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Supplementary Material 

 
S1. Complement to Sect. 2.2 “Identification and contribution of the major sources of PM2.5” 

 
To identify the major sources of PM2.5 and estimate their contribution to fine aerosol masses, source 

apportionment (SA) models have been extensively developed in the last three decades (Cooper and 

Watson, 1980; Gordon, 1980; Hopke, 1981, 1985; Watson et al., 2002). Three main groups of SA 

methods can be distinguished according to Viana et al. (2008): (1) methods based on the evaluation 

of monitoring data using basic numerical data treatment (e.g. Lenschow et al., 2001), (2) methods 

based on emission inventories and/or dispersion models to simulate aerosol emission, formation, 

transport and deposition (e.g. Visser et al., 2001) and (3) methods based on the statistical evaluation 

of PM chemical data acquired at receptor sites (so-called receptor models). The latter class of 

techniques was here chosen because of their advanced mathematical approach, their robustness 

(e.g. Hopke et al., 2006) and their widespread use in the literature (Belis et al., 2013; Zhang et al., 

2011), hence allowing comparisons between methods and results achieved (e.g. Poirot et al., 2001; 

Zheng et al., 2002). 

A receptor model was used to identify the major sources of PM2.5 and estimate their 

contribution to fine aerosol masses. Receptor models assume mass conservation and use a mass 

balance analysis to identify and apportion sources of airborne PM (Hopke et al., 2006). Equation S1 

resumes this principle for a dataset consisting of n samples made of m chemical species emitted by p 

independent sources: 

    ∑        
 
             (S1) 

where xij is the measured concentration of the jth species in the ith sample, gik is the contribution of 

the kth source to the ith sample and fkj is the concentration of the jth chemical species in the material 

emitted by the kth source. Different models can be used to solve Eq. (S1), including Principal 

Component Analysis (Blifford and Meeker, 1967), Chemical Mass Balance (Friedlander, 1973; Miller 

et al., 1972; Winchester and Nifong, 1971), UNMIX (Henry and Kim, 1990; Kim and Henry, 1999, 

2000) and Positive Matrix Factorization (Paatero and Tapper, 1994; Paatero, 1997), to name a few.  
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For the present study, we decided to use the PMF model because: i) it does not require a 

priori knowledge about source profiles i.e. source chemical composition, ii) it accounts for 

measurement uncertainties allowing weighting of individual samples and iii) it forces every source 

contribution and source profile to be non-negative (Reff et al., 2007). The mathematical model in its 

matrix form is: 

                  (S2) 

where X is the chemical dataset matrix, G is the source contribution matrix, F the source profile 

matrix and E the so-called residual matrix. In index notation Eq. (S2) can be written as: 

     ∑        
 
                (S3) 

where eij represents the residual element, or the PMF model error, for the species j measured in the 

sample i (see Eq. (S1) for the explanation of the other parameters). The PMF model aims at resolving 

Eq. (S3) by minimising a Q function defined as: 

  ∑ ∑  
   

   
   

   
 
             (S4) 

where σij is the uncertainty associated to the jth species in the ith sample. Different Q functions can be 

defined: Qtrue calculated including all data and Qrobust calculated excluding outliers i.e. data for which 

the scaled residual (eij/σij) is greater than 4. (Note that Qtheoretical will not be studied here as explained 

in Sect. S2.) Mathematically speaking, PMF is thus a constrained weighted least square method 

attempting to find G and F matrices that best reproduce X. Different programs have been developed 

to solve Eq. (S3) by minimising the Q function, which includes PMF2 (Paatero and Tapper, 1994; 

Ulbrich et al., 2009), PMF3 (Paatero, 1997) and Multilinear Engine (Paatero, 1999). A second version 

of the ME program was used here (ME-2; Paatero, 2000; Norris et al., 2009; Canonaco et al., 2013). It 

was integrated in the standalone PMF version of the United States Environmental Protection Agency 

(US-EPA) known as EPA PMF3.0 (Norris et al., 2008) and can be downloaded at 

http://www.epa.gov/heasd/products/pmf/pmf.html. Comparisons between the different solving 

programs can be found in the literature (e.g. Amato et al., 2009; Dutton et al., 2010; Ramadan et al., 

2003) and attest the validity and the robustness of the ME-2 version. 

 
S2. Complement to Sect. 2.2.2 “Data preparation” 

 

The construction of the concentration dataset (X matrix) demands a precise and critical 

analysis of the chemical dataset. We initially used the whole chemical database described in Bressi et 

al. (2013) and Poulakis et al. (2012), in addition with the species mentioned in the Sect.1.1.2. This 

comprises PM2.5 mass and 29 chemical components: PMgrav, EC, OM, Cl-, NO3
-, SO4

2-, Na+, NH4
+, K+, 

Mg2+, Ca2+, Al, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Pb, levoglucosan, mannosan, arabitol and 

mannitol. Unfortunately, for specific compounds, atmospheric concentrations were mostly below the 

Method Quantification Limit (MQL) and therefore difficult to interpret. After testing different 

threshold values, we decided to exclude every compound exhibiting less than 40% of their values 

above the MQL, which concerns Al, Cr, As, arabitol and mannitol. In addition, to avoid redundant 

species, Ca was excluded from the dataset but Ca2+ was taken into account, and levoglucosan and 

mannosan concentrations were subtracted from organic matter levels. 

