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Supplementary Material
S1. Complement to Sect. 2.2 “Identification and contribution of the major sources of PM, 5"

To identify the major sources of PM, 5 and estimate their contribution to fine aerosol masses, source
apportionment (SA) models have been extensively developed in the last three decades (Cooper and
Watson, 1980; Gordon, 1980; Hopke, 1981, 1985; Watson et al., 2002). Three main groups of SA
methods can be distinguished according to Viana et al. (2008): (1) methods based on the evaluation
of monitoring data using basic numerical data treatment (e.g. Lenschow et al., 2001), (2) methods
based on emission inventories and/or dispersion models to simulate aerosol emission, formation,
transport and deposition (e.g. Visser et al., 2001) and (3) methods based on the statistical evaluation
of PM chemical data acquired at receptor sites (so-called receptor models). The latter class of
techniques was here chosen because of their advanced mathematical approach, their robustness
(e.g. Hopke et al., 2006) and their widespread use in the literature (Belis et al., 2013; Zhang et al.,
2011), hence allowing comparisons between methods and results achieved (e.g. Poirot et al., 2001;
Zheng et al., 2002).

A receptor model was used to identify the major sources of PM,s and estimate their
contribution to fine aerosol masses. Receptor models assume mass conservation and use a mass
balance analysis to identify and apportion sources of airborne PM (Hopke et al., 2006). Equation S1
resumes this principle for a dataset consisting of n samples made of m chemical species emitted by p
independent sources:

Xij = Ype1 ik * frj (S1)

where x; is the measured concentration of the jth species in the it sample, g; is the contribution of
the k™ source to the i" sample and fi; is the concentration of the i chemical species in the material
emitted by the k™ source. Different models can be used to solve Eq. (S1), including Principal
Component Analysis (Blifford and Meeker, 1967), Chemical Mass Balance (Friedlander, 1973; Miller
et al.,, 1972; Winchester and Nifong, 1971), UNMIX (Henry and Kim, 1990; Kim and Henry, 1999,
2000) and Positive Matrix Factorization (Paatero and Tapper, 1994; Paatero, 1997), to name a few.



For the present study, we decided to use the PMF model because: i) it does not require a
priori knowledge about source profiles i.e. source chemical composition, ii) it accounts for
measurement uncertainties allowing weighting of individual samples and iii) it forces every source
contribution and source profile to be non-negative (Reff et al., 2007). The mathematical model in its
matrix form is:

X=G+F+E (52)

where X is the chemical dataset matrix, G is the source contribution matrix, F the source profile
matrix and E the so-called residual matrix. In index notation Eq. (S2) can be written as:

Xij = Ype1 Jik * fij + €ij (S3)

where e; represents the residual element, or the PMF model error, for the species j measured in the
sample i (see Eq. (S1) for the explanation of the other parameters). The PMF model aims at resolving
Eg. (S3) by minimising a Q function defined as:

Q = XL T Ch? (s4)

where o is the uncertainty associated to the jth species in the it sample. Different Q functions can be
defined: Q. calculated including all data and Q... calculated excluding outliers i.e. data for which
the scaled residual (e;/o;) is greater than 4. (Note that Qneoretical Will NOt be studied here as explained
in Sect. S2.) Mathematically speaking, PMF is thus a constrained weighted least square method
attempting to find G and F matrices that best reproduce X. Different programs have been developed
to solve Eq. (S3) by minimising the Q function, which includes PMF2 (Paatero and Tapper, 1994,
Ulbrich et al., 2009), PMF3 (Paatero, 1997) and Multilinear Engine (Paatero, 1999). A second version
of the ME program was used here (ME-2; Paatero, 2000; Norris et al., 2009; Canonaco et al., 2013). It
was integrated in the standalone PMF version of the United States Environmental Protection Agency
(US-EPA) known as EPA PMF3.0 (Norris et al., 2008) and can be downloaded at
http://www.epa.gov/heasd/products/pmf/pmf.html. Comparisons between the different solving
programs can be found in the literature (e.g. Amato et al., 2009; Dutton et al., 2010; Ramadan et al.,
2003) and attest the validity and the robustness of the ME-2 version.

