Var, CA-SJ1, and CA-SJ2 are ex-
cluded from the analysis because of excessive bias(Fig. S6a
in the Supplement). The averageR2 increases while RMSE
decreases when MERRA reanalyses are substituted with site-
based meteorology, or the MERRA LAI is used instead of
MODIS LAI (Table 3). The choice of LAI forcing has the
most significant impact on YIBs simulation performance,
consistent with previous work that showed the dominance of
phenology over meteorology in controlling local terrestrial
carbon exchange (Desai et al., 2008; Puma et al., 2013). Us-
ing MODIS LAI, YIBs has a totalχ2 of 9.2 that shows an av-
erage reduction of 4.7 (52 %) with MERRA LAI (Table 3 and
Fig. 3). Applying the site meteorology relative to MERRA
meteorological forcings offers smaller improvements. For
example, the totalχ2 value decreases by 5 % in MET-
site_LAImodis compared with that in METmerra_LAImodis
and 15 % in METsite_LAImerra relative to that in MET-
merra_LAImerra (Table 3).

3.2 Evaluation of modeled surface [O3]

We validate summertime surface O3 simulated by the NASA
Model-E2 chemistry–climate model with observations from
the CASTNET and AIRDATA (Fig. 4). High O3 level ap-
pears in the eastern US due to anthropogenic emissions and
in the mountainous western US due to high elevation. The
model generally captures this spatial pattern with a corre-
lation coefficient of 0.39 against observations over the se-
lected 73 CASTNET sites (Fig. 4a–b). The simulation over-
estimates the O3 level by ∼ 4 ppbv (12 %) in the east and
∼ 1 ppbv (3 %) in the west. The CASTNET sites are located
in rural sites, which usually have lower [O3] than that in ur-
ban areas, except for some megacities where the excessive
NOx emissions result in lower O3 level (Gregg et al., 2003). 40 
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Figure 2. Histogram of(a) χ2 for O3-free GPP and changes inχ2

after the inclusion of O3 damage impact with(b) low and(c) high
O3 sensitivity. Each bar represents the number of sites where the
χ2 or 1χ2 of simulations fall between the specific thresholds as
defined by thex axis intervals. The minimum and maximum ofχ2

or 1χ2 are indicated as the two ends ofx axis in the plots. The
land cover definitions are as follows: ENF, Evergreen Needleleaf
Forest; DBF, Deciduous Broadleaf Forest; SHR, Shrubland; GRA,
Grasslands; CRO, Croplands. Results for each site are detailed in
Fig. S6 in the Supplement.

Therefore, we also compare the simulated MDA8 [O3] with
monitored at∼ 1200 AIRDATA sites, which covers both ur-
ban and rural regions (Fig. 4c). In the eastern US, the model
captures high [O3] centers around Michigan, Indiana, and
Ohio states and that along the northeast coast. In the west,
the simulation reproduces high [O3] over mountain regions
and in California. On average, the simulated MDA8 [O3] is
lower by ∼ 0.5 ppbv (1 %) in the east and∼ 3.5 ppbv (7 %)
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Table 3.Statistics∗ for site-level simulations.

R2 RMSE χ2

ID Simulations min max mean min max mean min max total
1 METmerra_LAImodis 0.14 0.85 0.63 1.2 6.4 3.0 1.4 37.6 9.4
2 METsite_LAImodis 0.16 0.85 0.67 1.1 5.8 2.9 1.1 39.6 8.9
3 METmerra_LAImerra 0 0.88 0.66 1.3 4.2 2.4 1.2 16.6 4.8
4 METsite_LAImerra 0 0.87 0.68 1.0 4.2 2.3 1.2 13.4 4.1
5 METsite_LAImerra_LO3 0 0.88 0.69 1.0 4.1 2.3 1.1 13.0 3.9
6 METsite_LAImerra_HO3 0 0.88 0.69 1.0 4.1 2.2 1.0 12.3 3.7

∗ Statistics include minimum and maximum values ofR2, RMSE, andχ2 for 35 NCAP sites withχ2 < 16 (Fig. S6a in the Supplement).
We also calculate the mean values ofR2 and RMSE for these sites. We calculate the totalχ2 (shown as red bars in Fig. 3) using all the
available observations over all sites.
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in the west. The correlation coefficient between simulations
and observations is as high as 0.51 (Fig. 4d).