We also had to deal with missing species measurements due to analytical problems for 

specific samples. EPA PMF3.0 does not allow missing data to be implemented in the X matrix. These 

data are generally replaced by “virtual” values having larger uncertainties in order to lower their 

influences in the PMF modelling (Huang et al., 1999; Polissar et al., 1998; Reff et al., 2007). Every 
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missing data was here replaced by the median of the corresponding species, and associated an 

uncertainty of four times the species-specific median as suggested in Norris et al. (2008). The 

detailed list of every processed missing data can be found in Table S2. 

 

 The second dataset, dealing with uncertainties associated with every species measurement, 

was constructed following the procedure described by Norris et al. (2008) and adapted from Polissar 

et al. (1998). This is an equation-based method that requires each species Method Detection Limit 

(MDL) -in the same unit as the species concentration (here in µg/m3)- and its analytical uncertainty 

(u) -in percentage-. The PMF uncertainty (σ) is calculated as: 

                           
 

 
            (S5a) 

                           √(      )             (S5b) 

MDLs and analytical uncertainties of our dataset were initially taken from Bressi et al. (2013), 

Poulakis et al. (2012), and Ghersi et al. (2010), but lead to meaningless and non-robust results. An 

adjustment was empirically made for every chemical species to have i) normally distributed scaled 

residuals, ii) relevant MDL and u regarding the analytical method used and iii) mathematically 

satisfactory and robust PMF results (see Sect. 2). Several empirical tests showed that when the 

theoretical MDL of a given compound is not appropriate, taking its 5th percentile as its MDL often 

leads to suitable results. In fact, this method lowers the statistical weight of the smallest 

concentrations of a given chemical species. However, it will prevent us from using the Qtheoretical 

function to assess the quality of our uncertainty matrix, since the latter was optimized as described 

above. MDLs and analytical uncertainties chosen are reported in Table S3. 

 

With the EPA PMF3.0 software, additional uncertainties can be optionally attributed to single 

species and/or to the overall dataset. Single species additional uncertainties were suggested by 

Paatero and Hopke (2003) with a calculation based on the signal-to-noise ratio (S/N), which is 

defined in EPA PMF3.0 as: 

 
 

 
   √

∑           
 
   

∑     
 
   

          (S2) 

According to S/N values, species are categorised as "bad" (S/N<0.2), "weak" (0.2≤S/N≤2) or "strong" 

(S/N>2), although the authors mention the relatively arbitrary nature of these figures. The bad 

categorisation excludes the species from the dataset, the weak triples the PMF uncertainty whereas 

the strong does not add supplemental uncertainties. According to these criteria, Cd, Zn and Cu were 

defined weak whereas all other species were categorised strong. PM mass was defined as a "Total 

Variable" i.e. was regarded as being the sum of all PM chemical components; all available mass was 

thus apportioned across the factors although part of this mass might still be unexplained. PM mass 

variable was categorised weak to lower its influence in the final PMF results. An optional "Extra 

Modeling Uncertainty" can be added in the EPA PMF3.0 version but was not applied here. 

 

S3. Complement to Sect. 2.2.3 “Robustness of PMF results” 

 

Bootstrap is a statistical inference method introduced by Efron (1979) to "estimate the sampling 

distribution of some prespecified random variable on the basis of the observed dataset". It gives 

information on the accuracy of an estimate or a statistic. The key idea is to "resample from the 

original data to create replicate datasets from which the variability of the quantities of interest will 
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be assessed" (Davison and Hinkley, 1997). Resampling can either be performed from an empirical 

data distribution (nonparametric bootstrap) or via a fitted model describing a specific distribution 

(parametric bootstrap). This led to different bootstrap versions reported in Wehrens et al. (2000). 

One major assumption required for having reliable bootstrap results, is that data are independent 

and identically distributed (Singh, 1981), which is questionable for real atmospheric samples. A way 

to solve this dependence issue is to use the so-called "blocked bootstrap" method, which is randomly 

selecting blocks of successive data, instead of selecting individual elements (see Lahiri, 2003 for more 

details). The relevant block length to be chosen is discussed in Politis and White (2004). More 

information concerning the bootstrap theory can be found in Efron and Tibshirani (1993). 

We used the bootstrap method suggested in the EPA PMF3.0 software which is a nonparametric 

"blocked bootstrap" version. Non-overlapping blocks of consecutive samples are randomly selected 

with replacement to create a new "bootstrap matrix" that has the same dimensions as the original X 

matrix (bootstrap matrices will be noted with an "*" later on). PMF is then run on the X* matrix and 

bootstrap factors are assigned to base run factors by comparing their contribution to PM mass (i.e. 

by comparing G* and G columns, respectively). Bootstrap factors are "mapped" with base run factors 

if their G* versus G column correlation is higher than a user defined threshold (see Sect. 1.2.4), and 

"unmapped" otherwise. Further details concerning the bootstrap method used here can be found in 

Norris et al. (2008).  
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Table S1. Days discarded from the PMF chemical dataset. 
 
Note: days were discarded due to power failure during sampling (61%), problems with Leckel 
sampler (14%), chemical analysis (14%), sampler calibration (4%), local contamination (4%) and other 
reasons (4%). 

