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Abstract. Continuous, in situ measurements of water va-
por isotopic composition have been conducted in the North
Atlantic, at the Bermuda Islands (32.26◦ N, 64.88◦ W), be-
tween November 2011 and June 2013, using a cavity ring-
down spectrometer water vapor isotope analyzer and an au-
tonomous self-designed calibration system. Meticulous cal-
ibration allows us to reach an accuracy and precision on
10 min average ofδ18O, δD, and d-excess of, 0.14, 0.85, and
1.1 ‰, verified using two parallel instruments with indepen-
dent calibration. As a result of more than 500 days with 6-
hourly data the relationships between deuterium excess, rel-
ative humidity (RH), sea surface temperature (SST), wind
speed, and wind direction are assessed. From the whole data
set, 84 % of d-excess variance is explained by a strong lin-
ear relationship with relative humidity. The slope of this re-
lationship (−42.6± 0.4 ‰ % (RH)) is similar to the theoreti-
cal prediction of Merlivat and Jouzel (1979) for SST between
20 and 30◦C. However, in contrast with theory, no effect of
wind speed could be detected on the relationship between
d-excess and relative humidity. Separating the data set into
winter, spring, summer, and autumn seasons reveals different
linear relationships between d-excess and humidity. Changes
in wind directions are observed to affect the relationships be-
tween d-excess and humidity. The observed seasonal vari-
ability in the relationship between d-excess and relative hu-

midity underlines the importance of long-term monitoring to
make accurate conclusions.

1 Introduction

Water-stable isotopes in the atmosphere are key tracers of
physical processes within the hydrological cycle. Since the
1950s, water-stable isotopes of precipitation and their im-
print in many different natural archives have been measured
by mass spectrometry and understood in relation to pro-
cesses controlling evaporation and evapotranspiration, mois-
ture transport, and condensation (Epstein and Mayeda, 1953;
Dansgaard, 1954; Rozanski et al., 1993). The founding works
of Dansgaard (1964) and Craig and Gordon (1965) have
shaped the last∼ 50 yr of research using water isotopes. The
knowledge of hydrological cycle processes is fundamental
for the implementation of water-stable isotopes in conceptual
Rayleigh distillation models or atmospheric regional or gen-
eral circulation models, and their various applications such
as the quantitative interpretation of ice core records (Johnsen
et al., 1989; Jouzel et al., 1997). Here, we will focus on the
basis of the atmospheric water cycle: the relation between
H18

2 O and HD16O compared to H16
2 O in the marine boundary

layer near the ocean surface. We will use the delta notation
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introduced by Craig (1961a):

δ∗
=

(
Rsample

RVSMOW
− 1

)
× 1000,

where δ∗ represents eitherδ18O or δD, and Rsample and
RVSMOW are the isotopic ratio of the sample and the Vienna
Standard Mean Ocean Water (VSMOW).

As noted by Craig (1961b), the relationship betweenδ18O
andδD reflects the imprint of kinetic and equilibrium frac-
tionation processes. The second-order parameter d-excess
has been defined by Dansgaard (1964) in order to highlight
the isotopic variability, which is not driven by equilibrium
fractionation that otherwise for the isotopic values encoun-
tered here leads to a linear relationship betweenδ18O and
δD with a global mean slope of 8 (‰ / ‰) (Majoube, 1971):

dexcess= δD − 8× δ18O.

Without large changes in temperature along the distillation
path (which alter the slope of 8 due to the temperature depen-
dence of the equilibrium fractionation coefficients), changes
in d-excess are dominated by kinetic fractionation. As quali-
tatively explained by, e.g., Dansgaard (1964), the kinetic ef-
fect during evaporation arises from the different diffusivities
of the water isotopes H16

2 O, HD16O, and H18
2 O in the air.

This kinetic fractionation during evaporation was formally
described by Merlivat and Jouzel (1979) (hereafter MJ79)
under an idealized “closure assumption” implying no advec-
tion of moisture. They formulated theoretical relationships
between d-excess, sea surface temperature (SST), and rel-
ative humidity of the air compared to the saturation vapor
pressure at the ocean surface (RHSST). We will in the fol-
lowing refer to RHSST as relative humidity at the SST. The
relationships were expected to depend on the wind regime
affecting molecular and turbulence mixing at the ocean sur-
face, following the evaporation theory of Brutsaert (1975).
Assessing the validity of MJ79 calculations requires long-
term monitoring of water vapor isotopes in the marine bound-
ary layer in order to separate the effect of the different influ-
encing factors.