3.3 O3 damage effects at NACP sites

We must apply the simulated O3 to quantify the O3 vege-
tation damage at the NACP sites because the sites do not
monitor local [O3]. The summer average [O3] is 30–50 ppbv
at 24 US sites (Fig. 5a). The O3 damage effect is relatively
stronger at sites with both high O3-free GPP and ambient
[O3] (Fig. 5d). The most significant damages are predicted
at US-MMS (DBF) and US-Dk3 (ENF) sites, where the GPP
reductions are 5–14 % depending on the low or high O3 sen-
sitivity (Fig. 5d). At these two sites, the high stomatal con-
ductance (4.0 and 3.4 mm s−1, Fig. 5b) and ambient [O3]
(both 43 ppbv, Fig. 5a) result in the largest O3 stomatal flux
(both∼ 0.3 mmol m−2 d−1, Fig. 5c) among the 24 sites. The
lowest O3 damage (1–2 % GPP reduction) appears in the
three shrub sites, US-Ton, US-SO2, and US-Los, although
mean [O3] there is as high as 43 ppbv. The main reason for

the limited O3 damage is the low stomatal conductance (av-
erage 1.4 mm s−1, Fig. 5b) related to the small O3-free GPP
(average 4.6 g C m−2 d−1, Fig. 5d). Similarly, the O3 damage
for C3 grass is as low as 1–2 %, although the GPP of this
plant is highly sensitive to O3 (Table 1). For ENF and DBF
sites, the average site-level O3 damage effects are estimated
to be 2–5 and 3–9 % respectively with differences between
these ecosystem types predominantly driven by differences
in sensitivity to O3. The four C4 crop sites, US-Ne1, US-
IB1, US-Ne2, and US-Ne3, exhibit the highest O3-free GPP
but show only moderate O3 damage effects (GPP reductions
of 4–6 %, Fig. 5d). This result is driven by low ambient [O3]
at the C4 crop sites (average 32 ppbv, Fig. 5a) in combina-
tion with the reduced C4 stomatal conductance (higher wa-
ter use efficiency) relative to C3 plants (average 3.2 mm s−1,
Fig. 5b). Indeed, the C4 photosynthetic pathway has been ob-
served to offer protection against O3 damage (Heagle et al.,
1989; Rudorff et al., 1996).

Inclusion of O3 damage effect improves the site-level sim-
ulations (Fig. 2b–c). For 36 out of the 40 sites, theχ2 of
simulated GPP decreases when considering vegetation re-
sponses to O3, and the improvement is better when higher
O3 sensitivity is applied. At these sites, for example, CA-
TP4, US-Dk3, US-MMS, and US-PFa, the reduced GPP at
peak seasons is closer to measurements (not shown), lead-
ing to smaller biases for simulations. On average, theχ2 de-
creases by 3–8 % at these sites, depending on the O3 sen-
sitivity in the simulation (Table 3 and Fig. 3). Finally, the
simulated annual GPP averaged over all NACP sites changes
from 3.8 g C m−2 day−1 to 3.6 g C m−2 day−1 with the high
O3 sensitivity simulation case, closer to the observations of
3.0 g C m−2 day−1. The bias-correction from O3 damage is
much smaller relative to the effect of phenology (Fig. 3).
Moreover, the O3-induced damage does not improve the GPP
correlation between observations and simulations, which re-
mains similar at∼ 0.8 (for 40 sites) with and without O3 ef-
fects (Fig. S5 in the Supplement).
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Fig. 5. Simulated June-July-August (JJA) summertime average (a) surface [O3], (b) 1100 
stomatal conductance, (c) ozone stomatal flux, and (d) damages to GPP at different O3 1101 
sensitivity for 24 U.S. sites. The sites are sorted according to the simulated O3-free GPP 1102 
in (d). For each site, the result represents the average over the period when the site GPP 1103 
measurements are available during JJA. The land cover definitions are: ENF, Evergreen 1104 
Needleleaf Forest; DBF, Deciduous Broadleaf Forest; SHR, Shrubland; GRA, 1105 
Grasslands; CRO, Croplands. 1106 
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Figure 5. Simulated June–July–August (JJA) summertime average(a) surface [O3], (b) stomatal conductance,(c) ozone stomatal flux, and
(d) damages to GPP at different O3 sensitivity for 24 US sites. The sites are sorted according to the simulated O3-free GPP in(d). For each
site, the result represents the average over the period when the site GPP measurements are available during JJA. The land cover definitions
are as follows: ENF, evergreen needleleaf forest; DBF, deciduous broadleaf forest; SHR, shrubland; GRA, grasslands; CRO, croplands.

