

Supplement of

Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra

M. L. McGuire et al.

Correspondence to: G. J. Evans (greg.evans@utoronto.ca)

1 S1 AMS Collection efficiency

2 The collection efficiency of the Aerodyne Aerosol Mass Spectrometer (AMS) is often 3 estimated by comparison of the measured mass with that of a collocated instrument. If 4 collocated external PM₁ mass measurements are unavailable, CE is often assumed by 5 comparison of the combined AMS sub-micron PM mass and BC with an external measure of $PM_{2.5}$. Middlebrook et al., have also shown that a composition dependent CE can be 6 7 estimated from the bulk aerosol composition (Middlebrook et al., 2012). These two options 8 were investigated to determine whether a CE other than a default of 1 could be applied to the 9 data.

10 For the simplest option, a reliable measure of $PM_{2.5}$ is required. Although CRUISER was 11 equipped with a TEOM providing high time resolution PM_{2.5} measurements, the suitability of 12 using these PM_{2.5} measurements for scaling was questioned as the TEOM was operated at 30°C, resulting in the possibility of significant semi-volatile material losses. This was 13 14 investigated through comparison of daily averaged CRUISER TEOM PM2.5 measurements with daily integrated speciation sampler filter measurements from Environment Canada's 15 National Air Pollution Surveillance (NAPS) network; a slope of 0.48 ($r^2 = 0.47$) indicated that 16 17 the CRUISER TEOM likely under measured by approximately 50% on average during the 18 campaign. A more suitable measure of PM_{2.5} for scaling was sought. A TEOM located in 19 nearby Dearborn, Michigan, and operated by the Michigan Department of Environmental Quality, was the best alternate measurement available. Although this TEOM was located 20 21 6.5km to the northeast of the Windsor measurement site, this TEOM was equipped with a 22 filter dynamic measurement system (FDMS), thereby significantly reducing the effect of 23 semi-volatile material losses (Grover et al., 2005).

24 To understand the effect of the site difference between the two sites, daily integrated filter 25 measurements were compared. It was found that on a 24hr average basis, the two sites correlated well for the days measured, with an r^2 of 0.96. However, a slope of 1.12 indicated 26 that the Dearborn measurements were ~12% higher than those in Windsor, indicating that 27 28 there was some difference between the two sites. The Dearborn daily average FDMS TEOM 29 measurements were compared to the integrated filter measurements from the same site, and it was found that again they compared well with an r^2 of 0.89. However, a slope of 1.24 30 indicated that the FDMS TEOM may have been biased somewhat high. Ultimately, good 31 32 agreement was found between the daily averaged measurements of the Dearborn FDMS

TEOM and the Windsor NAPS speciation sampler (r^2 of 0.92), although the FDMS 1 measurements appeared to be 34% higher (slope = 1.34). This may have been a combination 2 3 of the FDMS TEOM being biased somewhat high, combined with the actual differences in 4 PM_{2.5} between the sites (~12%). Nonetheless, comparison between the Dearborn FDMS 5 TEOM and the CRUISER TEOM highlighted the unsuitability of the CRUISER TEOM mass measurements for scaling purposes, as very low agreement was found between the two ($r^2 =$ 6 7 0.16, slope = 1.73), likely due to significant semi-volatile material losses. Comparison 8 between the combined AMS submicron PM and BC masses with the Dearborn FDMS TEOM 9 measurements revealed an estimated CE of 0.45 (Figure S-1.1a). However, only a moderate r^2 of 0.64 was found between them, indicating that there was still significant variation due to 10 11 composition effects.

12 The Middlebrook et al. approach was explored to determine if a composition dependent CE 13 could yield better agreement with the FDMS TEOM. Two key inputs are helpful to execute 14 and validate this calculation, namely reliable measurements of sampling line RH, and a 15 representative measurement of external mass from a collocated instrument. Unfortunately, sampling line RH was not measured in this study. Fortunately the Middlebrook algorithm 16 17 contains a provision for lack of sampling line RH measurements, by assuming a constant RH. Comparison of FDMS TEOM measurements from Dearborn with composition dependent CE 18 19 corrected submicron AMS measurements with BC was performed, and is shown in Figure S-1.1b. While this test did increase the slope, it was still only 0.85, which could possibly be 20 explained as the difference between the two sites. However, the agreement with the FDMS 21 TEOM did not improve, but rather decreased slightly to r^2 of 0.63. A better agreement 22 23 between the measurements following application of this composition dependent CE was expected. It is possible that the assumption of a constant sampling line RH was insufficient to 24 25 determine an effective composition dependent RH in this case: as a Nafion dryer was not 26 used, variability in the sampling line RH, particularly with high RH, likely introduced further 27 variation on CE (Middlebrook et al., 2012). As a constant RH was assumed, this additional variability could not be accounted for. Thus, with the CE reported to be dependent on RH 28 29 particularly at higher RH values, the composition dependent CE did not appear to have 30 improved the results, and as such was thus not applied to the data.

31 Ultimately, no CE correction was applied to these data, and a default, simple integer 32 collection efficiency of unity was assumed for this campaign. This value has been used in other studies (Lanz et al., 2007; Richard et al., 2011; Chirico et al., 2011), and reflects a lower bound for the non-refractory mass concentration. While an accurate estimate of collection efficiency is required for overall mass determination, it remains an integer value (either constant, or composition dependent) applied to the total mass concentration, and ultimately does not affect the primary study conclusions with respect to identifying and characterizing factors.

- Figure S-1.1: Comparison of AMS submicron PM + BC mass with the Dearborn FDMS-
- 5 equipped TEOM (a); comparison of composition-dependent collection efficiency corrected AMS
- submicron PM + BC mass with the Dearborn FDMS TEOM (b).

