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Abstract. Heterogeneous ice nucleation is a crucial pro-
cess for forming ice-containing clouds and subsequent ice-
induced precipitation. The importance for ice nucleation by
airborne desert soil dusts composed predominantly of miner-
als is widely acknowledged. However, the potential influence
of agricultural soil dusts on ice nucleation has been poorly
recognized, despite recent estimates that they may account
for up to 20–25 % of the global atmospheric dust load. We
have conducted freezing experiments with various dusts, in-
cluding agricultural soil dusts derived from the largest dust-
source region in North America. Here we show evidence for
the significant role of soil organic matter (SOM) in parti-
cles acting as ice nuclei (IN) under mixed-phase cloud con-
ditions. We find that the ice-nucleating ability of the agri-
cultural soil dusts is similar to that of desert soil dusts, but
is clearly reduced after either H2O2 digestion or dry heat-
ing to 300◦C. In addition, based on chemical composition
analysis, we demonstrate that organic-rich particles are more
important than mineral particles for the ice-nucleating abil-
ity of the agricultural soil dusts at temperatures warmer than
about−36◦C. Finally, we suggest that such organic-rich par-
ticles of agricultural origin (namely, SOM particles) may
contribute significantly to the ubiquity of organic-rich IN in
the global atmosphere.

1 Introduction

It has been shown that certain aerosol particles acting as
ice nuclei (IN), such as dust, soot, volcanic ash and bio-
logical materials, are required to trigger ice nucleation at
temperatures warmer than about−36◦C (Pruppacher and
Klett, 1997; Szyrmer and Zawadzki, 1997; Hoose and Möh-
ler, 2012; Murray et al., 2012). In particular, laboratory and
modeling studies have suggested that desert soil dusts com-
posed predominantly of minerals are the most important IN
sources at temperatures between about−36 and−15◦C be-
cause of their ice-nucleation properties and abundances in
the global atmosphere (Hoose et al., 2010; Murray et al.,
2012). In the estimates from these studies, the contribution
of other dusts (e.g., agricultural soil dusts) to the global at-
mospheric IN population has not been taken into account. Al-
though a very large uncertainty remains regarding estimates
for the contribution of agricultural emissions to the global at-
mospheric dust load within the range of 0–50 % (Mahowald
et al., 2004; Tegen et al., 2004; Forster et al., 2007; Ginoux
et al., 2012), the Intergovernmental Panel on Climate Change
(IPCC) Fourth Assessment Report (Forster et al., 2007) and a
more recent study (Ginoux et al., 2012) suggest 0–20 % and
25 % as reasonable estimates, respectively.

So far, some laboratory experiments with samples im-
mersed in supercooled water have shown that soils having
higher contents of organic matter may serve as better sources
of IN than clay minerals (Schnell and Vali, 1972; Conen
et al., 2011; O’Sullivan et al., 2014). Agricultural soils are
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known to be complex mixtures of minerals, organic matter
and so on. However, the chemical composition of individual
agricultural soil dust particles capable of nucleating ice has
remained uncertain. Also, the focus of these earlier studies
has centered on the role of fertile soil dusts as IN at temper-
atures warmer than about−15◦C (Schnell and Vali, 1972;
Conen et al., 2011; O’Sullivan et al., 2014), where clay min-
erals are less effective as IN (Szyrmer and Zawadzki, 1997;
Murray et al., 2012).

In this study, we examine heterogeneous ice nucleation
by aerosolized agricultural soil dusts under conditions above
water saturation at temperatures warmer than about−36◦C
(i.e., mixed-phase cloud conditions where ice crystals coexist
with liquid cloud droplets) and their chemical composition.
In particular, we focus on the relative importance of organics
(i.e., soil organic matter (SOM)) as nuclei for heterogeneous
ice nucleation.

