

Supplement of

Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions

M. O. L. Cambaliza et al.

Correspondence to: M. O. L. Cambaliza (mcambali@purdue.edu)

24 Table S1. Calculated uncertainties in the analyses parameters used in the sensitivity analyses

25 presented in sections 2.3 (Methods) and 3.3 (Results and Discussion) in the main manuscript.

26 Results of the sensitivity analyses were presented in Table 2 in the main text.

27

Change (Δ) in	01 March 2011	29 April 2011	01 June 2011
Analyses Parameter			
Background CO ₂	0.3	0.2	0.5
(ppm) ^a			
Background CH ₄	1.3	3.2	2.6
(ppb) ^a			
CBL depth (m)	75	140	204
$\overline{U_{\perp}}$ (ms ⁻¹)	0.7	0.7	0.7
Background CO ₂ due	1	0.2	0.1
to UHI (ppm) ^b			
Background CH ₄ due	7.7	3.5	1.9
to UHI (ppb) ^b			

28

^a The uncertainties in background CO_2 and CH_4 are not constant with altitude. The ΔCO_2 and

30 ΔCH_4 presented in this table are the average uncertainties in the CO₂ and CH₄ backgrounds. See

31 section 2.3 in the main text for detailed discussion as well as Figure S5.

32 ^b This is the change in the CO₂ and CH₄ backgrounds assuming a 10% change in the urban CBL

depth due to the urban heat island effect. See Table S5 for details.

	Flight Date (2011)	Observed CBL depth (m)	Comment
	01 March	525	
	29 April	1110	
	01 June	1310	1 st vertical profile
		1880	2 nd vertical profile
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			

34 Table S2. Observed depths of the convective boundary layer for the three flight dates.

50	Table S3.	CO ₂ and	CH ₄ background	averaged over a	all altitudes	(mean $\pm 1s_m$),	where $1s_m$ is the
----	-----------	---------------------	----------------------------	-----------------	---------------	---------------------	---------------------

51 standard deviation of the mean at 95% CL calculated using atmospheric boundary layer statistics

_	Flight Date (2011)	CH ₄ (ppb)	CO ₂ (ppm)	
_	01 March	1955.2 ± 1.3	407.4 ± 0.3	
	29 April	1896.8 ± 3.2	399.6 ± 0.2	
	01 June	1880.6 ± 2.6	392.6 ± 0.5	
53				
54				
55				
56				
57				
58				
59				
60				
61				
62				
63				
64				
65				
66				
67				

52 (Lenschow and Stankov, 1986).

68	Table S4. Hestia (Gurney et al., 2012) and aircraft-based mass balance (Mays et al., 2009)
69	citywide CO_2 emissions flux for 2008 and 2009. Uncertainty in the Hestia county level
70	(equivalent to Indianapolis) fossil fuel CO ₂ emissions is $[-15\%, +20\%]$ at 95% C.I. while
71	uncertainty in the mass balance approach is $\pm 50\%$ (discussion of the precision of the mass
72	balance approach is presented in Section 3.4 in the main text).

Flight Date	Mass Balance CO ₂ Flux (mol s ⁻¹)	Hestia Flux of fossil fuel $CO_2 \pmod{s^{-1}}$
28 March 2008	8080	11222
02 April 2008	2500	9354
14 April 2008	9800	8324
15 April 2008	14000	9308
21 April 2008	6200	6084
28 November 2008	33000	7607
20 December 2008	30000	11552
07 January 2009	8700	12742

Table S5. Sensitivity analysis of the CO_2 and CH_4 emission rate as a function of change in CO_2 and CH_4 background molar ratios due to enhanced heat island boundary layer depths. We assumed a 10% increase in BL depth consistent with our measurements and that of Angevine et al. (2003).