1 S2 PMF_{Full MS} analysis solution justification

2 The six factor solution was chosen to represent the AMS data as it fulfilled all mathematical 3 diagnostic criteria and provided the most physically meaningful results. The factors were as 4 follows: Amine, Sulphate-OA, Nitrate-OA, Chloride, HOA, and OOA. Comparisons between the Amine factor MS with MS from amine compounds reported in the NIST library showed 5 that the Amine factor's profile was most similar $(r^2 = 0.30)$ to the NIST electron impact 6 ionization (EI) mass spectrum for triethylamine (TEA: C₆H₁₅N, 101 g mol⁻¹) (Figure S-2.1) 7 8 (Stein, 2013). The six factor PMF solution was robust with a global minimum Q value of 9 227,508 found from 100 runs initiated from random seeds. Furthermore, bootstrapping 10 indicated that all factors demonstrated successful re-mapping to the base run (at least 99/100 11 runs for each factor). A $Q_{robust}/Q_{exp} = 0.79$ was calculated for this solution, indicating that the uncertainties provided to the PMF model were appropriate for the data. The calculated r^2 for 12 13 the solution was 0.996, which was a very high degree of reconstruction. Figure S-2.2 shows 14 that the Q value levels off at approximately six factors, indicating that the increase in 15 explained variance on adding factors decreases beyond this point. While a six factor solution 16 was chosen for analysis, solutions ranging from two to ten factors were explored. Figure S-17 2.2a highlights the $\Delta Q/Q_{exp}$ with an increase in number of factors, where a significant change from the previous factor addition indicates that the newly added factor has captured 18 19 meaningful variability from the residuals. The amount of variability captured began to 20 decrease with the addition of the seventh factor, although a portion of some large "spikes" were accounted for by the addition of the seventh and eighth factors. These spikes were 21 largely attributed to transient elevated SO_4^{2-} , which was not fully captured by the Sulphate-22 23 OA factor in the six factor solution. From Figure S-2.2b, it is evident that solutions beyond 24 eight factors failed to capture any significant additional variability, as compared to PMF 25 solutions of lower order.

The degree of correlation between factor mass spectra and time series was also examined (Figure S-2.3), as examining incremental changes in factor similarity with the addition of new factors can provide indication of where a solution may no longer be deemed acceptable. The five through eight factor solutions all showed reasonable separation in terms of the factor time series, as correlation coefficients were all around 0.6 or lower. In terms of mass spectra, some solutions showed a high degree of correlation in terms of factor mass spectra. For instance, in the five factor solution, the Sulphate-OA and Chloride factors were highly correlated in terms

of mass spectra, but not in temporality. Such a high correlation in terms of factor profiles 1 2 may be explained by these two factors being defined by only a few peaks, with the rest being reasonably low, and thus highly similar. With factor mass spectra defined by so few peaks 3 (particularly for inorganic factors), comparing degree of correlation in terms of temporality 4 5 was more reasonable. Nonetheless, examination of seemingly split factors, provided useful information. For instance, the Local Sulphate and Sulphate-OA factors were reasonably 6 7 similar in terms of mass spectra, as expected, yet showed low temporal correlation, indicating 8 they were reasonably different. However, the OOA and Other OA factors in the eight factor 9 solution showed that they were highly correlated, both in terms of mass spectra and time 10 series. When examining the chosen six factor solution, it can be seen that none of the factor 11 combinations show the same high degree of correlation for both mass spectra and time series, 12 providing further justification for this solution.

13 Before the six factor solution was fully accepted, it was further investigated through forced 14 global rotations using the FPeak parameter. This methodology was used to examine for 15 rotational ambiguity, and also to determine whether another rotation appeared more suitable. 16 Figure S-2.4 shows how Q_{robust}/Q_{exp} varies from an FPeak of -10 to 10. It is evident that the 17 central rotation provides the lowest value, indicating the lowest residuals and best fit for the 18 data. Despite the wide range of tested FPeak values, the range of variation in Q_{robust}/Q_{exp} was 19 reasonably low (0.793-0.805, or $Q/Q_{exp} \sim 1\%$). This range was similar to that explored in 20 Ulbrich et al. (2009), and was deemed suitable for the purposes of this analysis, as it caused 21 sufficient perturbation to help justify the central rotation as the most suitable, and also 22 determine the relative degree of rotational ambiguity amongst factors. Rotations were 23 assessed through the effect on resulting mass spectra according to the following observations: the variation in the fractional contribution of m/z 44 (F44) for factors containing significant 24 25 oxidized organic content (F44 > 0.05 for the base run); the extent of neutralization for factors 26 defined by salts; and the resulting change in mass spectra and associated compositional 27 change. Table S-2.1 lists the effect of FPeak variation on F44. FPeak variation had 28 negligible influence on the Sulphate-OA and Nitrate-OA factors as there was negligible 29 change in the F44 between FPeaks of -10 and +10. A slight effect was observed for the OOA 30 factor, whereby the F44 showed slight variation with changes in FPeak. Overall, variation in the FPeak did not significantly alter the F44 contribution for any of the factors with notable 31 32 oxidized organic aerosol material, and the variation still fell along the range of values reported for known OOA factors from around the world (~0.10-0.20) (Ng et al., 2011). Table S-2.2 33

1 shows the effect of FPeak variation on the extent of neutralization for the salt factors. It is 2 possible that rotational uncertainty is partly associated with uncertainties in the RIEs of 3 inorganic species, as default values were assumed in this study. As such, it was difficult to 4 use Neut_{ext} values in an absolute manner to assess whether an alternate solution was preferred. 5 However, an assessment of values in a relative sense indicated that Neutext values tended to increase away from the central rotation with both positive and negative rotations, towards 6 7 , indicating the central rotation appeared the most reasonable. more basic values 8 Ultimately, FPeak analysis indicated that between the inorganic factors, the Chloride factor 9 appeared to be the least rotationally fixed, showing the greatest degree of variation in composition among all factors, as most evident in Figure S-2.5. 10

In addition to the three aforementioned metrics, the resulting mass spectra from FPeak 11 12 rotations were examined and compared with other known spectra from the AMS mass spectral library (Ulbrich et al., 2010), and are shown in Figure S-2.6. Again, comparisons 13 were only made between factors for which a reliable AMS reference spectrum existed (i.e., 14 $NH_4NO_{3,1}^{1}$ (NH_4)₂ SO_4^{2} HOA³, and OOA⁴), and where correlations with reference spectra 15 were greater than 0.5 (i.e., not the case between the Amine factor and TEA). Overall, the 16 17 greatest variation was found within solutions of FPeak of ± 4 . Although a very minor 18 improvement in correlation was noted for the FPeak of +2 value, this was not deemed 19 sufficient to justify use of this value.