2 Materials and methods

Agricultural soil dusts were prepared using surface soils
(0–5 cm in depth) collected on 17 May 2011 from sugar
beet (42.12878◦ N, 104.39516◦ W, 1270 m above mean sea
level) and grass/alfalfa fallow (42.12266◦ N, 104.38585◦ W,
1270 m above mean sea level) fields at the Sustainable Agri-
cultural Research and Extension Center (SAREC) near Lin-
gle (mean annual temperature: 9.3◦C), Wyoming, USA. The
agricultural fields are located within the largest dust-source
region in North America (Ginoux et al., 2012). Soil samples
were air dried on an aluminum tray in clean conditions and
then divided into particles smaller than 45 µm by dry sieving.
As a reference for natural desert soil dusts, we used China
loess soils (CJ-1) (Nishikawa et al., 2000), which were col-
lected in an arid area in Gansu Province, China. We also used
the Clay Minerals Society kaolinite (KGa-1b) (Chipera and
Bish, 2001; Murray et al., 2011), for comparison. In addition
to the untreated samples, we prepared samples treated with
H2O2 and others heated to 300◦C. The former samples were
prepared by boiling gently in a 30 % H2O2 solution until al-
most all organic matter was expected to be digested (i.e., un-
til no visible reaction could be detected by addition of more
H2O2), followed by rinsing with deionized water and drying.
The latter samples were prepared by exposing to dry heat at
300◦C for about 2 h in a muffle furnace.

The overview of the setup for the freezing experiment sys-
tem is illustrated in Fig. 1. Dry dust particles were gener-
ated using a self-built flask dust generator (nitrogen flow for
dust generation:∼ 2 L min−1) and then passed through a cy-
clone (cut-point diameter: 3.5 µm at 2 L min−1) and 210Po
neutralizers. It has been reported that while the number–
size distributions of airborne soil dust particles vary depend-
ing on the source-area conditions (e.g., surface wind speed,
and soil characteristics) and long-range transport regimes,
the mode diameters during their long-range transport typi-
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Figure 1. Schematics of the freezing experiment system. Dry dust
particles were generated from the flask dust generator. The DMA
selected particles with a mobility diameter of 600 nm for analysis
by the CPC and CFDC. Impactors were used for direct sampling of
the total particles and ice-nucleating particles.

cally range from∼ 2 µm down to submicrometers (Formenti
et al., 2011; Kok, 2011). Here, we prepared particles with
a mobility diameter of 600 nm selected in a differential mo-
bility analyzer (DMA; Model 3081, TSI Inc.; sheath flow:
4.5 L min−1, sample flow: 1 L min−1). A condensation parti-
cle counter (CPC; Model 3010, TSI Inc.) was used to mea-
sure number concentrations of the total dust aerosol particles.
A Colorado State University continuous flow diffusion cham-
ber (CFDC; Rogers et al., 2001; sheath flow: 8.5 L min−1,
sample flow: 1.5 L min−1) was used to measure number con-
centrations of IN active under conditions above water sat-
uration (105.0± 0.5 % relative humidity with respect to liq-
uid water) at temperatures warmer than about−36◦C. Under
such conditions, heterogeneous ice-nucleation processes in-
cluding deposition nucleation (ice formation on the surfaces
of insoluble nuclei from ice-supersaturated water vapor) and
condensation/immersion freezing (ice formation during or
following the condensation growth of aqueous droplets con-
taining insoluble nuclei) are expected to be activated (Sulli-
van et al., 2010a, b; Tobo et al., 2012; Wex et al., 2014). In
particular, we expect the predominance of immersion freez-
ing in this regime, since the relative humidity is high enough
to activate cloud droplet formation. Following such a parti-
cle nucleation/growth section, the CFDC has a droplet evap-
oration section where only ice saturation exists. Since cloud
droplets cannot survive though the evaporation section un-
less the relative humidity with respect to liquid water in the
particle nucleation/growth section exceeds∼ 108 % (Sulli-
van et al., 2010a, b), only particles that form ice crystals are
counted as IN with an optical particle counter at the out-
let. The IN data were collected every second and then av-
eraged for 150–180 s. The total dust aerosol particles and
IN active at given temperatures were collected on a Butvar
film supported by Ni mesh grids (EM Japan Co., Ltd.) using
impactors. The dust aerosol particles were collected using
a two-stage jet impactor (Matsuki et al., 2010a, b; Tobo et
al., 2010). We used only the second stage of the impactor,
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because the 50 % cutoff aerodynamic diameters of the first
and second stages at a sample flow of 1 L min−1 are esti-
mated to be 1.6 and 0.2 µm, respectively, and the mobility
diameter of the particles is 600 nm (i.e., 0.6 µm). For the IN
sampling, the particles that nucleated ice and were grown to
ice crystal sizes were collected using a single-jet impactor
(Prenni et al., 2013; Tobo et al., 2013) installed at the out-
let of the CFDC. The 50 % cutoff aerodynamic diameter at
a sample flow of 1.5 L min−1 is estimated to be 2.9 µm. The
size, morphology and elemental composition of the individ-
ual collected particles were analyzed manually after Au coat-
ing (coating thickness: 2–3 nm) using a Quanta FEG MK2
scanning electron microscope (SEM; FEI Company) com-
bined with an energy dispersive X-ray analyzer (EDX; Model
51-XMX0005, Oxford Instruments America Inc.). After the
SEM images of individual particles were taken, the X-ray
spectra from the particles were acquired for 20 s of live time
at an acceleration voltage of 20 kV.