S2. Complement to Sect. 2.2.2 “Data preparation”

The construction of the concentration dataset (X matrix) demands a precise and critical
analysis of the chemical dataset. We initially used the whole chemical database described in Bressi et
al. (2013) and Poulakis et al. (2012), in addition with the species mentioned in the Sect.1.1.2. This
comprises PM, s mass and 29 chemical components: PM,,,, EC, OM, CI, NO3, SO,”, Na*, NH,", K,
Mg“, Ca®, Al, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Pb, levoglucosan, mannosan, arabitol and
mannitol. Unfortunately, for specific compounds, atmospheric concentrations were mostly below the
Method Quantification Limit (MQL) and therefore difficult to interpret. After testing different
threshold values, we decided to exclude every compound exhibiting less than 40% of their values
above the MQL, which concerns Al, Cr, As, arabitol and mannitol. In addition, to avoid redundant
species, Ca was excluded from the dataset but Ca*" was taken into account, and levoglucosan and
mannosan concentrations were subtracted from organic matter levels.

We also had to deal with missing species measurements due to analytical problems for
specific samples. EPA PMF3.0 does not allow missing data to be implemented in the X matrix. These
data are generally replaced by “virtual” values having larger uncertainties in order to lower their
influences in the PMF modelling (Huang et al., 1999; Polissar et al., 1998; Reff et al., 2007). Every



missing data was here replaced by the median of the corresponding species, and associated an
uncertainty of four times the species-specific median as suggested in Norris et al. (2008). The
detailed list of every processed missing data can be found in Table S2.

The second dataset, dealing with uncertainties associated with every species measurement,
was constructed following the procedure described by Norris et al. (2008) and adapted from Polissar
et al. (1998). This is an equation-based method that requires each species Method Detection Limit
(MDL) -in the same unit as the species concentration (here in pg/m?)- and its analytical uncertainty
(u) -in percentage-. The PMF uncertainty (o) is calculated as:

if xij < MDL;,¥j,then oj; =2+ MDL; (S5a)

lf xl-j > MDLL ,Vj, then Oij = J(ui *xij)z + (MDLL)Z (SSb)

MDLs and analytical uncertainties of our dataset were initially taken from Bressi et al. (2013),
Poulakis et al. (2012), and Ghersi et al. (2010), but lead to meaningless and non-robust results. An
adjustment was empirically made for every chemical species to have i) normally distributed scaled
residuals, ii) relevant MDL and u regarding the analytical method used and iii) mathematically
satisfactory and robust PMF results (see Sect. 2). Several empirical tests showed that when the
theoretical MDL of a given compound is not appropriate, taking its 5™ percentile as its MDL often
leads to suitable results. In fact, this method lowers the statistical weight of the smallest
concentrations of a given chemical species. However, it will prevent us from using the Qiheoretical
function to assess the quality of our uncertainty matrix, since the latter was optimized as described
above. MDLs and analytical uncertainties chosen are reported in Table S3.

With the EPA PMF3.0 software, additional uncertainties can be optionally attributed to single
species and/or to the overall dataset. Single species additional uncertainties were suggested by
Paatero and Hopke (2003) with a calculation based on the signal-to-noise ratio (S/N), which is
defined in EPA PMF3.0 as:
(5)_ _ S (xij—0y)?