20 The variation in degree of correlation between the HOA factor and key external tracers was 21 also examined as a function of FPeak (i.e., NO, BC, Benzene, CO, and particle number 22 concentration) (Figure S-2.7). In each case, the degree of correlation between time series was 23 found to be slighly better with low positive rotations, although the difference between the 24 base case and any of the positive rotations was not sufficient to justify choosing an alternate 25 rotation over the base case. Overall, FPeak rotations revealed some rotational ambiguity in 26 the solution, mostly associated with the Chloride factor. Similar to the variation in mass 27 spectra, the greatest variation in correlations between time series was found between Fpeaks

¹ AMS Mass Spectral Database: L_STD_Q_001

² AMS Mass Spectral Database: L_STD_Q_002

³ AMS Mass Spectral Database: A_DEC_Q_012

⁴ AMS Mass Spectral Database: A_DEC_Q_013

1 of ± 4 . As no significant justification could be found for the selection of an alternate solution 2 other than the base run, the central FPeak rotation (FPeak = 0) was chosen.

To validate the six factor solution, the adjacent five and seven factor solutions were 3 4 examined. Furthermore, the eight factor solution was also considered due to the presence of an interesting sulphate factor. The solutions were examined for stability, and for physical 5 6 meaningfulness of the factor mass spectra. The latter was assessed through visual inspection, 7 extent of neutralization, as well as from correlation analysis with reference spectra and key 8 external time series (Figure S-2.8 and Figure S-2.9). An effective RIE was applied to the 9 Amine factors in these alternate solutions as in the chosen six factor solution. Figure S-2.10 10 presents the factor mass spectra and time series from the five factor solution. The factors 11 extracted in this solution were largely similar to those from the six factor solution, which was 12 partly reflected in the similarities in extent of neutralization for the salt factors (Table S-2.3). Correlation analysis of factor MS showed that the spectra were similar to those from the six 13 14 factor solution, except that the five factor HOA factor MS correlated slightly better with the 15 reference HOA spectrum. However, a notable difference was the absence of an OOA factor: instead, the dominant OOA peak, m/z 44, was apportioned mainly among the Sulphate-OA, 16 17 Nitrate-OA and Chloride factors. The lack of an OOA factor appeared to render the solution unstable, as no global minimum Q value could be found. Instead, the 100 random seed runs 18 19 were split nearly equally between two different global minimum Q values. This instability 20 was taken as a reflection of the robustness of the OOA factor extracted in the six factor 21 solution.

22 Figure S-2.11 presents the factor mass spectra and time series from the seven factor solution. 23 While there was a slight increase in the correlation between the OOA factor and formadehyde 24 at seven factors (Figure S-2.9), there was a significant deterioration in the mass spectral 25 correlations for the HOA and OOA factors and reference mass spectra (Figure S-2.8). However, as compared to five factors, the seven factor solution showed a greater degree of 26 27 stability, as a global minimum solution was found. While this stability suggested that seven factors may have been better than five, two undesirable effects were noted. First, the extent of 28 29 neutralization for the Chloride factor deviated significantly from unity, as the ratio of cations 30 to anions increased from 1.09 to 1.26 (Table S-2.3). Although the RIE value for Chloride was 31 not precisely known for this study (the default value was assumed), this relative increase still suggested that the solution was less ideal; in the six factor solution, all of the inorganic factors 32

appeared neutral, and more importantly, showed the same relative degree of neutrality. In this 1 2 seven factor solution, this was no longer the case. Second, the additional factor caused the OOA factor to be split into two less physically meaningful sub-factors: the factor appearing 3 4 most similar to the OOA factor identified in the six factor solution showed a drop in 5 correlation with the reference mass spectrum (Figure S-2.8), and the "Other OA" factor identified showed no significant correlation (R > 0.5) with any reference mass spectra from 6 7 the AMS mass spectra library. The effect of the split OOA factors is further discussed in 8 section 3.1.6.

9 The eight factor mass spectra and time series are shown in Figure S-2.12. While the eight 10 factor solution did comprise of a global minimum as determined from PMF initiation from 11 100 random seeds, ultimately it could not be accepted as the splitting of the Sulphate-OA 12 factor led to two Sulphate factors that could not be fully justified. In addition to a sulphate 13 factor that appeared mainly influenced by synoptic flow (named Regional Sulphate), an 14 additional factor, termed Local Sulphate, appeared to better capture the short-lived SO_4^{2-} spikes (Figure S-2.12). An analysis of the molar ratios of the cations to anions (Table S-2.3) 15 showed that the Local Sulphate factor appeared to be highly acidic (ratio = 0.25), consistent 16 with the short-lived, and likely local nature of the SO_4^{2-} spikes that it mainly represented. 17 While the Local Sulphate factor appeared to capture additional variability not captured in the 18 19 six or seven factor solutions, its extraction still could not be justified for three reasons. First, 20 as shown in Table S-2.3, the Regional Sulphate and Chloride factors in the eight factor 21 solution now appeared to be overneutralized (Regional Sulphate neutralization ratio = 1.27, 22 and Chloride neutralization ratio = 3.05). Again, while the absolute value of the extent of 23 neutralization could not be used due to uncertainties in inorganic species relative ionization efficiencies, there was a notable shift in these values while the reasonably robust Nitrate-OA 24 factor remained stable, and close to neutral. Second, the "Other OA" factor which was also 25 26 extracted in the seven factor solution, was still present, and still did not appear physically 27 meaningful. Third, correlations mass spectral and temporal correlations for the HOA and 28 OOA factors in terms of reference spectra and time series were not improved as compared to 29 lower order solutions (Figure S-2.8 and Figure S-2.9). As a result, while the eight factor solution appeared interesting in terms of the existence of an acidic Local Sulphate factor, 30 extraction of this factor altered the other factors to an unjustifiable extent. Thus, due to the 31 32 physical meaningfulness of the factor profiles, as well as the mathematical robustness of the solution, the six factor solution was deemed most acceptable. 33