www.atmos-chem-phys.net/14/9137/2014/ Atmos. Chem. Phys., 14, 9137–9153, 2014



9146 X. Yue and N. Unger: Ozone vegetation damage effects on gross primary productivity

 44 

 1109 
 1110 

−60 −40 −20 0 20

20

40

60

80

100

120

140

L

L

L

L

[O
3] (

pp
bv

)

All PFTs (40)

−60 −40 −20 0 20

20

40

60

80

100

120

140

W

W

ENF (20)

−60 −40 −20 0 20

20

40

60

80

100

120

140

W

W

DBF (6)

−60 −40 −20 0 20

20

40

60

80

100

120

140

[O
3] (

pp
bv

)

Changes in GPP (%)

SHR (5)

−60 −40 −20 0 20

20

40

60

80

100

120

140

Fe Fo
M

M
A

I

I

I

Changes in GPP (%)

GRA−C3 (5)

−60 −40 −20 0 20

20

40

60

80

100

120

140

T

G

Changes in GPP (%)

CRO−C4 (4)

 1111 
 1112 
Fig. 6. Percentage change in GPP (%) averaged across all sites and grouped by individual 1113 
PFT type in the presence of different levels of [O3] as simulated by the YIBs vegetation 1114 
model. Simulations are performed at 40 NACP sites with a prescribed fixed [O3] for 1115 
either low or high O3 sensitivity. Blue points indicate the average model reduction with 1116 
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Taylor et al. (2002) for spartina alterniflora and Grantz et al. (2012) for sugarcane 1123 
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Figure 6. Percentage change in GPP (%) averaged across all sites and grouped by individual PFT type in the presence of different levels of
[O3] as simulated by the YIBs vegetation model. Simulations are performed at 40 NACP sites with a prescribed fixed [O3] for either low or
high O3 sensitivity. Blue points indicate the average model reduction with the blue horizontal lines indicating the damage range across low
to high O3 sensitivity. The number of sites used to obtain the average reduction value is shown in the title bracket of each subplot. The solid
squares with lines show the results (mean plus uncertainty) based on measurements reported in multiple studies. Measurements include the
following: Lombardozzi et al. (2013) for all PFTs; Wittig et al. (2007) for evergreen needleleaf forest (ENF) and deciduous broadleaf forest
(DBF); C4 grass or crop (CRO_C4) from Taylor et al. (2002) forspartina alternifloraand Grantz et al. (2012) for sugarcane hybrids; C3
grass or crop (GRA_C3) from Feng et al. (2008) for wheat, Foot et al. (1996) forcolluna vulgaris, Mulchi et al. (1992) for soybean, and Ishii
et al. (2004) and Ainsworth (2008) for rice. Values for rice are denoted in green and others in red. The author initials are indicated for the
corresponding studies.