N Xiz, 03

According to S/N values, species are categorised as "bad" (S/N<0.2), "weak" (0.2<S/N<2) or "strong"

(S2)

(S/N>2), although the authors mention the relatively arbitrary nature of these figures. The bad
categorisation excludes the species from the dataset, the weak triples the PMF uncertainty whereas
the strong does not add supplemental uncertainties. According to these criteria, Cd, Zn and Cu were
defined weak whereas all other species were categorised strong. PM mass was defined as a "Total
Variable" i.e. was regarded as being the sum of all PM chemical components; all available mass was
thus apportioned across the factors although part of this mass might still be unexplained. PM mass
variable was categorised weak to lower its influence in the final PMF results. An optional "Extra
Modeling Uncertainty" can be added in the EPA PMF3.0 version but was not applied here.

S3. Complement to Sect. 2.2.3 “Robustness of PMF results”

Bootstrap is a statistical inference method introduced by Efron (1979) to "estimate the sampling
distribution of some prespecified random variable on the basis of the observed dataset". It gives
information on the accuracy of an estimate or a statistic. The key idea is to "resample from the
original data to create replicate datasets from which the variability of the quantities of interest will



be assessed" (Davison and Hinkley, 1997). Resampling can either be performed from an empirical
data distribution (nonparametric bootstrap) or via a fitted model describing a specific distribution
(parametric bootstrap). This led to different bootstrap versions reported in Wehrens et al. (2000).
One major assumption required for having reliable bootstrap results, is that data are independent
and identically distributed (Singh, 1981), which is questionable for real atmospheric samples. A way
to solve this dependence issue is to use the so-called "blocked bootstrap" method, which is randomly
selecting blocks of successive data, instead of selecting individual elements (see Lahiri, 2003 for more
details). The relevant block length to be chosen is discussed in Politis and White (2004). More
information concerning the bootstrap theory can be found in Efron and Tibshirani (1993).

We used the bootstrap method suggested in the EPA PMF3.0 software which is a nonparametric
"blocked bootstrap" version. Non-overlapping blocks of consecutive samples are randomly selected
with replacement to create a new "bootstrap matrix" that has the same dimensions as the original X
matrix (bootstrap matrices will be noted with an "*" later on). PMF is then run on the X* matrix and
bootstrap factors are assigned to base run factors by comparing their contribution to PM mass (i.e.
by comparing G* and G columns, respectively). Bootstrap factors are "mapped" with base run factors
if their G* versus G column correlation is higher than a user defined threshold (see Sect. 1.2.4), and
"unmapped" otherwise. Further details concerning the bootstrap method used here can be found in
Norris et al. (2008).



Table S1. Days discarded from the PMF chemical dataset.
Note: days were discarded due to power failure during sampling (61%), problems with Leckel
sampler (14%), chemical analysis (14%), sampler calibration (4%), local contamination (4%) and other

reasons (4%).

Month/Year Day of month

09/09 15, 16
10/09 7
11/09 7
12/09 16,17, 18
01/10 7,11, 12
02/10 19, 25, 28
03/10 1,27, 28,29
04/10 3,4,5,6,11,12
05/10 -
06/10 -
07/10 16,17, 18, 19
08/10 7
09/10 -

Total (days) 28



Table S2. List of the missing data replaced by the median of the corresponding species concentrations.

Legend: numbers (unless bolded) refer to days of month.