F	Peak	Sulphate-OA	Amine	Chloride	Nitrate-OA	HOA	OOA
	10	0.15	0.04	0.00	0.13	0.00	0.09
	8	0.15	0.04	0.00	0.13	0.00	0.09
	6	0.15	0.04	0.00	0.12	0.00	0.09
	4	0.15	0.04	0.00	0.12	0.00	0.09
	2	0.15	0.04	0.02	0.12	0.00	0.09
	0	0.15	0.04	0.03	0.12	0.01	0.09
	-2	0.15	0.04	0.02	0.12	0.01	0.07
	-4	0.15	0.04	0.02	0.13	0.01	0.07
	-6	0.15	0.04	0.01	0.13	0.01	0.07
	-8	0.15	0.04	0.01	0.13	0.01	0.07
-	-10	0.15	0.04	0.01	0.13	0.01	0.07

1 Table S-2.1: Variation in F44 with FPeak rotation for the $PMF_{Full MS}$ six factor solution.

2

- 3 Table S-2.2: Variation in extent of neutralization with FPeak rotation for the predominantly
- 4 inorganic factors from the $\ensuremath{\text{PMF}_{\text{Full}\,\text{MS}}}$ six factor solution.

FPeak	Sulphate-OA	Nitrate-OA	Chloride
10	1.04	1.05	1.13
8	1.04	1.05	1.13
6	1.04	1.05	1.12
4	1.04	1.05	1.11
2	1.04	1.05	1.10
0	0.99	1.04	1.09
-2	1.05	1.06	1.11
-4	1.05	1.06	1.13
-6	1.05	1.06	1.14
-8	1.04	1.06	1.14
-10	1.04	1.06	1.14

5 Table S-2.3: Extent of neutralization for the five to eight factor PMF solutions for factors

6 7 dominated by salts, where the extent of neutralization defined as the molar equivalent ratio of

cations to anions (i.e., values greater than one indicate a greater concentration of cations to

8 anions).

Easter	Number of Factors				
Factor	5	6	7	8	
Nitrate-OA	1.03	1.04	1.02	1.01	
Chloride	1.07	1.09	1.26	3.05	
Sulphate-OA					
(Regional Sulphate for 8 factor solution)	0.99	0.99	0.86	1.27	
Local Sulphate	n/a	n/a	n/a	0.25	

2 3 4 Figure S-2.1: Comparison of the Amine factor from the $PMF_{Full MS}$ analysis six factor solution

with triethylamine reference electron impact ionization reference spectrum from the NIST

database (Stein, 2013).

Figure S-2.2: Decrease in the overall Q/Q_{exp} (a), and the Q/Q_{exp} as a function of time (b) as the
 number of factors (p) is increased in the PMF solution for the PMF_{Full MS} analysis.

Figure S-2.3: Pearson r correlation coefficients between factor mass spectra and time series for
 the five (a), six (b), seven (c), and eight (d) factor PMF_{Full MS} solutions.

Figure S-2.4: Variation in Q_{robust}/Q_{exp} for the range of tested FPeak values for the PMF_{Full MS} six
 factor solution.

2 Figure S-2.5: Variation in fractional factor composition for the six factor solution for the

Figure S-2.5: Variation in fractiona
 PMF_{Full MS} analysis by FPeak value.

1

- 3 Figure S-2.6: Pearson r correlation coefficients for factor mass spectra from the six factor
- 4 solution of the $PMF_{Full MS}$ analysis between the various FPeak values (FPeak = 0 refers to the
- 5 base case), and selected reference mass spectra from the AMS mass spectral library.

7 Figure S-2.7: Pearson r correlation coefficients for factor time series from the six factor solution

- 8 of the PMF_{Full MS} analysis between the various FPeak values (FPeak = 0 refers to the base case),
- 9 and selected external time series (PNC refers to CPC-measured particle number concentration).

3 Figure S-2.8: Correlation coefficients for factor mass spectra between the five and eight factor

4 PMF solutions and key reference mass spectra from the AMS mass spectral library.

8 Figure S-2.9: Correlation coefficients for factor time series between the five and eight factor

9 **PMF solutions and key external time series.**

Figure S-2.10: Mass spectra (a) and time series (b) from the five factor PMF_{Full MS} analysis
 solution.

Figure S-2.11: Mass spectra (a) and time series (b) from the seven factor PMF_{Full MS} analysis
 solution.

Figure S-2.12: Mass spectra (a), and time series (b) from the eight factor PMF_{Full MS} analysis
 solution.

1 S3 PMF_{Org MS} analysis solution justification

2 The three factor solution was deemed most acceptable for the PMF_{Org MS} analysis. A global 3 minimum Q_{robust} value of 221,281 was found for this solution. Figure S-3.1a shows the 4 decrease of the overall Q/Q_{exp} value with increasing factors. It can be seen that the gains in 5 explained variance begin levelling off at three factors. This is also apparent in Figure S-3.1b 6 where the magnitude of the difference between residuals as a function of time drops 7 dramatically after the addition of the fourth factor. These diagnostics show that at least three 8 factors are required to capture a significant amount of variance in the data. Similar to the six 9 factor solution from the PMF_{Full MS} analysis, the three factor solution from the PMF_{Org MS} analysis resulted in a very good degree of reconstruction, with an r^2 of 0.994. A $Q_{\text{robust}}/Q_{\text{exp}} =$ 10 0.78 was calculated, again very similar to the value calculated for the PMF_{Full MS} analysis, and 11 12 indicating that the uncertainties were appropriate for the data.