3.4 Evaluation of simulated O3 vegetation damage
against field and laboratory data

We compare the simulated O3 damage effect with field
and laboratory measurements from the published literature
(Fig. 6). In total, 14 additional sensitivity experiments are
performed with different levels of [O3] at each NACP site
(see Sect. 2.2.1). GPP reductions increase accordingly with
the increasing [O3] (Fig. 6). For a given [O3], the O3 damage
effect is strongest for C4 crops (despite the lowergs : Anet
ratio) but weakest for shrubland. YIBs simulates reasonable
O3 damage to GPP for all model PFTs compared to the
meta-analyses of Wittig et al. (2007) and Lombardozzi et
al. (2013). Field studies in shrubland are limited. Zhang et
al. (2012) investigated the responses of four shrub species to
[O3] = 70 ppbv and found large reductions in net photosyn-
thesis of 50–60 %. The average O3-freeAnet of those shrub
species was 8–16 g [C] m−2 s−1, much higher than even the
gross photosynthesis (A) of 6 g [C] m−2 s−1 at the shrub
NACP sites, likely because the latter are located in dry and/or

cold areas (Fig. S1 in the Supplement). The YIBs simulated
O3 vegetation damage effects for C4 plants are in good agree-
ment with field measurements from Taylor et al. (2002) and
Grantz et al. (2012). In the case of C3 grass and C3 crop,
the model simulates consistent GPP reduction percentages
with observations from Feng et al. (2008) for wheat, Foot et
al. (1996) forcolluna vulgaris, and Mulchi et al. (1992) for
soybean. However, these O3 damage results are all > 50 %
less than for available measurements in rice crops (Ishii et
al., 2004; Ainsworth et al., 2008), suggesting that rice may
have much higher O3 sensitivity than other C3 plants. In the
US rice plantation area is much smaller than that of soybean
and corn. Therefore, we adopt the O3 sensitivity parameters
for C3/C4 plants shown in Table 1 for the regional simula-
tions.

3.5 O3 vegetation damage effect on GPP in US region

High values of simulated summertime GPP (including O3
damage effect) appear east of 95◦ W in the US (Fig. 7a),
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Figure 7. Simulated summertime(a) O3-exposed GPP and(b) O3
stomatal flux over the US. The simulated GPP is overlaid with
in situ measurements from NACP. The simulations are performed
with land cover from ISLSCP and meteorological forcings from
MERRA reanalysis. Figure S8 in the Supplement separates results
for model and measurements.

because the land surface there is covered by crops and
forests. A high center of GPP (> 10 g C m−2 day−1) appears
over cropland in the north central US In the western US, the
coverage of grass and shrub and the low water availability
(low precipitation and soil moisture) over semi-arid regions
lead to a low carbon-assimilation rate. The regional gridded
simulated GPP reproduces the JJA growing season average
NACP site-level fluxes with a correlation coefficient of 0.62
for 32 sites below 50◦ N (points in Fig. 7a). The correlation
is lower than the 0.84 estimated for the site-level simulation
METsite_LAImerra at the same sites and the same season.
Since the meteorological forcings and LAI are similar, the
difference in land cover, ISLSCP vs. site definitions (Figs. S1
and S2 in the Supplement), accounts for the discrepancy be-
tween regional and site-level simulations.

On average, the simulated summer GPP (including the
high O3 damage effect) is 9.5 g C m−2 day−1 in the eastern
US (east of 95◦ W) and 3.9 g C m−2 day−1 in the western US
(west of 95◦ W), giving a mean value of 6.1 g C m−2 day−1

for the US region. The total carbon uptake is estimated
to be 4.43± 0.18 Pg C during the summer growing season,
accounting for 57–60 % of the annual average value of
7.59± 0.25 Pg C over the 1998–2007 period. Our estimate of
annual carbon uptake is consistent with previous published
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Figure 8. Simulated reduction fraction in summer GPP in the US
due to(a) low and(b) high O3 sensitivity for 1998–2007.

estimates. For example, Xiao et al. (2010) upscaled site-level
GPP flux to continental scale with a regression tree approach
based on both NACP fluxes and remote-sensing variables.
They estimated that the total GPP in US ranges from 6.91
to 7.33 Pg C per year during 2000–2006. Using the same ob-
servations but with a process-based biogeochemical model,
Chen et al. (2011) estimated a range of 7.02–7.78 Pg C per
year for 2000–2005, which is even closer to our estimate.