 

Month/Year Day of month 

09/09 15, 16 

10/09 7 

11/09 7 

12/09 16, 17, 18 

01/10 7, 11, 12 

02/10 19, 25, 28 

03/10 1, 27, 28, 29 

04/10 3, 4, 5, 6, 11, 12 

05/10 - 

06/10 - 

07/10 16, 17, 18, 19 

08/10 7 

09/10 - 

Total (days) 28 

  



6 
 

Table S2. List of the missing data replaced by the median of the corresponding species concentrations. 

Legend: numbers (unless bolded) refer to days of month. 

 

 

Month/Year   
  09/09 10/09 11/09 12/09 01/10 02/10 03/10 04/10 05/10 06/10 07/10 08/10 09/10 Total (days) 

PM 15 - - 17 28 - 28 4, 5 - 9 16-19 7 - 12 
OM 15, 16 7, 13, 14 7, 15 16-18 7, 11, 12 19, 25, 28 13, 27, 28 3-5, 11 17, 19, 20 9, 17, 18 16-19 7 - 34 
EC - 7 - 16-18 7 19, 25 14, 28 4, 5, 29 - 5, 9 17, 18 - - 16 

NO3 28 28 - - - - 2, 28 4, 5 - - 17, 18 - - 8 
SO4 17, 18 28 - - - - 2, 28 4, 5 - - 17, 18 - - 9 
NH4 28 - - - - - 28 4, 5 - - 17, 18 - - 6 
Na - - - - - - 28 4, 5 - - 17, 18 - - 5 
Cl - 28 - 12 13 - 2, 28 4, 5 - - 17, 18 - - 9 

Mg - - 11 - 1 - 28 4, 5 - - 17, 18 - - 7 
K - - 8-10 - 1 - 28 4, 5 - - 17, 18 - - 9 

Lev - 13, 14 15 17, 18 - - 13, 27, 28 4, 5 17 - 17, 18 - - 13 
Man - 13, 14 15 17, 18 - - 13, 27, 28 4, 5 17 - 17, 18 - - 13 

V - 19, 20 - 20, 30 16 - 9, 27, 28 4, 5, 19 21 15 17, 18, 21 - - 16 
Ni 16, 25 3, 20 - 30 16 16 9, 27, 28 4, 5, 18, 

28-30 
1-20, 22, 

27-31 
1, 3, 4, 8-
13, 15-16 

2, 17, 18, 
21, 25 

23 - 59 
Fe - - 20 30 - 4, 14 9, 27, 28 4, 5 - 15 17, 18, 21 - - 13 
Mn - - - 27, 30 - - 9, 28-31 4, 5 - 14, 15 

14, 17, 18, 
21, 24 

17 - 17 
Cu - - 20 17, 25, 30 1 14 9, 27, 28 4, 5, 27 - 15 17, 18, 21 - - 16 
Cd 23, 29 29 25 17, 30 25-27 - 9, 28-31 4, 5 13 15, 23-30 1-5, 17, 18, 

21 
- - 34 

Pb - - - 17, 25, 30 26 - 9, 28-31 4, 5, 15 - 14, 15 17, 18, 21 - - 17 
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Table S3. Method Detection Limits (MDL) and Analytical Uncertainties (u) chosen for PMF runs. 
 

 

MDL u

µg.m-3 %

PM 2.0E-01 5

OM 1.0E-01 15

EC 3.0E-01 15

NO3 1.3E-01 5

SO4 4.3E-01 5

NH4 3.0E-01 5

Na 2.6E-01 10

Cl 6.9E-02 10

Mg 5.5E-03 15

K 2.0E-02 10

Lev 5.2E-03 10

Man 5.1E-04 10

V 2.0E-04 10

Ni 2.9E-04 20

Fe 3.6E-02 20

Mn 5.6E-04 15

Cu 1.0E-03 20

Cd 2.1E-05 15

Pb 1.1E-03 15
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Table S4. Using bootstrapping to determine the adequate number of factors in PMF. 
 
Legend: r-value: minimum coefficient of determination used to assign a boot factor to a base factor, rows: bootstrap factors, columns: base factors, Un: 
unmapped. The less robust bootstrap factor is boldfaced and coloured in red. 
Note: Bootstrapping was not performed on the same base run for the 0.6 and 0.7 r-value configurations. In fact, for each configuration, 20 base runs were 
conducted prior to bootstrapping and the base run showing the lowest Q-value was retained. Therefore, according to the r-value configuration, the different 
factor numbers will not correspond to the same physical source. 
 
 