Month/Year
09/09 10/09 11/09 12/09 01/10 02/10 03/10 04/10 05/10 06/10 07/10 08/10 09/10 Total (days)
PM 15 - - 17 28 - 28 4,5 - 9 16-19 7 - 12
oM 15,16  7,13,14 7,15 16-18  7,11,12 19,25,28 13,27,28 3-5,11 17,19,20 9,17,18  16-19 7 - 34
EC - 7 - 16-18 7 19, 25 14,28  4,5,29 - 5,9 17,18 - - 16
NO3 28 28 - - - - 2,28 4,5 - - 17,18 - - 8
SO4 17,18 28 - - - - 2,28 4,5 - - 17,18 - - 9
NH4 28 - - - - - 28 4,5 - - 17,18 - - 6
Na - - - - - - 28 4,5 - - 17,18 - - 5
cl - 28 - 12 13 - 2,28 4,5 - - 17,18 - - 9
Mg - - 11 - 1 - 28 4,5 - - 17,18 - - 7
K - - 8-10 - 1 - 28 4,5 - - 17,18 - - 9
Lev - 13, 14 15 17,18 - - 13,27,28 4,5 17 - 17,18 - - 13
Man - 13, 14 15 17,18 - - 13,27,28 4,5 17 - 17,18 - - 13
Vv - 19, 20 - 20, 30 16 - 9,27,28 4,5,19 21 15 17, 18,21 - - 16
Ni 16, 25 3,20 - 30 16 16 9,27,28 4'221315' 1'2270_'3212' ié,a'léife_ 2'2117'2158' 23 - 59
Fe - - 20 30 - 4,14  9,27,28 4,5 - 15 17, 18,21 - - 13
Mn - - - 27,30 - - 9,28-31 4,5 - 14,15 1421117;8' 17 - 17
Cu - - 20 17, 25, 30 1 14 9,27,28 4,5,27 - 15 17, 18,21 - - 16
Cd 23, 29 59 25 17,30 25-27 - 9,28-31 4,5 13 15, 23-30 15, Z 18, - - 34
Pb - - - 17, 25, 30 26 - 9,28-31 4,5,15 - 14,15 17,18,21 - - 17




Table S3. Method Detection Limits (MDL) and Analytical Uncertainties (u) chosen for PMF runs.

MDL u

pg.m3 %
PM 2.0E-01 5
oM 1.0E-01 15
EC 3.0E-01 15
NO3 1.3E-01 5
S04 4.3E-01 5
NH4 3.0E-01 5
Na 2.6E-01 10
cl 6.9E-02 10
Mg 5.5E-03 15
K 2.0E-02 10
Lev 5.2E-03 10
Man 5.1E-04 10
\" 2.0E-04 10
Ni 2.9E-04 20
Fe 3.6E-02 20
Mn 5.6E-04 15
Cu 1.0E-03 20
cd 2.1E-05 15
Pb 1.1E-03 15



Table S4. Using bootstrapping to determine the adequate number of factors in PMF.

Legend: r-value: minimum coefficient of determination used to assign a boot factor to a base factor, rows: bootstrap factors, columns: base factors, Un:
unmapped. The less robust bootstrap factor is boldfaced and coloured in red.

Note: Bootstrapping was not performed on the same base run for the 0.6 and 0.7 r-value configurations. In fact, for each configuration, 20 base runs were
conducted prior to bootstrapping and the base run showing the lowest Q-value was retained. Therefore, according to the r-value configuration, the different
factor numbers will not correspond to the same physical source.

r-value=0.6
1 2 3 4 5 6 Un 1 2 3 4 5 6 7 Un 1 2 3 a4 5 6 7 8 Un
1 100 O 0 0 0 0 0 1 100 O 0 0 0 0 0 0 1 100 O 0 0 0 0 0 0 0
2 0 100 O 0 0 0 0 2 0 9 1 0 0 0 0 3 2 0 99 0 0 0 0 0 1 0
3 0 0 100 O 0 0 0 3 0 0 100 O 0 0 0 0 3 0 0 100 O 0 0 0 0 0
4 0 0 1 99 0 0 0 4 0 0 0 100 O 0 0 0 a4 0 0 0 100 O 0 0 0 0
5 0 0 0 94 0 5 5 0 0 0 0 98 0 0 2 5 11 1 1 0 78 0 0 3 6
6 0 0 0 0 100 O 6 0 0 0 0 0 100 O 0 6 0 0 0 0 0 100 O 0 0
7 0 0 0 0 0 0 100 O 7 0 0 0 0 0 0 100 O 0
8 0 0 0 0 0 0 0 95 5