3 Results and discussion

3.1 Freezing experiments

In Fig. 2a, we show the number fraction of particles capa-
ble of nucleating ice as a function of temperature. The re-
sults show that the ice-nucleation properties of agricultural
soil dusts obtained from sugar beet and grass/alfalfa fallow
fields in Wyoming are similar to each other. Treatment with
H2O2 is a commonly used technique to oxidize organic mat-
ter from soils and to obtain the remaining minerals (Conen
et al., 2011; O’Sullivan et al., 2014). After H2O2 treatment,
both agricultural soil dusts experienced a significant reduc-
tion in their ice-nucleating ability at temperatures warmer
than about−36◦C, suggesting that they contain specific ice-
nucleation active constituents that can be removed by H2O2
treatment (most likely, organic matter). To evaluate the possi-
bility that the ice-nucleation properties of some mineral com-
ponents might be affected by H2O2 treatment, we conducted
freezing experiments with China loess soil dust (desert loess;
a proxy for Asian natural desert soil dusts; Nishikawa et al.,
2000) and kaolinite (Chipera and Bish, 2001) in the same
manner. The results indicate that the impact of H2O2 treat-
ment on their ice-nucleating ability is relatively small (within
the range of error). Dry heating is also known as a technique
to remove and/or deactivate organic matter in soils. For ex-
ample, Fernández et al. (1997) reported that soils heated at
150◦C exhibit no significant loss of organic matter, whereas
those heated at 490◦C lose almost all the organic matter. As
for the ice-nucleation properties, we confirmed that dry heat-
ing to 300◦C has a similar impact to H2O2 digestion (Fig. 3).

In Fig. 2b, we compare the experimental data for agricul-
tural soil dusts collected in Wyoming with the parameteriza-
tions for various dusts based on the number of ice-nucleation
active sites per unit surface area (i.e., ice-nucleation ac-
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Figure 2. Ice-nucleating ability for various dusts under mixed-
phase cloud conditions.(a) Fraction of 600 nm particles capable
of nucleating ice. The data for untreated and H2O2-treated sam-
ples are shown in each figure.(b) Ice-nucleation active site densi-
ties for various dusts. Thens parameterizations for various dusts are
compared with the data for agricultural soil dusts (before and after
H2O2 treatment) collected in Wyoming. Thens parameterizations
for China loess soil dust and kaolinite are based on the data pre-
sented in Fig. A1a. Thens parameterizations for fertile soil dusts
collected in England (O’Sullivan et al., 2014) and desert soil dusts
(Niemand et al., 2012) are also shown. Error bars represent standard
deviations.

tive site density:ns). Their surface area is estimated as-
suming that all particles are spherical (thens parameteriza-
tions for the samples presented in Fig. 2a are summarized in
Fig. A1a). The results show that thens values for the original
Wyoming agricultural soil dusts are relatively similar to those
for desert and agricultural soil dusts from various locations
in the world, at least in the temperature range examined. Af-
ter H2O2 digestion, however, thens values for the Wyoming
agricultural soil dusts are reduced to an almost comparable
level to those for kaolinite. Note that thens values for the
kaolinite presented here are relatively similar to those re-
ported by Murray et al. (2011) and Wex et al. (2014), but are
more than one order of magnitude lower than those reported
by Kanji et al. (2013) at temperatures warmer than about
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Figure 3. Same as Fig. 2a, but for the data for untreated and heated
samples.

−30◦C despite the use of the same Clay Minerals Society
kaolinite (Fig. A1b). The difference may be related to dif-
ferent experimental techniques and/or application of the par-
ticles of different size ranges (e.g., mono- vs. poly-disperse
particles); however, further speculation concerning this issue
is beyond the remit of this study and is not pertinent to the
major conclusions drawn from the comparison of our exper-
imental results obtained using the CFDC. Around−36◦C
(near to the limit for homogeneous freezing temperature of
water in droplets; Koop et al., 2000), all samples presented
here show relatively similarns values.