During the past decades only a few observations of sur-
face water vapor isotopes have been conducted in the marine
boundary layer due to the analytical challenges associated
with cryogenic sampling. Gat et al. (2003) conducted cryo-
genic sampling of water vapor in the eastern Mediterranean
and reported high d-excess values, due to strong kinetic effect
produced as dry air transported from Europe moved across
the warm Mediterranean Sea, a finding further supported by
the study of Pfahl and Wernli (2009). Similarly, in another
study, high d-excess values measured in several Arctic ar-
eas were attributed to high kinetic effect produced by dry
polar air at the sea ice margin (Kurita, 2011; Steen-Larsen
et al., 2013). Uemura et al. (2008) cryogenically collected
60 samples of water vapor onboard a research vessel during
a one-month crossing of the Southern Ocean from Australia

to Antarctica and back to South Africa. Consistent with the
theory of MJ79, a strong relationship was observed between
d-excess and RHSST (with a slope of−58 ‰ / % RHSST), but
the strong correlation between RHSST and SST did not al-
low identifying the independant impact of SST alone. Pfahl
and Sodemann (2014) used data from Gat et al. (2003), Pfahl
and Wernli (2009), and Uemura et al. (2008) to propose
a globally applicable interpretation of d-excess in precipita-
tion based on the overall linear relationship between surface
vapor d-excess and RH. Support for the strong relationship
between d-excess in the marine boundary layer water vapor
and RH was recently obtained from a one-month campaign
in the eastern North Atlantic by Benetti et al. (2014) (slope
of −45 ‰ / % RHSST). The differences between the findings
from Uemura et al. (2008) and Bennetti et al. (2014) open
questions about both temporal and spatial variability in the
relationship between d-excess and RHSST.

With the availability of commercial laser water vapor iso-
tope analyzers (Crosson et al., 2002; Baer et al., 2002), it
has recently become possible to perform accurate and con-
tinuous in situ measurements, if correct protocols are imple-
mented for the calibration of the measurements. Further de-
velopments have allowed the setup of autonomous systems
in remote field sites in regions spanning from Greenland to
Niger, producing records of the variability of surface water
vapor isotopic composition over seasons to years (e.g., Steen-
Larsen et al., 2013; Bonne et al., 2014; Tremoy et al., 2012).
With the goal of performing year-round measurements of
water vapor isotopic composition in the North Atlantic ma-
rine boundary layer, we have focused on the Bermuda Is-
lands. The location was chosen due to warm SST as a re-
sult of the nearby Gulf Stream current, and because this area
is expected to be a key moisture source for the North At-
lantic sector. Indeed, part of our motivation was to charac-
terize the isotopic composition at the source of moisture for
Greenland and therefore to improve the understanding of the
processes governing Greenland water-stable isotopes and the
interpretation of d-excess from Greenland ice core records
(e.g., Steen-Larsen et al., 2011; Johnsen et al., 1989; Fisher,
1992; Masson-Delmotte et al., 2005; Jouzel et al., 2007). For
this purpose, we have designed a water vapor isotope moni-
toring system with the goal of being completely autonomous
for periods of several months and able to perform frequent
drift calibrations in order to have high accuracy for the d-
excess. Section 2 presents the setup of this system and our
protocol for calibration of our measurements. Using two wa-
ter vapor isotope analyzers calibrated independently of each
other allows us to estimate the accuracy and precision of our
observations. Section 3 is devoted to the investigation of sta-
tistical relationships and drivers for the observed variability
in the d-excess: seasonality, wind direction, and wind speed
as well as effect of averaging over different number of days.
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2 Materials and method

2.1 Meteorological observations

As shown in Fig. 1, our water vapor isotope monitoring sys-
tem was installed at the Tudor Hill Atmospheric Observatory
in Bermuda (32.26◦ N 64.88◦ W). Air temperature and rela-
tive humidity (RH) were recorded using a Campbell Scien-
tific CR1000 logger (±0.1◦C and±2 % RH) and wind di-
rection and speed using a RM Young propeller-type vane
(±3◦ and ±0.3 m s−1). Distribution of wind direction and
speed is shown in Fig. 1d, indicating that the wind is pre-
dominantly straight in from the ocean (∼ 65 % occurrence).
Surface pressure data values are obtained from the meteo-
rological observations taken by the Bermuda Weather Ser-
vice at Bermuda’s L. F. Wade International Airport nearby.
During the few days when we had meteorological data
gaps at Tudor Hill, we used the airport observations by
the Bermuda Weather Service. Monthly SST data were ob-
tained by averaging daily MODIS (Moderate Resolution
Imaging Spectroradiometer) Aqua satellite observations over
a ∼ 600 km× 800 km area centered on Bermuda (Haines
et al., 2007; Acker and Leptoukh, 2007). Mean monthly
air temperature data range from 17.7◦C (February, mean
daily high/low: 19.8/15.5◦C) to 27.2◦C (August, mean daily
high/low: 29.8/24.5◦C). Monthly mean SSTs vary from 18.4
to 28.2◦C (minimum/maximum: March/August). Monthly
climatology data from 1949 to 1999 (air temperature and
SST) were obtained from the Bermuda Weather Service.
Other measurements carried out at the tower consist of sam-
pling for the Global Atmosphere Passive Sampler Network,
continuous lower atmosphere ozone measurements and dis-
crete greenhouse gas sampling for NOAA’s Earth System Re-
search Laboratory, continuous measurements of aerosol op-
tical depth for NOAA’s Aerosol Robotic Network, and con-
tinuous solar radiation measurements for NOAA’s Baseline
Surface Radiation Network.