r-value=0.7
1 2 3 4 5 6 Un 1 2 3 4 5 6 7 Un 1 2 3 a4 5 6 7 8 Un
1 100 O 0 0 0 0 0 1 100 0O 0 0 0 0 0 0 1 100 O 0 0 0 0 0 0 0
2 0 99 0 0 0 0 1 2 0 9% 0 0 0 0 0 4 2 0 93 0 0 1 0 0 0 6
3 0 0o 8 1 0 0 16 3 0 0 100 O 0 0 0 0 3 0 0 100 O 0 0 0 0 0
4 0 0 0 100 O 0 0 4 1 0 0 95 0 0 1 3 a 0 0 0 99 0 0 0 0 1
5 0 0 0 0 99 0 1 5 0 0 0 0 100 O 0 0 5 0 0 0 0 100 O 0 0 0
6 0 0 0 0 0 100 O 6 0 0 0 0 0 100 O 0 6 3 3 0 0 o 75 0 217
7 0 0 0 0 0 0 100 O 7 0 0 0 0 0 0 100 O 0
8 0 0 0 0 0 0 0 100 O



Table S5. Sum of the squared difference between the scaled residuals (d-values) calculated for each
pair of base runs.
Note: Cf. Norris et al. (2008) and Sect. 2.1 for more information on this variable.

RUN# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 0.028

3 0.019 0.003

4 0.020 0.005 0.005

5 0.019 0.005 0.001 0.006

6 0.007 0.020 0.011 0.012 0.010

7 0.025 0.001 0.003 0.004 0.005 0.017

8 0.013 0.019 0.012 0.010 0.009 0.003 0.018

9 0.032 0.007 0.009 0.004 0.010 0.020 0.007 0.017

10 0.025 0.012 0.010 0.007 0.008 0.011 0.012 0.006 0.009

11 0.005 0.028 0.016 0.022 0.014 0.005 0.026 0.010 0.032 0.023

12 0.019 0.008 0.005 0.004 0.004 0.008 0.007 0.005 0.008 0.002 0.017

13 0.007 0.022 0.013 0.014 0.011 0.001 0.020 0.003 0.022 0.012 0.006 0.009

14 0.041 0.088 0.071 0.087 0.069 0.063 0.085 0.075 0.106 0.099 0.037 0.084 0.062

15 0.008 0.022 0.013 0.013 0.011 0.001 0.019 0.003 0.021 0.011 0.006 0.008 0.001 0.064

16 0.017 0.005 0.002 0.004 0.001 0.007 0.005 0.007 0.009 0.006 0.013 0.002 0.009 0.073 0.008

17 0.048 0.106 0.094 0.101 0.096 0.082 0.102 0.098 0.122 0.122 0.057 0.107 0.081 0.016 0.084 0.097

18 0.018 0.016 0.011 0.009 0.009 0.006 0.015 0.003 0.012 0.002 0.016 0.003 0.007 0.087 0.006 0.006 0.109

19 0.035 0.005 0.010 0.004 0.012 0.025 0.006 0.023 0.002 0.013 0.038 0.011 0.028 0.110 0.027 0.011 0.121 0.017
20 0.031 0.006 0.009 0.003 0.010 0.019 0.006 0.015 0.003 0.006 0.033 0.006 0.021 0.108 0.020 0.008 0.122 0.010 0.003



Table S6. Correlation (Pearson coefficient, R) between PMF factor time series and their presumable
tracers.

Legend: BCff: fossil fuel black carbon, Lev: levoglucosan, Mann: mannosan, BCwb: wood burning
black carbon. Pearson coefficients higher than 0.5 are indicated in bold.

Note: More information on this table can be found in Bressi et al. (2014).