3.2 Identification of particle types

To identify particle types in the agricultural soil dusts used
here, we examined the elemental composition of individ-
ual particles using SEM/EDX analysis. A major difficulty in
the EDX analysis of submicron particles is their high trans-
parency for the primary electron beam (Laskin and Cowin,
2001). Since the electron beam penetrates the entire particle,
the EDX spectrum from the particle projection area contains
the background signal from the Butvar film supported by Ni
mesh grids as well as the signal of the particle coated with
Au. For this reason, as illustrated in Fig. 4, we compare the
EDX spectrum of the particle projection area with that from
the particle-free area (i.e., background signal). We found that
the majority of the analyzed particles can be classified as ei-
ther “organics” or “minerals”. The major elements of parti-
cles categorized as organics are C, N and S (e.g., Fig. 4a, b;
some of the elements found in smaller amounts: O, F, Na, Cl
and K). It has long been known that SOM serves as a reser-
voir of nutrients, such as N, P and S (Paul, 2007). As for the
samples analyzed here, all the particles categorized as organ-
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Figure 4. Exemplary SEM/EDX images of sugar beet soil dust par-
ticles.(a) Organic particle (crystalline-shape type).(b) Organic par-
ticle (amorphous-shape type).(c) Organo–mineral mixture particle.
(d) Mineral particle.(e) Soot-like particle. The SEM/EDX images
were acquired after Au coating. Scale bars, 300 nm. Red X-ray spec-
tra show the elemental composition of each particle, and grey X-ray
spectra represent the background signal caused by a Butvar film
supported by Ni mesh grids and Au coating.

ics contained both N and S, but P was not found. It should
also be noted that we classify carbonaceous particles lacking
N and S (e.g., soot-like particles as shown in Fig. 4e) as “oth-
ers” and not organics. The major element of particles catego-
rized as minerals is Si (e.g., Fig. 4d; some of the elements
found in smaller amounts: C, O, F, Na, Mg, Al, Cl, K, Ca,
Mn, Fe and Ti). We consider that the detection of the C peak
in particles categorized as minerals may be attributable to
the presence of carbonates (e.g., CaCO3 and CaMg(CO3)2).
In this study, only particles containing the major elements of
both organics and minerals (i.e., C, N, Si and S) are cate-
gorized as “organo–mineral mixtures” (e.g., Fig. 4c). There-
fore, the possibility remains that Si-rich particles containing
N- and S-free organics or very small amounts of organics are
categorized as minerals and not organo–mineral mixtures.

In Fig. 5a, we summarize the results of SEM/EDX analy-
sis for the total dust aerosol particles (n = 95) and IN active
at temperatures of−36, −30 and−24◦C (n = 58, 52 and
68) in the untreated agricultural soil dust particles. The re-
sults show that mineral particles account for more than half
of the total dust aerosol population and organic-rich parti-
cles for about 40 %. However, the number fraction of mineral
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Figure 5. Relative contributions of different particle types to agri-
cultural soil dusts.(a) Compositions of the total dust aerosol parti-
cles (n = 95) and IN active at−36, −30 and−24◦C (n = 58, 52
and 68) determined by SEM/EDX analysis. Untreated sugar beat
soil dust particles are used.(b) Compositions of the IN active at
−36, −30 and−24◦C estimated from the freezing experiments
with untreated and H2O2-treated agricultural soil dusts. In this cal-
culation, the percentages of organic and inorganic particles in the
total dust aerosol particles are set to 40 and 60 %, respectively, and
then thens parameterizations presented in Fig. A1a are used to es-
timate the number fractions of organic and inorganic IN.

particles in the IN population decreases dramatically with
increasing freezing temperatures. Correspondingly, the frac-
tion of organic-rich particles increases, accounting for nearly
90 % of the IN population at around−24◦C. The fraction of
organo–mineral mixture particles or other particles (mainly,
soot-like and/or Na-rich particles) is only 2–7 % in both the
total dust aerosol and IN populations.