13 The rotational robustness of the three factor solution was examined through variation of the FPeak. Figure S-3.2 shows how Q_{robust}/Q_{exp} varies from an FPeak of -10 to 10. The central 14 15 rotation provides the lowest value, indicating the best fit for the data. Furthermore, despite 16 the wide range of tested FPeaks, the range of variation in Q_{robust}/Q_{exp} is reasonably low 17 (0.776-0.780). However, as with the PMF_{Full MS} analysis, this variation was deemed sufficient 18 for the purposes of this analysis for determining the relative degree of rotational ambiguity 19 amongst factors. The variation in the fraction of m/z 44 to the factor mass spectrum (F44) 20 was also examined (Table S-3.1). Variation was low for both the HOA and Amine factors, 21 where values were low. For the OOA factor, it varied more significantly from the central 22 rotation value of 0.15, ranging from 0.12 to 0.16. These values still fell within the range of 23 values reported for OOA factors from around the world (~0.10-0.20) (Ng et al., 2011). 24 Furthermore, factor profile correlations across FPeaks with the reference HOA and OOA 25 mass spectra showed negligible variation in correlation coefficients across rotations, indicating the central rotation was appropriate. Correlations between external time series and 26 27 factor time series across FPeaks showed slightly more variation, but any improvement in correlation was still insufficient to justify choosing another solution over of the central 28 29 rotation (Figure S-3.3). Variations in factor profiles and mass spectra were greatest for the 30 solutions immediately adjacent to the central rotation (FPeak ± 2), indicating this FPeak range 31 was sufficient for this analysis.

1 The degree of correlation between factor mass spectra and time series was also examined 2 (Figure S-3.4), as examining incremental changes in factor similarity with the addition of new 3 factors can provide indication of where a solution may no longer be deemed acceptable. Both 4 the three and four factor solutions showed reasonable separation in terms of factor time series, 5 as correlation coefficients were all lower than 0.6. However, in the five factor solution and 6 higher, several factors showed a higher degree of correlation in terms of their mass spectra.

7 Examination of the mass spectra from the three to six factor solutions shows that the three 8 factor solution provides the most physically meaningful results. At four factors (Figure S-9 3.5), an Other OA 1 factor is produced, which shows a different mass spectrum and time series than the OOA factor. However, the mass spectrum for this factor cannot be physically 10 11 justified, as it does not compare sufficiently well with any other known mass spectra, for instance any known HOA or oxidized organic aerosol type spectra. Instead, it displays very 12 high peaks at m/z 15 and 29, with m/z 43 being the next highest fragment. Some minor 13 14 features at higher m/z appeared in this factor at m/z 91 and 115, suggestive of biomass burning 15 emissions. While the correlation with the average BBOA mass spectrum from the AMS mass spectral library shows an r^2 of 0.69 (Table S-3.2), it did not show distinctive contributions 16 from key levoglucosan marker species. Instead, contributions from m/z 60 and 73 appeared 17 on par with species of similar mass, resulting in no discernable mass spectral signature. 18 19 Ultimately, this factor could not be accepted as it was not sufficiently similar to any known source profiles, and the solution was not significantly improved from the previous one by its 20 inclusion. This unknown factor also appeared in the five factor solution, as the Other OA 2 21 factor (Figure S-3.6). In this solution, it shows a higher r^2 value with BBOA (0.79), however, 22 23 the time series for the Other OA 1 and Other OA 2 factors were very highly correlated (r =0.8) (as shown in Figure S-3.4c), and appear to have resulted from factor splitting. This effect 24 25 continues into the six factor solution, as the Other OA 2 and Other OA 3 factors appear highly 26 similar in terms of their time series (Figure S-3.7). The six factor solution produces an Other 27 OA 1 factor, which displays a very high signal at m/z 29, and moderate signal at m/z 41 and 28 43, and low signal elsewhere. A comparison between this factor's MS and others from the 29 AMS mass spectral database shows no significant matches with any known mass spectra, 30 further preventing justification of the six factor solution.

The time series of the four factor OOA and Other OA factors were most correlated with the Nitrate-OA and OOA factors respectively from the $PMF_{Full MS}$ analysis (r of 0.77 and 0.93) 1 (Table S-3.3). Although the four factor $PMF_{Org MS}$ solution alluded to the presence of other 2 types of organics that were somewhat correlated with inorganics, mass spectral analysis of the 3 Other OA factor from the four factor organic solution showed that this factor did not 4 sufficiently resemble any other known mass spectra to accept the solution. Furthermore, the 5 correlation between the $PMF_{Org MS}$ four factor OOA factor and the $PMF_{Full MS}$ OOA factor (r 6 of 0.66) was not that much different with that of the $PMF_{Full MS}$ Nitrate-OA factor.

7 The time series of the factors from the three to six factor solutions were further examined 8 through analysis of diurnal trends. Diurnal trends of the OOA and Other OA factors were 9 examined most closely to determine if there was additional definitive information regarding 10 their nature. In the four factor solution (Figure S-3.9), the OOA factors' diurnality decreased, 11 with the addition of the Other OA1 factor, which showed a more pronounced diurnal trend 12 with daytime lows. This effect was also observed in the five and six factor solutions (Figures S-3.10 & 11), where the Other OA1 and 2 factors both showed similar diurnality. This 13 14 diurnal pattern was consistent with the semi-volatile nature that was suspected of the organics 15 from the three factor solution OOA factor. It should be noted that these nighttime patterns 16 were not necessarily consistent with nighttime residential wood burning, where mainly higher 17 evening contributions would be expected. Thus, although these diurnal trends provided some further information to characterize OOA and Other OA factors in higher order solutions, they 18 19 did not provide a definitive determination of a characteristics source or process.

20 Correlations with external tracers provided further information of the effect of increasing the 21 number of factors on the whole solution (Table S-3.4). The addition of more OA factors in 22 the four and five factor solutions leads to higher correlations between the Other OA 1 and 2 23 factors in the 4 and 5 factor solutions respectively, with black carbon, NO, CO, and PNC. 24 However, at the same time, the correlation between HOA and these key combustion species 25 also decreases, indicating that the HOA factor is being split to some degree as well. The impact on the HOA factor, along with the difficulty in justifying the MS of the additional OA 26 27 factors in the higher order solutions led to the three factor solution being chosen.