2.2 Setup

We installed in November 2011 a water vapor isotope ana-
lyzer from Picarro Inc. (Model # HBDS-2120) at the Tudor
Hill Atmospheric Observatory in Bermuda, where the base
of the meteorological tower is∼ 29 m a.s.l. (meters above
sea level) and situated∼ 30 m from the coast. The instru-
ment is installed inside a temperature-regulated box ensuring
daily temperature variability< 0.2◦C, which itself is placed
inside an air-conditioned container where diurnal tempera-
ture variability is< 2◦C. The setup of the system (Fig. 1c)
is similar to the setup previously deployed above the Green-
land ice sheet (Steen-Larsen et al., 2013, 2014). Three in-
lets were initially installed on the tower at a height of∼

20.5 m above ground (∼ 49 m a.s.l.),∼ 13.1 m above ground
(∼ 42 m a.s.l.), and∼ 5.8 m above ground (∼ 35 m a.s.l.). In
June 2013 we installed a separate fourth inlet∼ 2.5 m a.s.l.

The measurements that we focus on in this paper were taken
from the top inlet place∼ 49 m a.s.l., which is well above the
local vegetation (scrub).

Air sampling is performed using copper tubing, as labo-
ratory experiments showed copper to cause less smoothing
of the signal compared to, for example, stainless steel and
polytetrafluoroethylene (PTFE). All inlet tubes were placed
inside Armaflex® closed-cell tube insulation and heated to
above 50◦C using self-regulating heat trace from Raychem®.
To prevent rain from being sucked into our air sampling
tubes, the entrance of the inlets was placed inside Nalgene®

bottles with their bottoms removed and substituted by a wire
mesh screen to prevent intrusion of foreign objects, such
as insects. An extra shield was placed above the inlets
for protection against frequent intense precipitation events.
A 10 L min−1 air pump ensures a quick transport of the air
from the start of the inlet and into the analyzer. An extra
5 L min−1 air pump maintains a constant flow in the tubes not
being sampled. Inside the temperature-regulated box, a man-
ifold operated by the analyzer controls which inlet is being
measured. A three-way valve controls whether the analyzer
measures ambient water vapor, or water vapor from the cali-
bration unit. The purpose of the calibration unit is to supply
the analyzer with water vapor of known isotopic composi-
tion. This is achieved by using a similar vapor source to that
described by Ellehoj et al. (2013). Dry air is let to slowly
bubble through water of a known isotopic composition kept
at a constant temperature inside a glass bottle (5 L). Ellehoj
et al. (2013) showed that the water vapor isotopes are sta-
ble over flow rates up to 150 mL min−1, which is well above
the flow rates used here (∼ 30 mL min−1). As the tempera-
ture of the system is very stable, the known isotopic com-
position and temperature of the water are used to calculate
the isotopic composition of the generated water vapor under
the assumption of isotopic equilibrium. This saturated wa-
ter vapor is instantly diluted with dry air (humidity level be-
low 200 ppmv generated from Drierite®) as it leaves the glass
bottle to prevent any condensation in the tubes and thus iso-
topic fractionation. We used this vapor generation system to
perform humidity–isotope response calibrations and for drift
corrections, as introduced in Steen-Larsen et al. (2013) and
described hereafter.