Furthermore, we estimated the fractions of organic and in-
organic particles in the agricultural soil dust IN, based on
the results of freezing experiments with the soil dusts be-
fore and after H2O2 treatment. Here, we assume that organic

and inorganic particles account for 40 and 60 % of the total
agricultural dust aerosol particles, respectively (this assump-
tion is based on the results of the SEM/EDX analysis), and
that all organic compounds can be digested and removed via
H2O2 treatment, but inorganic components are not altered by
H2O2 treatment. The calculation method is detailed in Ap-
pendix A1. The temperature-dependent changes in the frac-
tions of organic and inorganic IN estimated from this calcula-
tion (Fig. 5b) are roughly consistent with the results from the
SEM/EDX analysis (Fig. 5a). If H2O2 treatment can cause
a certain reduction in the ice-nucleating ability of inorganic
components, the possibility remains that the results in Fig. 5b
may somewhat overestimate the fractions of organic IN. We
have not exhaustively analyzed the influence of H2O2 treat-
ment on all known minerals that may be present in the soil
dusts. Nevertheless, the results presented here indicate that
the reduction of the ice-nucleating ability of the agricultural
soil dusts after H2O2 treatment (Fig. 2) can be explained
mainly by the removal of organic matter.

Based on these results, we propose organic-rich particles
(namely, SOM particles) as the most important component
of agricultural soil dusts for ice nucleation in the temper-
ature regime examined. We note that while phosphorus is
known to be one of the major biological markers (Pósfai
et al., 2003; Pratt et al., 2009; Creamean et al., 2013; Cz-
iczo et al., 2013), no P-containing particles were found in all
of the analyzed particles. This may suggest that there was
no measurable contribution of microorganisms (e.g., bacte-
ria and fungal spores) to the numbers of the agricultural soil
dusts or IN examined here, although the possibility of the
presence of some P-free microorganisms or plants (or their
fragments) cannot be ruled out. Organic matter in soils is
composed of a variety of macromolecules, such as lignin, cel-
lulose, hemicellulose, protein, lipids, humic-like substances
(e.g., humic acid and fulvic acid) and so on (Paul, 2007).
So far, freezing experiments with certain standard humic-like
substances have indicated that while they can act as IN un-
der mixed-phase cloud conditions (Fornea et al., 2009; Wang
and Knopf, 2011; Knopf and Alpert, 2013; Rigg et al., 2013;
O’Sullivan et al., 2014), they are much less effective as IN
than fertile soil dusts (O’Sullivan et al., 2014). Although
the potential importance of ice nucleation by other macro-
molecules like protein (Hartmann et al., 2013), cellulose (Hi-
ranuma et al., 2014) or fragments of pollen grains (Pummer
et al., 2012; Augustin et al., 2013) under mixed-phase cloud
conditions has also been suggested, it still remains unclear
what materials are responsible for the major source of SOM
particles having very high ice-nucleating ability.

It is noteworthy that although agricultural soil dusts col-
lected in Wyoming have similar ice-nucleating abilities to
those collected in England (Fig. 2b), the major component
responsible for ice nucleation at temperatures between about
−36 and−15◦C has been interpreted in different ways.
Our results demonstrate that the presence of organic com-
pounds (i.e., SOM particles) has a significant influence on
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the ice-nucleating ability of the Wyoming soil dusts through-
out the entire temperature range down to−36◦C. In contrast,
O’Sullivan et al. (2014) suggested that mineral components
are more important than biogenic components for the ice-
nucleating ability of the England soil dusts at temperatures
colder than about−15◦C. The suggestion by O’Sullivan et
al. (2014) was based on the results from freezing experiments
with the soil dusts before and after wet heating to 90◦C. It
is expected that wet heating to 90–100◦C deactivates only
certain organic matter (e.g., heat-sensitive proteins or pro-
teinaceous compounds; Christner et al., 2008). In fact, it has
been reported that wet heating to 90–100◦C is less effective
than H2O2 digestion in reducing the ice-nucleating ability
of fertile soil dusts (Conen et al., 2011; O’Sullivan et al.,
2014). In this study, we applied treatments designed to re-
move and/or deactivate almost all organic matter (i.e., H2O2
digestion or dry heating to 300◦C). Thus, although the possi-
bility remains that the soil dusts from Wyoming and England
are very different in composition, we speculate that the dif-
ferent interpretations of the major component responsible for
ice nucleation are in part attributable to the different experi-
mental approaches.