Although a biomass burning factor would be a logical observation during this wintertime campaign, it was not necessarily expected at this site. First, a literature review of past studies (mostly of integrated filter measurements) in the Windsor/Detroit area showed that biomass burning has only been identified in three out of eight known past studies (Brown et al., 2006; Peré-Trepat et al., 2007; Gildemeister et al., 2007; Hammond et al., 2008; Wade et al., 2008;

Morishita et al., 2011; Slowik et al., 2011; Pancras et al., 2013). Second, measurements were 1 2 taken at a highly urban, industrial site; it is possible that industrial and traffic sources overwhelmed any contributions from biomass burning. Furthermore, it is possible that 3 residential biomass burning is mainly occurring in residential areas at a distance from this 4 5 highly urban site; this would allow for the oxidation and breakdown of biomass burning associated organic compounds during transit, thus reducing the ability to resolve such 6 7 contributions. Thus, although there appeared to be some evidence for biomass burning 8 contributions, alternate solutions could not be accepted as the evidence for a biomass burning 9 factor was deemed too weak, and higher order solutions resulted in possible factor splitting and a decreased overall solution quality. 10

11 The mass spectra of the factors from the three to six factor solutions were also compared to the organic fraction mass spectra from the five organic containing factors from the PMF_{Full MS} 12 analysis to determine whether higher order organic PMF solutions contained the same 13 information as the organic fraction as determined from the $PMF_{Full MS}$ analysis (Table S-3.5). 14 15 The assessment criterion for a good match was considered to be where there was a correlation of r > 0.95 (i.e., HOA factors). These cross-correlations showed that the higher order 16 solutions did not resolve the organics in the same way as the PMF_{Full MS} analysis: not every 17 18 factor from the PMF_{Full MS} analysis displayed a significant correlation with corresponding 19 factors from the PMF_{Org MS} analysis. Thus, the PMF_{Full MS} analysis extracted factors 20 differently, and led to enhanced apportionment of the organic fraction, as higher order PMF_{Org} 21 MS solutions were less physically meaningful than those extracted from the six factor PMF_{Full} 22 MS analysis.

In terms of solution stability, all solutions from three to six factors all showed a global minimum Q value from 100 random seed runs. Bootstrapping runs showed that the three, four, and five factor solutions were all robust, as all solutions were fully remapped to the base run; this robustness declined somewhat at the six factor solution, where all factors were fully remapped to the base run, except for one, where 94 out of 100 runs were remapped.

FPeak	HOA	OOA	Amine
10	0.00	0.16	0.04
8	0.00	0.16	0.04
6	0.00	0.16	0.04
4	0.00	0.16	0.04
2	0.00	0.16	0.04
0	0.02	0.15	0.05
-2	0.02	0.12	0.05
-4	0.02	0.12	0.05
-6	0.02	0.12	0.05
-8	0.02	0.12	0.05
-10	0.02	0.12	0.05

Table S-3.1: Variation in F44 with FPeak rotation for the $\text{PMF}_{\text{Org}\,\text{MS}}$ three factor solution.

- Table S-3.2: Pearson r correlation comparisons between OOA factor mass spectra from the
- three, four, five, and six factor $PMF_{Org\,MS}$ solutions with reference mass spectra from the AMS
- mass spectral library.

	OOA Average⁵	LV-OOA Average ⁶	SV-OOA Average ⁷	BBOA Average ⁸
3F OOA	0.93	0.94	0.65	0.60
4F OOA	0.93	0.91	0.72	0.65
4F Other OA 1	0.39	0.41	0.61	0.69
5F OOA	0.94	0.93	0.66	0.57
5F Other OA 1	0.54	0.47	0.49	0.35
5F Other OA 2	0.37	0.38	0.63	0.79
6F OOA	0.89	0.87	0.47	0.31
6F Other OA 1	0.23	0.20	0.43	0.52
6F Other OA 2	0.36	0.38	0.54	0.60
6F Other OA 3	0.50	0.49	0.62	0.77

 ⁵ AMS Mass Spectral Database: A_DEC_Q_016
 ⁶ AMS Mass Spectral Database: A_DEC_Q_017
 ⁷ AMS Mass Spectral Database: A_DEC_Q_018
 ⁸ AMS Mass Spectral Database: A_DEC_Q_019

- Table S-3.3: Pearson r correlation comparisons between factor time series from the three, four, five, and six factor PMF_{Org MS} solutions with factor time series from the PMF_{Full MS} 6 factor 2 3

solution.

				PMF _{Full MS} fa	ctors		
PMI	Forg MS Factors	Amine	Sulphate-OA	Nitrate-OA	Chloride	HOA	OOA
3F	Amine	1.00	-0.02	0.27	0.12	0.22	0.29
	HOA	0.21	0.07	0.46	0.49	0.99	0.67
	OOA	0.14	0.43	0.79	0.41	0.36	0.85
4F	Amine	1.00	-0.02	0.25	0.10	0.18	0.26
	HOA	0.18	-0.01	0.33	0.42	1.00	0.51
	OOA	0.10	0.50	0.77	0.29	0.15	0.66
	Other OA 1	0.31	0.18	0.62	0.51	0.66	0.93
5F	Amine	1.00	-0.03	0.24	0.09	0.17	0.24
	HOA	0.16	-0.01	0.30	0.39	0.99	0.44
	OOA	0.06	0.54	0.75	0.28	0.10	0.59
	Other OA 1	0.28	0.15	0.58	0.53	0.73	0.90
	Other OA 2	0.47	0.18	0.68	0.42	0.59	0.89
6F	Amine	1.00	-0.03	0.24	0.09	0.17	0.24
	HOA	0.17	-0.01	0.31	0.41	0.99	0.47
	OOA	0.05	0.55	0.74	0.31	0.15	0.61
	Other OA 1	0.27	0.15	0.58	0.53	0.71	0.91
	Other OA 2	0.49	0.21	0.67	0.39	0.58	0.82
	Other OA3	0.16	0.33	0.68	0.33	0.33	0.71

Table S-3.4: Pearson r correlation coefficients between the time series of key external tracers, and factor time series from the three, four, five and six factor $PMF_{\rm Org\,MS}$ solutions.