2.3 Calibration

As described in Steen-Larsen et al. (2013) it is necessary to
perform a humidity–isotope response calibration of the ana-
lyzer, and correct the raw measurements. Following the pro-
tocol described in Steen-Larsen et al. (2013), water vapor
with a constant isotopic composition is introduced into the
instrument at different humidity levels, obtained by diluting
the saturated water vapor coming out of our bubbler system.
We vary the humidity in steps of 10 min, but start and fin-
ish the sequence at the same humidity level in order to cor-
rect for drift of the system. The drift is assumed to be linear
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Atmospheric Observatory and on the other site of the island(B), and system setup(C). The wind rose (6-hourly observations) indicates that
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between the start and stop of each sequence. To assess the
stability of the humidity–isotope response through time, cal-
ibrations were repeated at different dates (Fig. 2). Small but
significant drifts in the humidity–isotope response curve are
observed over the monitoring period. To correct for this ob-
served drift of the humidity–isotope response, we assume the
drift to be linear between two consecutive humidity–isotope
response calibrations.

To reference our measurements against the International
Atomic Energy Agency (IAEA) VSMOW–SLAP (Standard
Light Antarctic Precipitation) scale, we measured standards
of known isotopic composition. Between 3 and 10 differ-
ent standards, which varied between∼ 0 and∼ −39 ‰ in
δ18O and between∼ 0 and−310 ‰ in δD, were used each
time we carried out a VSMOW–SLAP calibration. The stan-
dards used were referenced by the Institute of Arctic and
Alpine Research at the University of Colorado, the Centre
for Ice and Climate at the University of Copenhagen, and
Laboratoire des Sciences du Climat et de l’Environnement in
Gif-sur-Yvette, and calibrated against the IAEA VSMOW–
SLAP scale. The standard deviation of the residuals between
the VSMOW–SLAP value of the standards and the calcu-

lated values based on best linear fits is∼ 0.1 ‰ for δ18O
and∼ 1.1 ‰ for δD. We carried out VSMOW–SLAP cali-
brations in November 2011, August/September 2012 (most
intensive period of calibrations, with 6 calibrations within 3
weeks), and June 2013 (Table 1). Table 1 rules out short-term
variability for the VSMOW–SLAP slope but shows long-
term changes in the slope, similar to values reported by Bas-
trikov et al. (2014). We assume that the VSMOW–SLAP
slope varies linearly between the calibration periods. This ob-
served drift is small, and has no impact on our data quality.
The range of observed atmospheric water vapor isotope vari-
ability is less than∼ 10 ‰ in δ18O, and much smaller than
the range of the standards. An unaccounted drift of 0.01 in
the VSMOW–SLAPδ18O slope would, for example, result
in a maximum bias of only 0.1 ‰ inδ18O of the measured
atmospheric water vapor isotope signal.

To account for the drift of the measured atmospheric water
vapor isotope signal, we measure every 6–12 h water vapor
with a known isotopic composition. This is carried out using
our bubbler system described above. We have monitored the
isotopic composition of the water inside our bubbler by tak-
ing samples regularly for measurements on an isotope-ratio
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Table 1.Slope between IAEA VSMOW–SLAP values and measured values of standards.

Date Slope Standard Mean slope Standard
deviation slope deviation mean

slope
δ18O δD δ18O δD δ18O δD δ18O δD

27 Nov 2011 1.0708 1.0685 0.0206 0.0104 – – – –

28 Aug 2012 1.0713 1.0915 0.0029 0.0055 1.0733 1.09315 0.0052 0.0078
31 Aug 2012 1.0756 1.0886 0.0062 0.0047
4 Sep 2012 1.0690 1.0949 0.0033 0.0033
6 Sep 2012 1.0812 1.1081 0.0203 0.0051
10 Sep 2012 1.0756 1.0883 0.0023 0.0100
15 Sep 2012 1.0669 1.0875 0.0026 0.0064

13 Jun 2013 1.0527 1.0759 0.0044 0.0049 1.0547 1.0756 0.0022 0.0003
2 Jul 2013 1.0571 1.0753 0.0014 0.0024
3 Jul 2013 1.0543 1.0755 – –
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28

Figure 2. Humidity–isotope response calibrations of the analyzer performed at different dates during the monitoring period. The right panel
represents the best fit using either a second- or third-order polynomial to the observations.

mass spectrometry (IRMS) system. As expected from the mi-
nor removal of water vapor (∼ 0.03 g/drift calibration) and
large water body (5 L), no change in the liquid water iso-
topic composition was detected. The water vapor from the
bubbler is measured for 30 min, of which the first 15 min
are discarded due to memory effects. The raw measurements
are corrected using our humidity–isotope response correction
(Fig. 2). They are then calibrated against VSMOW–SLAP

using the slopes presented in Table 1 and drift-corrected us-
ing the measurements of the vapor from the bubbler and the
expected isotopic composition of the water vapor calculated
from the equilibrium fractionation coefficient and the liquid
water isotope value.