Our results also indicate that agricultural and desert soil
dusts have similar ice-nucleating abilities and are more ef-
ficient IN than kaolinite over the wide temperature range
examined (Fig. 2b). However, since treatments to remove
and/or deactivate organic matter have a small impact on the
ice-nucleating ability of China loess soil dust (a proxy for
natural desert soil dusts), the key ice-nucleation active sites
contained in desert soil dusts are presumed to be related
to inorganic compounds. In this regard, a recent study re-
ported that the feldspar (in particular, K feldspar) compo-
nent can explain higherns values for desert soil dusts than
clay minerals (Atkinson et al., 2013). It is likely that the ice-
nucleating ability of the feldspar component is resistant to
H2O2 treatment (O’Sullivan et al., 2014). It may also be im-
portant to note that dust-productive soils in China tend to
have much higher contents of feldspar than those in North
America (Nickovic et al., 2012). Since we have not evalu-
ated the feldspar content in dust samples used here, further
investigations are required to verify the hypothesis concern-
ing the contribution of the feldspar component to their ice-
nucleating abilities. Nevertheless, our results clearly demon-
strate that the key IN type is quite different between agricul-
tural and desert soil dusts.

3.3 Atmospheric implications

In order to estimate the contribution of agricultural soil dusts
to the IN population in the atmosphere, we combined a global
simulation of atmospheric concentrations of different aerosol
particle types at the 600 hPa pressure altitude (Hoose et al.,
2010; Murray et al., 2012) with experimentally derivedns
values. The calculation method for potential IN number con-
centrations is detailed in Appendix A2. Thens values used in

the calculation are based on the parameterizations for desert
soil dusts (Niemand et al., 2012) and for agricultural soil
dusts derived from this study. In Fig. 6a, we show the es-
timates of potential number concentrations of soil dust IN,
based on the classical view that all dusts are of desert origin
(Murray et al., 2012). In addition, we provide the estimates
of potential number concentrations of soil dust IN by assum-
ing that agricultural soil dusts account for either 5 (Tegen
et al., 2004) or 25 % (Ginoux et al., 2012) of the total soil
dust emissions (Fig. 6b). In these cases, agricultural soil dusts
represent a relatively small but nonnegligible contribution to
the IN population, as compared with desert soil dusts. Given
the results of immersion freezing experiments showing that
soils having higher contents of organic matter can serve as
efficient IN even at temperatures warmer than about−15◦C
(Schnell and Vali, 1972; Conen et al., 2011; Hill et al., 2013;
O’Sullivan et al., 2014), the contribution of agricultural soil
dusts to the IN population at these temperatures may exceed
that of desert soil dusts (not shown here). The influence of
biological IN on ice clouds is also a controversial topic (Pratt
et al., 2009; Creamean et al., 2013; Cziczo et al., 2013). In
this regard, the results in Fig. 6b suggest that the contribu-
tion of agricultural soil dusts to the IN population may be
more significant than that of microorganisms, as exemplified
by certain well-known fungal spores (Iannone et al., 2011;
Murray et al., 2012), at least at temperatures below about
−18◦C and on a global scale (however, further studies will
be necessary to understand the contribution of various other
microorganisms or their fragments). Considering that SOM
particles play the dominant role in the ice-nucleating ability
of agricultural soil dusts at temperatures warmer than about
−36◦C (Fig. 5), the results in Fig. 6b suggest the possibil-
ity that SOM particles of agricultural origin may contribute
strongly to the global atmospheric IN population.

The results presented here offer a possible explana-
tion for the presence of organic-rich particles found in
residues within ice clouds and ice-phase precipitation. For
example, previous field studies have indicated that or-
ganic/sulfate/nitrate particles account for about 5–25 % of
the nuclei involved in heterogeneous ice nucleation in ice-
containing clouds, whereas mineral particles always predom-
inate (DeMott et al., 2003; Richardson et al., 2007; Pratt et
al.., 2009; Creamean et al., 2013; Cziczo et al., 2013). Previ-
ous field studies have also pointed out the possibility of het-
erogeneous ice nucleation by urban anthropogenic organic
particles at temperatures as warm as−20◦C (Knopf et al.,
2010; Wang et al., 2012b), although the composition of in-
dividual IN has not been examined. It has been suggested
that certain sulfates (e.g., ammonium sulfate) and oxidized
organics exist as anhydrous salts or glassy solids at relatively
cold temperatures and hence act as effective IN (Abbatt et al.,
2006; Murray et al., 2010; Wang et al., 2012a). However, this
theory cannot readily explain heterogeneous ice nucleation at
temperatures warmer than about−30◦C (Abbatt et al., 2006;
Murray et al., 2010; Wang et al., 2012a). Here, we peculate
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Figure 6. Estimates of global mean number concentrations of IN
active under mixed-phase cloud conditions.(a) IN number concen-
trations for soil dusts, assuming that all dusts are of desert origin.
(b) IN number concentrations for desert and agricultural soil dusts,
assuming that 5 and 25 % of all dusts are of agricultural origin. Cal-
culations are performed using thens parameterizations for desert
soil dusts (Niemand et al., 2012) and for untreated agricultural soil
dusts (Fig. A1a) and the range of the zonal annual mean concen-
trations of dusts at 600 hPa (lower and upper limits) (Hoose et al.,
2010; Murray et al., 2012). Also provided for comparison are IN
number concentrations for fungal spores estimated using thens pa-
rameterization forCladosporiumspores (Iannone et al., 2011; Mur-
ray et al., 2012) and the range of the zonal mean concentrations
of fungal spores at 600 hPa (lower and upper limits) (Hoose et al.,
2010; Murray et al., 2012).