84

Flight	BL	Bkgnd	Bkgnd	Ave	Ave	Adjusted	Adjusted	ΔCO_2	$\Delta \mathrm{CH}_4$	%	%
Date	depth	CO_2	CH_4	CO ₂	CH ₄ in	CO ₂	CH_4	(ppm)	(ppb)	Change	Change
in	(m)	(ppm)	(ppb)	in	Free	bkgnd	bkgnd			in CO ₂	in CH ₄
2011				Free	trop	(ppm)	(ppb)			Flux	Flux
				trop	(ppb)						
				(ppm)							
01	525	407.4	1955.2	397.7	1876.6	406.4	1947.3	1	7.7	57	57
Mar		± 0.3	± 1.3	± 1.0	± 7.3						
29	1110	399.6	1896.8	397.6	1861.6	399.4	1893.3	0.2	3.5	22	35
Apr		± 0.2	± 3.2	± 0.5	± 6.3						
01	1720	392.6	1880.8	393.3	1862.2	392.7	1878.9	0.1	1.9	6.3	23
Jun		± 0.5	± 2.6	± 0.6	± 6.6						
							Average:	0.4	4.4	28	38

85

86

87

88

Flight	Total No. of	No. of Usable	Transect	CO. Flux	CH. Flux	
Date in	Transasta	Transasta	Height	$(m_{2}1 a^{-1})$	$(m \circ 1 \circ^{-1})$	
2011	Transects	Transects	(m a.g.l.)	(mors)		
01 March	4	2	290	17000	170	
			360	8700	85	
				$(12800, 65\%)^{\dagger}$	(130, 65%) [†]	
29 April	7	5	200	6200	42	
			280	11000	140	
			380	16000	190	
			480	4600	63	
			590	6960	88	
				8950 ± 4600	105 ± 60	
				(51%)	(58%)	
01 June	7	5	210	17900	95	
			400	29970	120	
			710	30200	190	
			1020	23000	260	
			1210	21000	270	
				24000 ± 5500	190 ± 79	
				(23%)	(42%)	

90 Table S6. CO_2 and CH_4 fluxes derived from the single transect method. Also shown are the

91	mean and	standard	deviation	as wel	as the	relative	uncertainty in	n parenthesis.
----	----------	----------	-----------	--------	--------	----------	----------------	----------------

Figure S1. Inflight calibration curves for CO_2 and CH_4 for several flight experiments in 2011.

95 Dashed lines represent the linear least squares fits that were used to adjust the indicated

97 Figure S2. Comparison of CO₂ (A) and CH₄ (B) concentrations derived from continuous

98 measurements with the cavity ring-down spectrometer (CRDS) and grab sampling with the

99 Programmable Flask Package (PFP).

Figure S3. Frequency distribution of the relative uncertainty between the continuous CRDS measurements and discrete flask sampling (Figure S2) for (A) CO₂, and (B) CH₄. The relative uncertainty is defined as percentage difference between the CRDS and flask measurement where the flask measurement is taken to be the true value.

105 Figure S4. Experimental flight paths on (A) 01 March and (B) 29 April 2011 Indianapolis flight

106 experiments.

107 Figure S5. Vertically-varying background CO₂ and CH₄ for 01 March (A & B), 29 April (C &

- 108 D), and 01 June (E & F) 2011. Error bars represent the standard deviation of the mean at 95%
- 109 CL.

116 Figure S6. Descending vertical profiles of Potential Temperature and H₂O on (A) 01 March, (B)

117 29 April; and 01 June 2011 (C) before and (D) after the horizontal transects. Broken lines

118 indicate the estimated CBL depths for the three flight experiments.

Figure S7. Ascending vertical profiles of CO_2 and CH_4 (A) 01 March, (B) 29 April; and 01 June 2011 (C) before and (D) after the horizontal transects. Broken lines indicate the estimated CBL depths for the three flight experiments.

Figure S8. Flight paths for: Newton County landfill experiments on (A) 16 June 2011 and (B) 03
May 2012 where FODF stands for Fair Oaks Dairy Farm, (C) Twin Bridges LF on 30 August

125 2012, and (D) Harding Street power plant experiment on 01 June 2012.

126 Figure S8 continued.

Figure S9. Aircraft vertical profiles of potential temperature conducted 30-minutes apart on 30
June 2011 above (A) an INFLUX tower site located inside the city of Indianapolis (urban site),
and (B) a forested site in Moorseville, IN (rural site), which is located in southwest of

133 Indianapolis.

134

127

Figure S10. Total CO₂ versus fossil fuel CO₂ from flask measurements on 29 April and 01 June,
2011 flight experiments. Filled circles correspond to flask measurements sampled downwind of
the Harding Street Power Plant (HSPP) plume. Radiocarbon CO₂ was not measured on 01
March 2011.

Figure S11. (A) CO₂ and (B) CH₄ observations along the horizontal transects for the various
altitudes on 01 March 2011. CBL depth was 525 m. Broken lines represent the minimum and
maximum horizontal limits of the city.