We calculate both O3 stomatal flux (Fig. 7b) and the re-
sultant damage on GPP (Fig. 8) in the US region for the
1998–2007 period. High O3 stomatal flux is predicted in
the eastern US due to co-location of the high GPP (medium
to high stomatal conductance) and the substantial ambi-
ent [O3]. On average, the summertime O3 plant uptake is
117 µmol m−2 day−1, with 207 µmol m−2 day−1 in the east-
ern US and 59 µmol m−2 day−1 in the western US Following
the O3 stomatal flux, the largest mean GPP reductions are
predicted for the eastern US growing season, in the range
4–8 % depending on the O3 sensitivity applied in the simu-
lations (Fig. 8). Locally, reduction fraction reaches as high
as 11–17 % in areas with high [O3] pollution, such as Michi-
gan, Indiana, Ohio, and states along the northeast coast. De-
spite high surface [O3] over mountainous elevated areas in
the west (Fig. 4), impacts on GPP are limited due to the low
stomatal conductance and low photosynthetic rate there. The
Pacific northwestern forests are an exception, with a moder-
ate GPP reduction of 1–7 %. On average, the total summer
GPP is reduced by 2–5 % due to O3 damage effects in the
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Figure 9. Simulated changes in summer GPP due to(a, c) 25 % reduction or(b, d) 25 % increase in [O3] for (a, b) low or (c, d) high O3
sensitivity.

US Similar reduction fractions are predicted for the annual
GPP.

US surface [O3] exhibits a decreasing trend over the past 2
decades, especially in the eastern US, due to precursor emis-
sion controls (Lefohn et al., 2010). However, the commu-
nity continues to debate how surface [O3] will respond to fu-
ture emissions and climate change. On the one hand, surface
[O3] may decline by the mid 21st century due to large reduc-
tions in regional anthropogenic precursor emissions (Wu et
al., 2008). On the other hand, climate change effects alone
may increase local surface [O3] due to the warmer, drier, and
more stable environment (Leibensperger et al., 2008; Wu et
al., 2008). Due to the uncertainty in future surface [O3] pro-
jections, our strategy here is to perform four additional sen-
sitivity experiments with±25 % changes in [O3] for each O3
sensitivity case. Increases of 25 % in [O3] may reduce GPP
in the eastern US by 6–11 %, with a maximum local reduc-
tion of 25 % for the high O3 sensitivity case (Fig. 9d). The
damage magnitude with low O3 sensitivity (Fig. 9b) mimics
the present-day estimate with high O3 sensitivity (Fig. 8b).
In contrast, the O3 damage to the eastern US GPP is as low
as 2–4 % in response to 25 % decreases in [O3] (Fig. 9a, c),
suggesting a substantial co-benefit to ecosystem-health of O3
precursor emissions control.

4 Conclusions

We have performed an updated assessment of O3 vegetation
damage effects on GPP in the US for the 1998–2007 period

using the YIBs vegetation model. The semi-mechanistic pa-
rameterization of O3 inhibition on photosynthesis proposed
by Sitch et al. (2007) has been implemented into this process-
based vegetation model. The simulated O3 damage effects
are consistent with laboratory and field measurements re-
ported in previously published studies. We evaluated the sim-
ulated O3-free and O3-damaged GPP with in situ measure-
ments from 40 NACP sites. The O3-free and O3-damaged
GPP simulations capture the seasonality and interannual
variability of GPP at most sites. The model GPP biases are
lowest at forest and cropland sites but highest at grassland
sites. Model GPP is highly sensitive to choice of LAI forc-
ing. Simulations that apply MERRA LAI generally perform
better (show lower biases) than those with MODIS LAI. In
response to the simulated ambient [O3] of 30–50 ppbv, sim-
ulated GPP decreases by 1–14 % at the NACP sites, depend-
ing on the O3 sensitivity and PFT type. Maximum reduc-
tions of 5–14 % occur in two forest sites, where both O3-free
GPP and ambient [O3] are relatively high. Inclusion of the
O3 damage offers only a small improvement to the simulated
annual average GPP at NACP sites (from 3.8 g C m−2 day−1