that SOM particles of agricultural origin can be regarded
as a possible source for the organic/nitrate/sulfate particles
found in residues within ice clouds. This idea may also be
supported by recent work showing that most organic matter
contained in hailstones originated from soils (Šantl-Temkiv
et al., 2013), leading to speculation that SOM particles might
participate in ice nucleation as well as be scavenged by ice-
phase precipitation. Further field, laboratory and modeling
studies will therefore be necessary to validate the hypothesis
that SOM particles of agricultural origin are indeed an im-
portant source of nuclei for atmospheric ice nucleation.

4 Conclusions

In this study, we highlight the role of agricultural soil dusts
as IN under mixed-phase cloud conditions. Our results indi-
cate that the ice-nucleating ability of agricultural soil dusts
is comparable to that of desert soil dusts, but is reduced
to almost the same level as clay minerals after treatments
to remove and/or deactivate almost all organic matter (i.e.,
H2O2 digestion or dry heating to 300◦C). Based on chem-
ical composition analysis of individual IN, we demonstrate
that the presence of SOM particles, rather than mineral par-
ticles, is largely responsible for the ice-nucleating ability of
the agricultural soil dusts at temperatures warmer than about
−36◦C. In addition, we suggest the possibility that SOM par-
ticles of agricultural origin may be regarded as a possible

significant source influencing the ubiquity of organic-rich IN
and also residues found within ice clouds and ice-phase pre-
cipitation.

Appendix A

A1 Estimation of the composition of ice nuclei of
agricultural soil origin

Here, we explain how to estimate the fraction of organic and
inorganic IN of agricultural soil origin as shown in Fig. 5b,
based on thens parameterizations obtained from freezing ex-
periments. The number concentration of IN active at a given
temperatureT , NIN (T ), can be described as (Murray et al.,
2012)

NIN(T ) = Ntotal (1− exp(−ns(T ) s)), (A1)

where Ntotal is the number concentration of total parti-
cles, ns (T ) is the ice-nucleation active site density and
s is the surface area of a single particle. Similarly, the
number concentrations of IN of agricultural soil origin,
NIN [agri. soil dust](T ), can be expressed as

NIN [agri.soildust](T ) = Ntotal [agri.soildust] (A2)

(1− exp(−ns [agri.soildust](T ) s)),

where Ntotal [agri. soil dust] is the number concentration of
agricultural soil dust particles, andns [agri. soil dust](T ) is the
ns value for untreated agricultural soil dust particles pre-
sented in Fig. A1a. When calculatings, all soil dust par-
ticles are assumed to be spherical particles having a diam-
eter of 600 nm. Also, if only inorganic particles exist after
the removal of organic matter by H2O2 treatment, the num-
ber concentration of inorganic IN of agricultural soil origin,
NIN [inorganic] (T ), can be expressed as

NIN [inorganic](T ) = Ntotal [inorganic] (A3)

(1− exp(−ns [inorganic](T ) s)),

whereNtotal [inorganic] is the number concentration of inor-
ganic particles of agricultural soil origin, andns [inorganic]
is the ns value for H2O2-treated agricultural soil dust par-
ticles presented in Fig. A1a. To obtainNtotal [inorganic](T ) in
Eq. (A3), we assume that inorganic (mostly, mineral) parti-
cles account for 60 % of the total agricultural soil dust parti-
cles (i.e., organic : inorganic ratio= 4 : 6; see the top-left pie
chart in Fig. 5b), with the choice of the ratio guided by in the
elemental composition analysis of individual 600 nm parti-
cles from the total population (i.e., the top-left pie chart in
Fig. 5a):

Ntotal [inorganic] = 0.6 Ntotal [agri.soildust]. (A4)