1 2 3 4 5 6 Un 1 2 3 4 5 6 7 Un 1 2 3 4 5 6 7 8 Un

1 100 0 0 0 0 0 0 1 100 0 0 0 0 0 0 0 1 100 0 0 0 0 0 0 0 0

2 0 100 0 0 0 0 0 2 0 96 1 0 0 0 0 3 2 0 99 0 0 0 0 0 1 0

3 0 0 100 0 0 0 0 3 0 0 100 0 0 0 0 0 3 0 0 100 0 0 0 0 0 0

4 0 0 1 99 0 0 0 4 0 0 0 100 0 0 0 0 4 0 0 0 100 0 0 0 0 0

5 0 0 1 0 94 0 5 5 0 0 0 0 98 0 0 2 5 11 1 1 0 78 0 0 3 6

6 0 0 0 0 0 100 0 6 0 0 0 0 0 100 0 0 6 0 0 0 0 0 100 0 0 0

7 0 0 0 0 0 0 100 0 7 0 0 0 0 0 0 100 0 0

8 0 0 0 0 0 0 0 95 5

1 2 3 4 5 6 Un 1 2 3 4 5 6 7 Un 1 2 3 4 5 6 7 8 Un

1 100 0 0 0 0 0 0 1 100 0 0 0 0 0 0 0 1 100 0 0 0 0 0 0 0 0

2 0 99 0 0 0 0 1 2 0 96 0 0 0 0 0 4 2 0 93 0 0 1 0 0 0 6

3 0 0 83 1 0 0 16 3 0 0 100 0 0 0 0 0 3 0 0 100 0 0 0 0 0 0

4 0 0 0 100 0 0 0 4 1 0 0 95 0 0 1 3 4 0 0 0 99 0 0 0 0 1

5 0 0 0 0 99 0 1 5 0 0 0 0 100 0 0 0 5 0 0 0 0 100 0 0 0 0

6 0 0 0 0 0 100 0 6 0 0 0 0 0 100 0 0 6 3 3 0 0 0 75 0 2 17

7 0 0 0 0 0 0 100 0 7 0 0 0 0 0 0 100 0 0

8 0 0 0 0 0 0 0 100 0

r-value=0.6

r-value=0.7
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Table S5. Sum of the squared difference between the scaled residuals (d-values) calculated for each 
pair of base runs. 
Note: Cf. Norris et al. (2008) and Sect. 2.1 for more information on this variable. 
 

  

RUN# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 0.028

3 0.019 0.003

4 0.020 0.005 0.005

5 0.019 0.005 0.001 0.006

6 0.007 0.020 0.011 0.012 0.010

7 0.025 0.001 0.003 0.004 0.005 0.017

8 0.013 0.019 0.012 0.010 0.009 0.003 0.018

9 0.032 0.007 0.009 0.004 0.010 0.020 0.007 0.017

10 0.025 0.012 0.010 0.007 0.008 0.011 0.012 0.006 0.009

11 0.005 0.028 0.016 0.022 0.014 0.005 0.026 0.010 0.032 0.023

12 0.019 0.008 0.005 0.004 0.004 0.008 0.007 0.005 0.008 0.002 0.017

13 0.007 0.022 0.013 0.014 0.011 0.001 0.020 0.003 0.022 0.012 0.006 0.009

14 0.041 0.088 0.071 0.087 0.069 0.063 0.085 0.075 0.106 0.099 0.037 0.084 0.062

15 0.008 0.022 0.013 0.013 0.011 0.001 0.019 0.003 0.021 0.011 0.006 0.008 0.001 0.064

16 0.017 0.005 0.002 0.004 0.001 0.007 0.005 0.007 0.009 0.006 0.013 0.002 0.009 0.073 0.008

17 0.048 0.106 0.094 0.101 0.096 0.082 0.102 0.098 0.122 0.122 0.057 0.107 0.081 0.016 0.084 0.097

18 0.018 0.016 0.011 0.009 0.009 0.006 0.015 0.003 0.012 0.002 0.016 0.003 0.007 0.087 0.006 0.006 0.109

19 0.035 0.005 0.010 0.004 0.012 0.025 0.006 0.023 0.002 0.013 0.038 0.011 0.028 0.110 0.027 0.011 0.121 0.017

20 0.031 0.006 0.009 0.003 0.010 0.019 0.006 0.015 0.003 0.006 0.033 0.006 0.021 0.108 0.020 0.008 0.122 0.010 0.003
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Table S6. Correlation (Pearson coefficient, R) between PMF factor time series and their presumable 
tracers. 
Legend: BCff: fossil fuel black carbon, Lev: levoglucosan, Mann: mannosan, BCwb: wood burning 
black carbon. Pearson coefficients higher than 0.5 are indicated in bold. 
Note: More information on this table can be found in Bressi et al. (2014).  
 
 

  
SO

4 NO
3 V NOx BCff Lev Mann BCwb Na Cl Mg Pb Cd 

A.S. rich factor 0.85 0.58 0.07 0.25 0.25 0.21 0.34 0.20 -0.30 -0.17 -0.32 0.51 0.40 
A.N. rich factor 0.73 0.99 0.24 0.27 0.19 0.29 0.39 0.31 -0.24 -0.03 -0.26 0.43 0.52 
Heavy oil combustion 0.35 0.11 0.75 0.09 0.22 -0.06 -0.05 -0.01 -0.25 -0.26 -0.16 0.29 0.27 
Road traffic -0.09 -0.15 0.08 0.50 0.50 -0.01 0.01 0.14 -0.25 -0.23 -0.19 0.23 0.20 
Biomass burning 0.21 0.44 0.12 0.61 0.22 0.99 0.98 0.89 -0.12 0.18 -0.17 0.42 0.31 
Marine aerosols -0.45 -0.25 -0.25 -0.20 -0.22 -0.11 -0.15 -0.14 0.91 0.82 0.88 -0.35 -0.37 
Metal industry 0.33 0.33 0.42 0.36 0.32 0.21 0.28 0.27 -0.19 -0.07 -0.20 0.85 0.92 
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Table S7. Description of the different receptor model studies compared in Fig. 8 and discussed in 
Sect. 3.3.1. 
Note: Sites are indicated as: “City (Country)-Type of sites”. Urb: urban, Rur: rural, Kerb: kerbside. 
 