SO, NO, v NOx BCff Lev Mann BCwb Na ct Mg Pb cCd

A.S. rich factor 0.85 0.58 007 025 025 021 034 020 -0.30 -0.17 -0.32 0.51 0.40
AN. rich factor 0.73 0.99 024 027 019 029 039 031 -0.24 -0.03 -0.26 043 0.52
Heavy oil combustion  0-35 0.11 075 009 022 -0.06 -0.05 -0.01 -0.25 -0.26 -0.16 0.29 0.27

Road traffic -0.09 -0.15 0.08 0.50 0.50 -0.01 0.01 0.14 -0.25 -0.23 -0.19 0.23 0.20
Biomass burning 021 044 012 061 022 099 098 0.89 -0.12 0.18 -0.17 0.42 031
Marine aerosols -0.45 -0.25 -0.25 -0.20 -0.22 -0.11 -0.15 -0.14 0.91 0.82 0.88 -0.35 -0.37
Metal industry 033 033 042 036 032 021 028 027 -0.19 -0.07 -0.20 0.85 0.92
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Table S7. Description of the different receptor model studies compared in Fig. 8 and discussed in
Sect. 3.3.1.
Note: Sites are indicated as: “City (Country)-Type of sites”. Urb: urban, Rur: rural, Kerb: kerbside.