to 3.6 g C m−2 day−1) such that the model still overestimates
the observational average of 3.0 g C m−2 day−1. The model
GPP overestimate is most likely related to the use of generic
PFT-specific photosynthesis parameters and the satellite pre-
scribed LAI that may not represent the local site LAI. In
this work, we assumed a coupled response between photo-
synthesis and stomatal conductance. Emerging research has
found that the O3 vegetation damage effects can actually re-
sult in a loss of plant stomatal control, and a consequent
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decoupling of the stomatal response from photosynthesis in-
hibition (Lombardozzi et al., 2012a, b). Treatment of this de-
coupled response in the YIBs model would lead to a higher
level of O3 flux entering leaves, thus causing stronger dam-
age. Interestingly, this mechanism would provide a way to
improve the simulated GPP overestimates. However, other
studies have suggested that the O3 damage to GPP may
be offset by the benefits of co-located nitrogen deposition
(Ollinger et al., 2002; Felzer et al., 2007), or even limited by
carbon-nitrogen interactions (Kvalevag and Myhre, 2013).

Regional simulations for the US yield a summertime
GPP (with high sensitivity O3 damage) of 6.1 g C m−2 day−1

(9.5 g C m−2 day−1 in the eastern US and 3.9 g C m−2 day−1

in the western US). The total carbon uptake was estimated to
be 4.43± 0.18 Pg C for the summer, accounting for 57–60 %
of the annual value of 7.59± 0.25 Pg C over the 1998–2007
period. Carbon assimilation rate is suppressed by 4–8 % on
average in the summertime eastern US with maximum local
damage of 11–17 % in states close to the Great Lakes and
along the eastern coast. When [O3] is decreased by 25 %, O3
damage to GPP is only 2–4 % in the eastern US, indicating
substantial improvements to vegetation health and carbon as-
similation rate. Previously, Felzer et al. (2004) found annual
average O3-induced NPP reductions of 3–7 % over the US
for 1989–1993 and simulated the largest reductions in states
close to the Great Lakes and along the East Coast, where the
high O3 sensitivity of crops makes the dominant contribu-
tion. Our study examined O3 damage effects a decade later
than Felzer et al. (2004) but gives consistent results. Quali-
tatively, this consistency between decades may be explained
by the offsetting influences of (i) surface O3 reductions due
to air quality control legislation and (ii) GPP increases due to
CO2-fertilization and rising temperatures. Felzer et al. (2004)
estimated a maximum local NPP reduction of 34 %, which is
double the maximum of 17 % in our analyses. Furthermore,
Felzer et al. (2004) found widespread reductions of > 6 % in
the Midwest where there is almost no O3 impact in this study
(Fig. 8). Differences between the studies are mostly likely
driven by the use of different vegetation cover and LAI data
sets, and the use of a semi-mechanistic flux-based uptake in
this study vs. the concentration-based uptake method else-
where.

The current work has used an off-line approach. Yet, the
O3-vegetation-meteorology system is strongly coupled. For
instance, plant productivity itself controls the emission of
isoprene, a major O3 precursor. The O3-induced modifica-
tion to stomatal conductance may inhibit evapotranspira-
tion, leading to changes in canopy temperature, precipita-
tion, soil moisture, and other surface hydrology and mete-
orology (Bernacchi et al., 2007; VanLoocke et al., 2012). In
future work, we will study O3 vegetation damage effects us-
ing YIBs embedded within a fully coupled global chemistry–
climate model framework in order to account for these feed-
backs including altered canopy energy fluxes and partitioning
between latent and sensible heat that drive regional climate
and hydrology. In addition, the O3 damage algorithm param-
eters were calibrated using limited measurements for a few
plant species, and were based on biomass yield not photosyn-
thetic rate (Sitch et al., 2007). Future work will exploit recent
extensive meta-data analyses (Lombardozzi et al., 2013; Wit-
tig et al., 2007) to refine the ozone damage parameterization
in YIBs including the decoupled modification of photosyn-
thesis and stomatal conductance.
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Appendix A

Table A1. Descriptions of NACP sites in Canada (CA-) and US (US-)a.