  

Authors Site Receptor model Year PM fraction
PM mass 
(µg/m3)

Source 
contribution 

(µg/m3)

Source 
contribution 

(%)

Ammonium nitrate + 
ammonium sulfate

rich sources

Vallius et al., 2005 Amsterdam (Neth) - Urb PCA 1998-1999 PM2.5 20.0 6.8 34

Andersen et al., 2007 Copenhagen (Den) - Urb COPREM 1999-2004 PM10 23.3 6.9 29

This study Paris (Fr) - Urb EPA PMF3.0 2009-2010 PM2.5 14.7 7.4 51

Mooibroek et al., 2011 Schiedam (Neth) - Urb EPA PMF3.0 2007-2008 PM2.5 13 8.6 66

Mooibroek et al., 2011 Hellendoorn (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 12.5 9.1 73

Mooibroek et al., 2011 Rotterdam (Neth) - Kerb EPA PMF3.0 2007-2008 PM2.5 16.4 10.0 61

Mooibroek et al., 2011 Vredepeel (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 14.5 10.7 74

Mooibroek et al., 2011 Cabauw (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 17.5 12.6 72

Quass et al., 2004 Duisburg (Ger) - Urb PMF 2003-2004 PM2.5 22.8 13 57

Ammonium nitrate rich source

Andersen et al., 2007 Copenhagen (Den) - Urb COPREM 1999-2004 PM10 23.3 3.3 14

This study Paris (Fr) - Urb EPA PMF3.0 2009-2010 PM2.5 14.7 3.5 24

Mooibroek et al., 2011 Schiedam (Neth) - Urb EPA PMF3.0 2007-2008 PM2.5 13.0 5.6 43

Mooibroek et al., 2011 Hellendoorn (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 12.5 6.0 48

Mooibroek et al., 2011 Vredepeel (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 14.5 6.4 44

Mooibroek et al., 2011 Rotterdam (Neth) - Kerb EPA PMF3.0 2007-2008 PM2.5 16.4 6.7 41

Mooibroek et al., 2011 Cabauw (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 17.5 7.7 44

Ammonium sulfate rich source

Mooibroek et al., 2011 Schiedam (Neth) - Urb EPA PMF3.0 2007-2008 PM2.5 13.0 3.0 23

Mooibroek et al., 2011 Hellendoorn (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 12.5 3.1 25

Mooibroek et al., 2011 Rotterdam (Neth) - Kerb EPA PMF3.0 2007-2008 PM2.5 16.4 3.3 20

Andersen et al., 2007 Copenhagen (Den) - Urb COPREM 1999-2004 PM10 23.3 3.5 15

This study Paris (Fr) - Urb EPA PMF3.0 2009-2010 PM2.5 14.7 3.9 27

Mooibroek et al., 2011 Vredepeel (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 14.5 4.4 30

Mooibroek et al., 2011 Cabauw (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 17.5 4.9 28

Road traffic

This study Paris (Fr) - Urb EPA PMF3.0 2009-2010 PM2.5 14.7 2.1 14

Lee et al., 2003 Toronto (Ca) - Urb PMF 2000-2001 PM2.5 12.8 2.3 18

Maykut et al., 2003 Seattle (USA) - Urb PMF and UNMIX 1996-1999 PM2.5 9.2 2.3 25

Minguillón et al., 2012 Zurich (Swi) - Urb EPA PMF3.0 Summer and Winter 2009 PM1.0 10.2 3.8 37

Perronne et al., 2012 Milan (It) - Urb CMB 2006-2009 PM2.5 35.5 7.8 22

Biomass combustion

Karanasiou et al., 2009 Athens (Gr) - Urb PMF3 2002 PM2.0 5.3 0.8 15

This study Paris (Fr) - Urb EPA PMF3.0 2009-2010 PM2.5 14.7 1.8 12

Perronne et al., 2012 Milan (It) - Urb CMB 2006-2009 PM2.5 35.5 7.1 16

Andersen et al., 2007 Copenhagen (Den) - Urb COPREM 1999-2004 PM10 23.3 7.3 15

Heavy oil combustion

Andersen et al., 2007 Copenhagen (Den) - Urb COPREM 1999-2004 PM10 23.3 2.2 9

Alleman et al., 2010 Dunkirk (Fr) - Urb PMF2 2003-2005 PM10 25.0 2.3 9

This study Paris (Fr) - Urb EPA PMF3.0 2009-2010 PM2.5 14.7 2.4 16

Vallius et al., 2005 Amsterdam (Neth) - Urb PCA 1998-1999 PM2.5 20.0 3.5 9

Marine aerosols

Mooibroek et al., 2011 Hellendoorn (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 12.5 0.8 6

This study Paris (Fr) - Urb EPA PMF3.0 2009-2010 PM2.5 14.7 0.8 6

Mooibroek et al., 2011 Rotterdam (Neth) - Kerb EPA PMF3.0 2007-2008 PM2.5 16.4 0.8 5

Mooibroek et al., 2011 Vredepeel (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 14.5 0.9 6

Vallius et al., 2005 Helsinki (Fin) - Urb PCA 1998-1999 PM2.5 12.2 0.9 7

Karanasiou et al., 2009 Athens (Gr) - Urb PMF3 2002 PM2.0 5.3 1.1 21

Mooibroek et al., 2011 Schiedam (Neth) - Urb EPA PMF3.0 2007-2008 PM2.5 13.0 1.2 9