PM mass Source Source
Authors Site Receptor model Year PM fraction (ug/m?) contribution  contribution
(ug/m°) (%)
Vallius et al., 2005 Amsterdam (Neth) - Urb PCA 1998-1999 PMas 20.0 6.8 34
Andersen et al., 2007 Copenhagen (Den) - Urb COPREM 1999-2004 PM1o 233 6.9 29
This study Paris (Fr) - Urb EPAPMF3.0 2009-2010 PMzs 14.7 7.4 51
Ammonium nitrate + Mooibroek et al., 2011 Schiedam (Neth) - Urb EPA PMF3.0 2007-2008 PMys 13 8.6 66
ammonium sulfate Mooibroeket al., 2011 Hellendoorn (Neth) - Rur EPAPMF3.0 2007-2008 PM2s 125 9.1 73
rich sources Mooibroek et al., 2011 Rotterdam (Neth) - Kerb EPAPMF3.0 2007-2008 PMas 16.4 10.0 61
Mooibroek et al., 2011 Vredepeel (Neth) - Rur EPAPMF3.0 2007-2008 PMas 14.5 10.7 74
Mooibroek et al., 2011 Cabauw (Neth) - Rur EPAPMF3.0 2007-2008 PMas 17.5 12.6 72
Quass et al., 2004 Duisburg (Ger) - Urb PMF 2003-2004 PM;s 22.8 13 57
Andersen et al., 2007 Copenhagen (Den) - Urb COPREM 1999-2004 PM1o 233 33 14
This study Paris (Fr) - Urb EPAPMF3.0 2009-2010 PMzs 14.7 35 24
Mooibroek et al., 2011 Schiedam (Neth) - Urb EPAPMF3.0 2007-2008 PM,s 13.0 5.6 43
Ammonium nitrate rich source  Mooibroeket al., 2011  Hellendoorn (Neth) - Rur EPAPMF3.0 2007-2008 PMas 12.5 6.0 48
Mooibroek et al., 2011 Vredepeel (Neth) - Rur EPAPMF3.0 2007-2008 PMas 14.5 6.4 44
Mooibroek et al., 2011 Rotterdam (Neth) - Kerb EPAPMF3.0 2007-2008 PMas 16.4 6.7 41
Mooibroek et al., 2011 Cabauw (Neth) - Rur EPAPMF3.0 2007-2008 PM; 5 17.5 7.7 44
Mooibroek et al., 2011 Schiedam (Neth) - Urb EPAPMF3.0 2007-2008 PM;s 13.0 3.0 23
Mooibroek et al., 2011 Hellendoorn (Neth) - Rur EPAPMF3.0 2007-2008 PM2s 12.5 3.1 25
Mooibroek et al., 2011 Rotterdam (Neth) - Kerb EPAPMF3.0 2007-2008 PMas 16.4 3.3 20
Ammonium sulfate rich source Andersen et al., 2007 Copenhagen (Den) - Urb COPREM 1999-2004 PM1o 233 35 15
This study Paris (Fr) - Urb EPAPMF3.0 2009-2010 PMzs 14.7 3.9 27
Mooibroek et al., 2011 Vredepeel (Neth) - Rur EPAPMF3.0 2007-2008 PMas 14.5 4.4 30
Mooibroek et al., 2011 Cabauw (Neth) - Rur EPAPMF3.0 2007-2008 PM; s 17.5 4.9 28
This study Paris (Fr) - Urb EPAPMF3.0 2009-2010 PMas 14.7 21 14
Lee etal., 2003 Toronto (Ca) - Urb PMF 2000-2001 PMas 12.8 2.3 18
Road traffic Maykut et al., 2003 Seattle (USA) - Urb PMFand UNMIX 1996-1999 PM;s 9.2 23 25
Minguillén et al., 2012 Zurich (Swi) - Urb EPAPMF3.0 Summer and Winter 2009 PM1o 10.2 3.8 37
Perronne et al., 2012 Milan (It) - Urb CMB 2006-2009 PMas 35.5 7.8 22
Karanasiou et al., 2009 Athens (Gr) - Urb PMF3 2002 PM2o 53 0.8 15
N . This study Paris (Fr) - Urb EPAPMF3.0 2009-2010 PM,s 14.7 18 12
Biomass combustion Perronne et al., 2012 Milan (It) - Urb CMB 2006-2009 PMas 35.5 7.1 16
Andersen et al., 2007 Copenhagen (Den) - Urb COPREM 1999-2004 PM1o 23.3 7.3 15
Andersen et al., 2007 Copenhagen (Den) - Urb COPREM 1999-2004 PM1o 233 2.2 9
. . Allemanetal.,, 2010 Dunkirk (Fr) - Urb PMF2 2003-2005 PM1o 25.0 23 9
Heavy oil combustion This study Paris (Fr) - Urb EPAPMF3.0 2009-2010 PM;s 14.7 2.4 16
Vallius et al., 2005 Amsterdam (Neth) - Urb PCA 1998-1999 PM;5 20.0 3.5 9
Mooibroek et al., 2011 Hellendoorn (Neth) - Rur EPAPMF3.0 2007-2008 PMas 12.5 0.8 6
This study Paris (Fr) - Urb EPAPMF3.0 2009-2010 PMzs 14.7 0.8 6
Mooibroek et al., 2011 Rotterdam (Neth) - Kerb EPAPMF3.0 2007-2008 PMas 16.4 0.8 5
N Mooibroeket al., 2011 Vredepeel (Neth) - Rur EPAPMF3.0 2007-2008 PMas 14.5 0.9 6
Marine aerosols ) o
Vallius et al., 2005 Helsinki (Fin) - Urb PCA 1998-1999 PMzs 12.2 0.9 7
Karanasiou et al., 2009 Athens (Gr) - Urb PMF3 2002 PMa2o 53 11 21
Mooibroek et al., 2011 Schiedam (Neth) - Urb EPAPMF3.0 2007-2008 PM2s 13.0 1.2 9
Mooibroek et al., 2011 Cabauw (Neth) - Rur EPAPMF3.0 2007-2008 PMas 17.5 1.6 9
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Fig. S1. Daily contribution (pg/m?) of the seven sources to PM, s mass from 11 September 2009 to 10 September 2010.
Note: results were taken from the base run exhibiting the lowest Q,opust.
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Fig. S2. Geographical distribution of 48-hour air mass back-trajectories from 11 September 2009 to
10 September 2010. Left: number of back-trajectories per cell used for PSCF (logarithmic scale); right:
number of back-trajectories per wind direction used for CPF (linear scale).

Note: The city of Paris is indicated by a grey dot on the left figure.
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