Site PFTb Description Longitude Latitude Period

CA-Ca1 ENF Campbell River 125.3◦ W 49.9◦ N 1998–2006
CA-Ca2 ENF Campbell River 125.3◦ W 49.9◦ N 2001–2006
CA-Ca3 ENF Campbell River 124.9◦ W 49.5◦ N 2002–2006
CA-Gro MF Groundhog River 82.2◦ W 48.2◦ N 2004–2006
CA-Let GRA Lethbridge Grassland 112.9◦ W 49.7◦ N 2001–2007
CA-Mer WET Eastern Peatland 75.5◦ W 45.4◦ N 1999–2006
CA-NS1 ENF UCI Chronosequence 124.9◦ W 49.5◦ N 2001–2005
CA-Oas DBF BERMS 106.2◦ W 53.6◦ N 1997–2006
CA-Obs ENF BERMS 105.1◦ W 54.0◦ N 2000–2006
CA-Ojp ENF BERMS 104.7◦ W 53.9◦ N 2000–2006
CA-Qfo ENF Quebec 74.3◦ W 49.7◦ N 2004–2006
CA-SJ1 ENF BERMS 104.7◦ W 53.9◦ N 2002–2005
CA-SJ2 ENF BERMS 104.6◦ W 53.9◦ N 2004–2006
CA-SJ3 ENF BERMS 104.6◦ W 53.9◦ N 2005–2006
CA-TP4 ENF Turkey Point 80.4◦ W 42.7◦ N 2003–2007
CA-WP1 WET Western Peatland 112.5◦ W 55.0◦ N 2004–2007
US-ARM GRAc Southern Great Plains 97.5◦ W 36.6◦ N 2003–2007
US-Dk3 ENF Duke Forest 79.1◦ W 36.0◦ N 1998–2005
US-Ha1 DBF Harvard Forest 72.2◦ W 42.5◦ N 1992–2006
US-Ho1 ENF Howland Forest 68.7◦ W 45.2◦ N 1996–2004
US-IB1 CRO Fermi Lab 88.2◦ W 41.9◦ N 2006
US-IB2 GRA Fermi 88.2◦ W 41.8◦ N 2005–2006
US-Los WET Lost Creek 90.0◦ W 46.1◦ N 2001–2006
US-MMS DBF Morgan Monroe State Forest 86.4◦ W 39.3◦ N 1999–2006
US-MOz DBF Missouri Ozark 92.2◦ W 38.7◦ N 2005–2007
US-Me2 ENF Metolius 121.6◦ W 44.5◦ N 2002–2007
US-Me3 ENF Metolius 121.6◦ W 44.3◦ N 2004–2005
US-Me5 ENF Metolius 121.6◦ W 44.4◦ N 2000–2002
US-NR1 ENF Niwot Ridge 105.5◦ W 40.0◦ N 1999–2007
US-Ne1 CRO Mead 96.5◦ W 41.2◦ N 2002–2005
US-Ne2 CRO Mead 96.5◦ W 41.2◦ N 2003–2005
US-Ne3 CRO Mead 96.4◦ W 41.2◦ N 2002–2005
US-Pfa MF Park Falls 90.3◦ W 45.9◦ N 1997–2004
US-SO2 CSH Sky Oaks 116.6◦ W 33.4◦ N 1999–2006
US-Shd GRA Shidler 96.7◦ W 36.9◦ N 1998–1999
US-Syv MF Sylvania Wilderness Area 89.3◦ W 46.2◦ N 2002–2006
US-Ton WSA Tonzi Ranch 121.0◦ W 38.4◦ N 2002–2007
US-UMB DBF UMBS 84.7◦ W 45.6◦ N 1999–2006
US-Var GRA Varia Ranch 121.0◦ W 38.4◦ N 2001–2007
US-WCr DBF Willow Creek 90.1◦ W 45.8◦ N 1999–2006

a Site information is adopted from Schaefer et al. (2012), except that the operational time span listed here is only for the
period when measurements of GPP are available.
b PFT names are as follows: evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), grasslands (GRA),
croplands (CRO), closed shrublands (CSH), mixed forests (MF), permanent wetlands (WET), and woody savannas
(WSA).
c The land type at US-ARM is cropland in Schaefer et al. (2012). However, the site is covered by cattle pasture and wheat
fields (https://www.arm.gov/sites/sgp), which are more like C3 grassland.
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