2

	External TS	3 F	4 F	5F	6F
HOA	BC	0.78	0.68	0.64	0.66
	NO	0.83	0.80	0.79	0.79
	СО	0.70	0.63	0.60	0.62
	PNC	0.45	0.46	0.45	0.45
OOA	BC	0.64	0.50	0.47	0.53
	NO	0.41	0.26	0.23	0.28
	СО	0.51	0.37	0.34	0.40
	PNC	0.12	0.02	-0.01	-0.03
	Formaldehyde	0.58	0.46	0.45	0.48
Other OA 1	BC		0.78	0.79	0.78
	NO		0.59	0.64	0.63
	СО		0.65	0.67	0.67
	PNC		0.28	0.31	0.32
	Formaldehyde		0.59	0.59	0.59
Other OA 2	BC			0.71	0.71
	NO			0.56	0.56
	СО			0.57	0.56
	PNC			0.30	0.25
	Formaldehyde			0.51	0.49
Other OA 3	BC				0.51
	NO				0.37
	СО				0.40
	PNC				0.22
	Formaldehyde				0.45

- 1 2 3 Table S-3.5: Pearson r correlation comparisons between factor mass spectra from the three,
 - four, five, and six factor $\text{PMF}_{\text{Org}\,\text{MS}}$ solutions with the organic fraction of factor mass spectra

from the $PMF_{Full MS}$ 6 factor solution.

			PMF	Full MS factors		
	PMF _{Org MS} Factors	Sulphate-OA	Nitrate-OA	Chloride	HOA	OOA
3F	HOA	0.57	0.64	0.68	0.99	0.55
	Amine	0.56	0.65	0.67	0.37	0.76
	OOA	0.93	0.97	0.69	0.40	0.95
4F	HOA	0.61	0.67	0.69	0.99	0.56
	Other OA 1	0.49	0.72	0.53	0.36	0.86
	Amine	0.58	0.65	0.68	0.38	0.75
	OOA	0.96	0.98	0.74	0.55	0.92
5F	Other OA 1	0.78	0.70	0.78	0.49	0.66
	HOA	0.57	0.63	0.66	0.99	0.52
	OOA	0.98	0.96	0.73	0.51	0.89
	Amine	0.55	0.56	0.66	0.31	0.65
	Other OA 2	0.48	0.73	0.50	0.53	0.83
6F	OOA	0.95	0.88	0.59	0.35	0.75
	Other OA 2	0.41	0.69	0.31	0.36	0.76
	Amine	0.56	0.57	0.68	0.33	0.66
	Other OA 3	0.72	0.81	0.75	0.65	0.86
	HOA	0.56	0.61	0.64	0.99	0.49
	Other OA 1	0.52	0.56	0.85	0.49	0.72

Figure S-3.2: Variation in Q_{robust}/Q_{exp} for the range of tested FPeak values for the PMF_{Org MS}
 three factor solution.

Figure S-3.3: Pearson r correlation coefficients for factor time series from the three factor

5 solution of the $PMF_{Org MS}$ analysis between the various FPeak values (FPeak = 0 refers to the

base case), and selected external time series (PNC refers to CPC-measured particle number

concentration).

Figure S-3.4: Pearson r correlation coefficients between factor mass spectra and time series for the three (a), four (b), five (c), and six (d) factor PMF_{Org MS} solutions.

Figure S-3.5: Mass spectra (a), and time series (b) from the four factor PMF_{Org MS} analysis
 solution.

Figure S-3.6: Mass spectra (a), and time series (b) from the five factor PMF_{Org MS} analysis
 solution.

Figure S-3.7: Mass spectra (a), and time series (b) from the six factor PMF_{Org MS} analysis
 solution.

 $2 \qquad \mbox{Figure S-3.8: Diurnal trends for the PMF}_{\rm Org\,MS} \mbox{ three factor solution.}$

4 Figure S-3.9: Diurnal trends for the PMF_{Org MS} four factor solution.

2 Figure S-3.10: Diurnal trends for the $PMF_{Org MS}$ five factor solution.

2 Figure S-3.11: Diurnal trends for the $\text{PMF}_{\text{Org}\,\text{MS}}$ six factor solution.

1 S4 Comparison of PMF solutions between the PMF_{Full MS} and PMF_{Org MS} 2 analyses

To understand the effect of introducing the inorganics to organics in PMF analysis of the full mass spectrum, the overall fit and residuals between the $PMF_{Full MS}$ and $PMF_{Org MS}$ analyses were compared. In comparing the overall Q_{robust}/Q_{exp} values for the chosen solutions from the PMF_{Full MS} and PMF_{Org MS} analyses, it can be seen that they are on the whole, very similar (Q_{robust}/Q_{exp} for PMF_{Full MS} is 0.794, while it is 0.776 for PMF_{Org MS}). This indicates that the scaled residuals for both solutions are highly similar.

9 Figure S-4.1 provides a closer examination of this metric with the Q/Q_{exp} for each point in 10 time (a), and across the mass spectrum (b). Figure S-4.1a shows that the temporal distribution 11 of scaled residuals relative to the Q_{exp} is highly similar between the PMF_{Full MS} and PMF_{Org MS} 12 analyses, with the only major instances where the PMF_{Full MS} contributions noticeably exceeded those of the $\text{PMF}_{\text{Org MS}}$ analysis occurring during the large $\text{SO}_4{}^{2\text{-}}$ spikes. As these 13 spikes are mainly attributable to inorganics that were not accounted for in the $\text{PMF}_{\text{Org MS}}$ 14 15 analysis, it can be seen that the temporal analysis of scaled residuals to Q_{exp} indicates that the 16 data were modeled to a very similar degree in both analyses. Figure S-4.1b shows the 17 contribution of scaled residuals to Q_{exp} by m/z. Only fragments used in both analyses are 18 presented for this comparison. The same effect is observed in this case as in the temporal 19 residuals comparison, as it is mainly the fragments containing inorganics (namely ammonium 20 and sulphate), that display higher residuals. As discussed earlier, these residuals are likely 21 caused by an acidic local sulphate signal not being captured by the PMF model in the six 22 factor solution.

In considering the organic fragments, only m/z 44 was modeled somewhat better by the 23 24 PMF_{Org MS} analysis. A possible explanation for this may be that in the PMF_{Org MS} analysis, 25 m/z 44, and ratios between this and other key fragments, is driving factor separation. 26 However, in the PMF_{Full MS} analysis, factor separation is also being driven by the inorganic 27 fragments. With m/z 44 co-varying with a series of other inorganic fragments in the PMF_{Full} 28 MS analysis, apportioning this fragment to inorganic factors, and ultimately a greater number 29 of factors, may result in some unapportioned signal. Another notable difference between the 30 two analyses was for m/z 15, whereby it showed higher residuals in the PMF_{Org MS} analysis. 31 In examining solutions of higher order, it was noted that while there were modest and more 32 significant improvements to m/z 15 residuals in the four and five factor solutions respectively.