Mooibroek et al., 2011 Cabauw (Neth) - Rur EPA PMF3.0 2007-2008 PM2.5 17.5 1.6 9
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Fig. S1. Daily contribution (µg/m3) of the seven sources to PM2.5 mass from 11 September 2009 to 10 September 2010. 
Note: results were taken from the base run exhibiting the lowest Qrobust.
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Fig. S2. Geographical distribution of 48-hour air mass back-trajectories from 11 September 2009 to 
10 September 2010. Left: number of back-trajectories per cell used for PSCF (logarithmic scale); right: 
number of back-trajectories per wind direction used for CPF (linear scale). 
Note: The city of Paris is indicated by a grey dot on the left figure. 
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Fig. S3. Monthly mean contribution (µg/m3) of PM2.5 sources from 11 September 2009 to 10 
September 2010. Constructed from the base run exhibiting the lowest Qrobust. Error bars represent 
±1σ. 
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Fig. S4. Seasonal mean contribution (µg/m3) of PM2.5 sources from 11 September 2009 to 10 
September 2010. Constructed from the base run exhibiting the lowest Qrobust. Error bars represent 
±1σ.

0

2

4

6

8

10

12

14

16

Autumn Winter Spring Summer Annual

C
o

n
tr

ib
u

ti
o

n
 (

µ
g/

m
3 )

Ammonium sulfate rich factor

0

2

4

6

8

10

12

14

16

Autumn Winter Spring Summer Annual

C
o

n
tr

ib
u

ti
o

n
 (

µ
g/

m
3 )

Ammonium nitrate rich factor

0

1

2

3

4

5

6

Autumn Winter Spring Summer Annual

C
o

n
tr

ib
u

ti
o

n
 (

µ
g/

m
3 )

Heavy oil combustion

0

1

2

3

4

5

6

Autumn Winter Spring Summer Annual

C
o

n
tr

ib
u

ti
o

n
 (

µ
g/

m
3 )

Road traffic

0

2

4

6

8

10

Autumn Winter Spring Summer Annual

C
o

n
tr

ib
u

ti
o

n
 (

µ
g/

m
3 )

Biomass burning

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Autumn Winter Spring Summer Annual

C
o

n
tr

ib
u

ti
o

n
 (

µ
g/

m
3 )

Marine Aerosols

0.00

0.05

0.10

0.15

0.20

0.25

Autumn Winter Spring Summer Annual

C
o

n
tr

ib
u

ti
o

n
 (

µ
g/

m
3 )

Metal Industry



16 
 

References 

 

Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A. and Galloo, J.-C.: PM10 metal concentrations and 

source identification using positive matrix factorization and wind sectoring in a French industrial 

zone, Atmospheric Research, 96(4), 612–625, doi:10.1016/j.atmosres.2010.02.008, 2010. 

Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez, N. and Hopke, P. K.: Quantifying 

road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2, 

Atmospheric Environment, 43(17), 2770–2780, doi:10.1016/j.atmosenv.2009. 02.039, 2009. 

Andersen, Z. J., Wahlin, P., Raaschou-Nielsen, O., Scheike, T. and Loft, S.: Ambient particle source 

apportionment and daily hospital admissions among children and elderly in Copenhagen, Journal 

of Exposure Science and Environmental Epidemiology, 17(7), 625–636, 

doi:10.1038/sj.jes.7500546, 2007. 

Belis, C.A., Karagulian, F., Larsen, B.R., Hopke, P.K.: Critical review and meta-analysis of ambient 

particulate matter source apportionment using receptor models in Europe, Atmos. Environ., 69, 

94–108, 2013. 

Blifford, I. H. and Meeker, G. O.: A factor analysis model of large scale pollution, Atmospheric 

Environment (1967), 1(2), 147–157, doi:10.1016/0004-6981(67)90042-X, 1967. 

Bressi, M., Sciare, J., Ghersi, V., Mihalopoulos, N., Petit, J.-E., Nicolas, J.B., Moukhtar, S., Rosso, A., Féron, 

A., Bonnaire, N., Poulakis, E. and Theodosi, C.: Response to Referee 3 related to: “Sources and 

geographical origins of fine aerosols in Paris (France), Atmosph. Chem. Phys. Discuss., 13, 33237–

33309. doi:10.5194/acpd-13-33237-2013”, Available from: http://www.atmos-chem-phys-

discuss.net/13/C13512/2014/acpd-13-C13512-2014.pdf (accessed 27 May 2014), 2014. 

Bressi, M., Sciare, J., Ghersi, V., Bonnaire, N., Nicolas, J. B., Petit, J.-E., Moukhtar, S., Rosso, A., 

Mihalopoulos, N. and Féron, A.: A one-year comprehensive chemical characterisation of fine 

aerosols (PM2.5) at urban, suburban and rural background sites in the region of Paris (France), 

Atmos. Chem. Phys., 13, 7825-7844, doi:10.5194/acp-13-7825-2013, 2013. 

Canonaco, F., Crippa, M., Slowik, J.G., Baltensperger, U. and Prévôt, A.S.H.: SoFi, an Igor based interface 

for the efficient use of the generalized multilinear engine (ME-2) for source apportionment: 

application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661. 

doi:10.5194/amt-6-3649-2013, 2013. 

Davison, A. C. and Hinkley, D. V.: Bootstrap Methods and Their Application, Cambridge University Press, 

1997. 