By combining Eqs. (A2), (A3) and (A4), the fractions of both
inorganic and organic particles in the agricultural soil dust

www.atmos-chem-phys.net/14/8521/2014/ Atmos. Chem. Phys., 14, 8521–8531, 2014



8528 Y. Tobo et al.: Organic matter matters for ice nuclei of agricultural soil origin

-40 -36 -32 -28 -24 -20 -16
103

104

105

106

107

108(a)

n s
 (c

m
-2

)

Wyoming soil dust [Sugar beet]
Wyoming soil dust [Grass/alfalfa]
Fit

"H2O2-treated" [Sugar beet] 
"H2O2-treated" [Grass/alfalfa]
Fit

R2 = 0.98

R2 = 0.99

-40 -36 -32 -28 -24 -20 -16
103

104

105

106

107

108

n s
 (c

m
-2

)

China loess soil dust
Fit

Kaolinite
Fit

R2 = 0.99

R2 = 0.99

Temperature (oC)

-40 -36 -32 -28 -24 -20 -16
103

104

105

106

107

108

n s
 (c

m
-2

)

Kaolinite fit
(This study)

Kaolinite fit
(Wex et al., 2014)

Temperature (oC)

Kaolinite fit
(Kanji et al., 2013)

Kaolinite fit
(Murray et al., 2011)

(b)

Figure A1. Fit to ice-nucleation active site densities for var-
ious dusts. (a) Parameterizations ofns for untreated agri-
cultural soil dusts (ln(ns) = −0.4736T + 0.3644; validity
range: −36◦C <T <−18◦C) and for H2O2-treated agri-
cultural soil dusts (ln(ns) = −0.6773T − 7.8436; validity
range: −36◦C <T <−22◦C). Parameterizations ofns for un-
treated China loess soil dust (ln(ns) = −0.5230T − 1.5767;
validity range: −36◦C <T <−18◦C) and for untreated
kaolinite (ln(ns) = −0.9803T − 17.7764; validity range:
−36◦C <T <−26◦C) are also shown. Error bars represent
standard deviations.(b) Comparison of thens parameterizations for
kaolinite from this study, Murray et al. (2011), Kanji et al. (2013)
and Wex et al. (2014).

IN, fIN [inorganic] (T ) andfIN [organic] (T ), respectively, can
be estimated:

fIN [inorganic](T ) =
NIN [inorganic](T )

NIN [agri.soildust](T )
, (A5)

fIN [organic](T ) = 1− fIN [inorganic](T ). (A6)

A2 Estimation of the number concentrations of ice
nuclei of agricultural soil origin

Here, we describe a possible method to estimate the global
mean number concentrations of IN of agricultural soil origin
under mixed-phase cloud conditions as shown in Fig. 6. Ac-
cording to modeling estimates, the zonal annual mean num-
ber concentrations of soil dusts (1 µm in diameter) at the
600 hPa pressure altitude range from 0.1 to 50 cm−3 (Hoose
et al., 2010; Murray et al., 2012). If soil dusts in the global
atmosphere can be regarded as consisting of only desert and
agricultural soil dusts, then the zonal annual mean concen-
tration of soil dusts,Ntotal [soil dust] (= 0.1 to 50 cm−3), may
be expressed as

Ntotal [soildust] = Ntotal [desertsoildust] (A7)

+ Ntotal [agri.soildust],

where Ntotal [desert soil dust]is the number concentration of
desert soil dust particles. Recently, Murray et al. (2012) esti-
mated the zonal annual mean number concentration of IN of
desert soil origin,NIN [desert soil dust](T ), using the formula

NIN [desertsoildust](T ) = Ntotal [desertsoildust] (A8)

(1− exp(−ns [desertsoildust](T ) s)),

where ns [desert soil dust](T ) is the ns value for desert soil
dusts (Niemand et al., 2012). In this calculation, Murray
et al. (2012) assumed that all dusts are of desert origin
(i.e.,Ntotal [desert soil dust]: Ntotal [agri. soil dust]= 100: 0). The
results are shown in Fig. 6a. However, in Fig. 6b, we provide
two estimates of the global mean number concentrations of
both desert and agricultural soil dust IN by assuming that
agricultural soil dusts account for 5 % (Ntotal [desert soil dust]:

Ntotal [agri. soil dust]= 95 : 5) and 25 % (Ntotal [desert soil dust]:

Ntotal [agri. soil dust]= 75 : 25) and by combining Eqs. (A2),
(A7) and (A8).
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