1 While the four and five factor solutions managed to better represent this m/z, these solutions 2 were not entirely physically meaningful, and could not be accepted. In considering m/z 15 3 representation in the PMF_{Org MS} and PMF_{Full MS} analyses, it is possible that it was modeled 4 better in the PMF_{Full MS} analysis due to the presence of inorganic signal at m/z 15, 16, and 17 5 from ammonium; in that analysis, the strong co-variance between these fragments may have resulted in a stronger pull towards those fragments. However, higher residuals for m/z 15 (as 6 7 well as a few other m/zs such as 55 and 57) as compared to other organic fragments in the $PMF_{Org MS}$ analysis is most likely attributed the strong signal at this m/z, the number of 8 9 complex sources and processes contributing to it, and overall limitations in the data (unit mass 10 resolution, and 15min time resolution).

1 References

- Brown, S. G., Hafner, H. R., Roberts, P. T., Schauer, J. J., and Sheesly, R. J.: Integration of
 results for the Upper Midwest Urban Organics Study, Chicago, IL, Report, 2006.
- 4 Chirico, R., Prevot, A. S. H., DeCarlo, P. F., Heringa, M. F., Richter, R., Weingartner, E., and
- 5 Baltensperger, U.: Aerosol and trace gas vehicle emission factors measured in a tunnel using
- 6 an Aerosol Mass Spectrometer and other on-line instrumentation, Atmospheric Environment,
- 7 45, 2182-2192, 10.1016/j.atmosenv.2011.01.069, 2011.
- Gildemeister, A. E., Hopke, P. K., and Kim, E.: Sources of fine urban particulate matter in
 Detroit, MI, Chemosphere, 69, 10, 2007.
- 10 Grover, B. D., Kleinman, M., Eatough, N. L., Eatough, D. J., Hopke, P. K., Long, R. W.,
- 11 Wilson, W. E., Meyer, M. B., and Ambs, J. L.: Measurement of total PM_{2.5} mass (nonvolatile
- 12 plus semivolatile) with the Filter Dynamic Measurement System tapered element oscillating
- 13 microbalance monitor, Journal of Geophysical Research D: Atmospheres, 110, 1-9, 2005.
- 14 Hammond, D. M., Dvonch, J. T., Keeler, G. J., Parker, E. A., Kamal, A. S., Barres, J. A., Yip,
- 15 F. Y., and Brakefield-Caldwell, W.: Sources of ambient fine particulate matter at two
- 16 community sites in Detroit, Michigan, Atmospheric Environment, 42, 720-732,
- 17 10.1016/j.atmosenv.2007.09.065, 2008.
- 18 Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., and Prevot, A. S.
- 19 H.: Source apportionment of submicron organic aerosols at an urban site by factor analytical
- 20 modelling of aerosol mass spectra, Atmospheric Chemistry and Physics, 7, 1503-1522, 2007.
- Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.: Evaluation of
 composition-dependent collection efficiencies for the Aerodyne aerosol mass spectrometer
 using field data, Aerosol Science and Technology, 46, 258-271, 2012.
- Morishita, M., Keeler, G. J., Kamal, A. S., Wagner, J. G., Harkema, J. R., and Rohr, A. C.:
 Identification of ambient PM 2.5 sources and analysis of pollution episodes in Detroit,
 Michigan using highly time-resolved measurements, Atmospheric Environment, 45, 16271637, 2011a.
- 28 Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, I. M., and Worsnop, D. R.:
- 29 Real-time methods for estimating organic component mass concentrations from aerosol mass
- 30 spectrometer data, Environmental Science and Technology, 45, 910-916, 2011.
- Pancras, J. P., Landis, M. S., Norris, G. A., Vedantham, R., and Dvonch, J. T.: Source
 apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly
 resolved PM chemical composition data, Science of the Total Environment, 448, 2-13, 2013.
- Pere-Trepat, E., Kim, E., Paatero, P., and Hopke, P. K.: Source apportionment of time and
 size resolved ambient particulate matter measured with a rotating DRUM impactor,
 Atmospheric Environment, 41, 5921-5933, 10.1016/j.atmosenv.2007.03.022, 2007.
- Richard, A., Gianini, M. F. D., Mohr, C., Furger, M., Bukowiecki, N., Minguillón, M. C.,
 Lienemann, P., Flechsig, U., Appel, K., Decarlo, P. F., Heringa, M. F., Chirico, R.,
 Baltensperger, U., and Prévôt, A. S. H.: Source apportionment of size and time resolved trace
 elements and organic aerosols from an urban courtyard site in Switzerland, Atmospheric
 Chemistry and Physics, 11, 8945-8963, 2011.
- 42 Slowik, J. G., Brook, J., Y.-W. Chang, R., Evans, G. J., Hayden, K., Jeong, C. H., Li, S. M.,
- 43 Liggio, J., Liu, P. S. K., McGuire, M., Mihele, C., Sjostedt, S., Vlasenko, A., and Abbatt, J. P.

- 1 D.: Photochemical processing of organic aerosol at nearby continental sites: Contrast between
- 2 urban plumes and regional aerosol, Atmospheric Chemistry and Physics, 11, 2991-3006,
 3 2011.
- 4 Stein, S. E.: "Mass Spectra", NIST Chemistry WebBook, NIST Standard Reference Database
- 5 Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, 2013.
- 6 Ulbrich, I.M., Lechner, M., and Jimenez, J.L. AMS Spectral Database. URL: 7 <u>http://cires.colorado.edu/jimenez-group/AMSsd/</u>.
- 8 Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.:
- 9 Interpretation of organic components from positive matrix factorization of aerosol mass
- 10 spectrometric data, Atmos. Chem. Phys., 9, 2891-2918, 2009.
- 11 Wade, K. S., Turner, J. R., Brown, S. G., Garlock, J., and Hafner, H. R.: Data analysis and
- 12 source apportionment of PM2.5 in selected Midwestern cities, Sonoma Technology, Sonoma,
- 13 California, 2008.