Dutton, S. J., Vedal, S., Piedrahita, R., Milford, J. B., Miller, S. L. and Hannigan, M. P.: Source 

apportionment using positive matrix factorization on daily measurements of inorganic and organic 

speciated PM2.5, Atmospheric Environment, 44(23), 2731–2741, doi:10.1016/ 

j.atmosenv.2010.04.038, 2010. 

Efron, B.: 1977 Rietz Lecture - Bootstrap Methods - Another Look at the Jackknife, Ann. Stat., 7(1), 1–26, 

doi:10.1214/aos/1176344552, 1979. 

Efron, B. and Tibshirani, R.: An Introduction to the Bootstrap, Chapman & Hall, 1993. 

Friedlander, S. K.: Chemical element balances and identification of air pollution sources, Environ. Sci. 

Technol., 7(3), 235–240, doi:10.1021/es60075a005, 1973. 



17 
 

Ghersi, V., Rosso, A., Moukhtar, S., Lameloise, P., Sciare, J., Bressi, M., Nicolas, J. B., Féron, A. and 

Bonnaire, N.: Etude de contribution des sources de particules fines (PM2,5) en Ile-de-France, 

Pollution Atmosphérique, 63–72, 2010. 

Henry, R. C. and Kim, B. M.: Extension of self-modeling curve resolution to mixtures of more than three 

components: Part 1. Finding the basic feasible region, Chemometrics and Intelligent Laboratory 

Systems, 8(2), 205–216, doi:10.1016/0169-7439(90)80136-T, 1990. 

Hopke, P. K., Ito, K., Mar, T., Christensen, W.F., Eatough, D.J., Henry, R.C., Kim, E., Laden, F., Lall, R., 

Larson, T.V., Liu, H., Neas, L., Pinto, J., Stölzel, M., Suh, H., Paatero, P., and Thurston, G.D.: PM 

source apportionment and health effects: 1. Intercomparison of source apportionment results, J. 

Expo. Sci. Env. Epid., 16, 275–286, 2006. 

Huang, S., Rahn, K. A. and Arimoto, R.: Testing and optimizing two factor-analysis techniques on aerosol 

at Narragansett, Rhode Island, Atmospheric Environment, 33(14), 2169–2185, doi:10.1016/S1352-

2310(98)00324-0, 1999. 

Karanasiou, A. A., Siskos, P. A. and Eleftheriadis, K.: Assessment of source apportionment by Positive 

Matrix Factorization analysis on fine and coarse urban aerosol size fractions, Atmospheric 

Environment, 43(21), 3385–3395, doi:10.1016/j.atmosenv.2009.03.051, 2009. 

Kim, B. M. and Henry, R. C.: Extension of self-modeling curve resolution to mixtures of more than three 

components: Part 2. Finding the complete solution, Chemometrics and Intelligent Laboratory 

Systems, 49(1), 67–77, doi:10.1016/S0169-7439(99)00029-5, 1999. 

Kim, B. M. and Henry, R. C.: Extension of self-modeling curve resolution to mixtures of more than three 

components: Part 3. Atmospheric aerosol data simulation studies, Chemometrics and Intelligent 

Laboratory Systems, 52(2), 145–154, doi:10.1016/S0169-7439(00)00077-0, 2000. 

Lahiri, S. N.: Resampling Methods for Dependent Data, Springer, 2003. 

Lee, P. K. H., Brook, J. R., Dabek-Zlotorzynska, E. and Mabury, S. A.: Identification of the Major Sources 

Contributing to PM2.5 Observed in Toronto, Environ. Sci. Technol., 37(21), 4831–4840, 

doi:10.1021/es026473i, 2003. 

Lenschow, P., Abraham, H. J., Kutzner, K., Lutz, M., Preuss, J. D., and Reichenbacher, W.: Some ideas 

about the sources of PM10, Atmos. Environ., 35, S23–S33, 2001. 

Maykut, N. N., Lewtas, J., Kim, E. and Larson, T. V.: Source Apportionment of PM2.5 at an Urban 

IMPROVE Site in Seattle, Washington, Environ. Sci. Technol., 37(22), 5135–5142, 

doi:10.1021/es030370y, 2003. 

Miller, M., Friedlander, S. and Hidy, G.: A chemical element balance for the Pasadena aerosol, Journal of 

Colloid and Interface Science, 39(1), 165–176, doi:10.1016/0021-9797(72)90152-X, 1972. 

Minguillón, M. C., Querol, X., Baltensperger, U. and Prévôt, A. S. H.: Fine and coarse PM composition and 

sources in rural and urban sites in Switzerland: Local or regional pollution?, Science of The Total 

Environment, 427–428(0), 191–202, doi:10.1016/j.scitotenv.2012.04.030, 2012. 

Mooibroek, D., Schaap, M., Weijers, E. P. and Hoogerbrugge, R.: Source apportionment and spatial 

variability of PM2.5 using measurements at five sites in the Netherlands, Atmospheric 

Environment, 45(25), 4180–4191, doi:10.1016/j.atmosenv.2011.05.017, 2011. 

Norris, G. A., Vedantham, R., Wade, K., Zhan, P., Brown, S., Pentti, P., Eberly, S. I. and Foley, C.: Guidance 

document for PMF applications with the Multilinear Engine, U.S. Environmental Protection 



18 
 

agency, Washington DC. Available from: cfpub.epa.gov/si/si_public_file_download. 

cfm?p_download_id=488084 (Accessed 28 June 2012), 2009. 

Norris, G., Vedantham, R., Wade, K., Brown, S., Prouty, J. and Foley, C.: EPA Positive Matrix Factorization 

(PMF) 3.0: fundamentals & user guide, U.S. Environmental Protection Agency, 2008. 

Paatero, P.: Least squares formulation of robust non-negative factor analysis, Chemometrics and 

Intelligent Laboratory Systems, 37(1), 23–35, 1997. 

Paatero, P.: The multilinear engine - A table-driven, least squares program for solving multilinear 

problems, including the n-way parallel factor analysis model, J. Comput. Graph. Stat., 8(4), 854–

888, doi:10.2307/1390831, 1999. 

Paatero, P.: User’s guide for the multilinear engine program “ME2” for fitting multilinear and 

quasimultilinear models, University of Helsinki, Finland, 2000. 

Paatero, P. and Hopke, P. K.: Discarding or downweighting high-noise variables in factor analytic models, 

Analytica Chimica Acta, 490(1-2), 277–289, 2003. 

Paatero, P. and Tapper, U.: Positive Matrix Factorization - a Nonnegative Factor Model with Optimal 

Utilization of Error-Estimates of Data Values, Environmetrics, 5(2), 111–126, doi:10.1002/ 

env.3170050203, 1994. 

Perrone, M. G., Larsen, B. R., Ferrero, L., Sangiorgi, G., De Gennaro, G., Udisti, R., Zangrando, R., 

Gambaro, A. and Bolzacchini, E.: Sources of high PM2.5 concentrations in Milan, Northern Italy: 

Molecular marker data and CMB modelling, Science of The Total Environment, 414(0), 343–355, 

doi:10.1016/j.scitotenv.2011.11.026, 2012. 

Poirot, R. L., Wishinski, P. R., Hopke, P. K. and Polissar, A. V.: Comparative application of multiple 

receptor methods to identify aerosol sources in northern Vermont, Environmental science & 

technology, 35(23), 4622–4636, 2001. 

Polissar, A., Hopke, P. and Paatero, P.: Atmospheric aerosol over Alaska - 2. Elemental composition and 

sources, J. Geophys. Res.-Atmos., 103(D15), 19045–19057, doi:10.1029/98JD01212, 1998. 

Politis, D. N. and White, H.: Automatic Block-Length Selection for the Dependent Bootstrap, Econometric 

Reviews, 23(1), 53–70, doi:10.1081/ETC-120028836, 2004. 

Poulakis, E., Theodosi, C., Sciare, J., Bressi, M., Ghersi, V. and Mihalopoulos, N.: Airborne mineral 

components and trace metals in Paris region: Spatial and temporal variability, manuscript in 

preparation, 2012. 

Quass, U., Kuhlbusch, T. and Koch, M.: Identification of source groups of fine dust, Public report to the 

Environment Ministry of North Rhine Westphalia, Germany. Available from: 

http://www.lanuv.nrw.de/luft/berichte/FeinstaubNRW_2004_Summary.pdf (Accessed 24 July 

2012), 2004. 

Ramadan, Z., Eickhout, B., Song, X. H., Buydens, L. and Hopke, P. K.: Comparison of positive matrix 

factorization and multilinear engine for the source apportionment of particulate pollutants, 

Chemometrics and Intelligent Laboratory Systems, 66(1), 15–28, 2003. 

Reff, A., Eberly, S. I. and Bhave, P. V.: Receptor modeling of ambient particulate matter data using 

positive matrix factorization: review of existing methods, Journal of the Air & Waste Management 

Association, 57(2), 146, 2007. 

Singh, K.: On the Asymptotic Accuracy of Efron’s Bootstrap, Ann. Statist., 9(6), 1187–1195, 

doi:10.1214/aos/1176345636, 1981. 



19 
 

Ulbrich, I.M., Canagaratna, M.R., Zhang, Q., Worsnop, D.R. and Jimenez, J.L.: Interpretation of organic 

components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. 

Phys., 9, 2891–2918, 2009. 

Vallius, M., Janssen, N. A. H., Heinrich, J., Hoek, G., Ruuskanen, J., Cyrys, J., Van Grieken, R., de Hartog, J. 

J., Kreyling, W. G. and Pekkanen, J.: Sources and elemental composition of ambient PM2.5 in 

three European cities, Science of The Total Environment, 337(1–3), 147–162, 

doi:10.1016/j.scitotenv.2004.06.018, 2005. 

Wehrens, R., Putter, H. and Buydens, L.: The bootstrap: a tutorial, Chemometrics and Intelligent 

Laboratory Systems, 54(1), 35–52, 2000. 

Winchester, J. W. and Nifong, G. D.: Water pollution in Lake Michigan by trace elements from pollution 

aerosol fallout, Water, Air, & Soil Pollution, 1(1), 50–64, 1971. 

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop, D. R. and Sun, Y.: 

Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a 

review, Anal. Bioanal. Chem., 401, 3045–3067, doi:10.1007/s00216-011-5355-y, 2011. 

Zheng, M., Cass, G. R., Schauer, J. J. and Edgerton, E. S.: Source Apportionment of PM2.5 in the 

Southeastern United States Using Solvent-Extractable Organic Compounds as Tracers, 

Environmental Science & Technology, 36(11), 2361–2371, doi:10.1021/es011275x, 2002. 