Figure 3 shows the long-term drift of the system, charac-
terized forδ18O andδD by a∼ 3 ‰ increase and a∼ 7 ‰ de-
crease over the∼ 1.5 yr measurement period. The associated
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Figure 3. Drift on the measured isotopic values. The top panel
shows the temperature of the water body in the bubbler system. Be-
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The observed drift inδ18O, δD, and d-excess is shown for indi-
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∼ 25 ‰ drift of d-excess stresses the uttermost importance
of this correction. No apparent reason for this drift could
be determined. The stable isotopic measurements of water
samples taken from the bubbler rule out a drift of the stan-
dard itself. We note a long-term correlation between the drift
and the temperature of the calibration system and analyzer
(Fig. 3). However, abrupt changes in the temperature do not

Figure 4. Relationship between the observed absolute humidity by
the Campbell humidity sensor (y axis) and the measurement by the
Picarro analyzer (x axis). This relationship is used to correct the
Picarro humidity measurements.

seem to induce any response of the system. A 48 h running
mean (black line, Fig. 3) is used to drift-correct the measure-
ments of the atmospheric water vapor isotopes.

The Picarro humidity measurements are calibrated against
the estimated absolute humidity (ppmv) from the Campbell
humidity sensor showing a strong linear relationship (Fig. 4).
Humidity (ppmv) =pw/(ptot−pw)106, wherepw andptot is
the vapor pressure and the total pressure. Hereafter, we use
the corrected Picarro humidity values.

2.4 Signal smoothing due to the experimental setup

Due to the length of the introduction line (25 m of tubing),
we expect the signal to be smoothed through mixing and in-
teractions with the inside tube wall (Massman and Ibrom,
2008). By using a 10 L min−1 pump to transport the sam-
ple quickly from the inlet to the analyzer we try to mini-
mize the smoothing of the signal from the interactions be-
tween the water vapor and the walls of the tubing. In or-
der to quantify this effect, two sets of experiments were per-
formed. We first injected air with two significantly different
water vapor concentrations (∼ 1000 and∼ 30 000 ppmv) and
secondly injected air containing the same concentration of
water vapor, but with two significantly different water va-
por isotopic compositions (δ18O: ∼ −56 ‰ and∼ −17 ‰).
We used a similar system as our calibration system described

Atmos. Chem. Phys., 14, 7741–7756, 2014 www.atmos-chem-phys.net/14/7741/2014/
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Figure 5. Results of experiments conducted to characterize the response time of the system. Step changes of humidity followed by step
changes inδ18O were performed. Note that the steps are not of equal length as the experiment was performed on an ad hoc field setup on top
of the tower.

in Sect. 2.2 to generate the water vapor with the given iso-
tope and humidity value. The observed step changes in the
humidity and isotope values are shown in Fig. 5. The nor-
malized response functions for the shifts in humidity,δ18O,
andδD together with the averaged time derivative of the nor-
malized response functions are shown in Fig. 6. A lognormal
distribution gives a good fit (not shown) to the time-derived
normalized response functions. The lag-time for the signal to
arrive at the analyzer (defined as the time at which 0.5 % of
the normalized response has been reached) is shorter for the
humidity (∼ 40 s) than for the isotopes (∼ 50 s). Similarly,
95 % of the normalized response is obtained after respec-
tively ∼ 225, ∼ 650, and∼ 1200 s for the humidity,δ18O,
andδD signal. This smoothing of the signal between the in-
let and the analyzer causes different memory effects on each
parameter. Since the performed step changes can be approxi-
mated by a Heaviside step function for the humidity and iso-
topic change, the first time-derivative of the original humid-
ity and isotope signal becomes a Dirac delta function. The
transfer function (i.e., the dampening of the signal at differ-
ent frequencies) of the complete setup can therefore be es-
timated from the Fourier transform of the time derivative of
the normalized change. This is shown in Fig. 7 for humidity
(black lines),δ18O (blue lines), andδD (red lines). A signal
with a periodicity of∼ 100 s will be attenuated by∼ 85 % in
humidity, 98.5 % inδ18O, and 99.7 % inδD. However, it is
potentially possible to record humidity signals with a period-
icity down to∼ 30 s. Due to a compensation between larger
smoothing and lower noise level forδD (compared toδ18O),
it is possible to observe signals in bothδD and δ18O with
a periodicity down to∼ 60 s. Using the estimated transfer
function forδD andδ18O and the fact that the measured sig-
nal is equal to the original signal convoluted by a lognormal
function, it could be possible to perform a back-smoothing
correction and recreate the original high-frequency signal
using similar techniques to those applied to ice core water-
stable isotope records or eddy-covariance analysis (Johnsen,
1977; Johnsen et al., 2000; Spank and Bernhofer, 2008).
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Figure 6. Normalized response function for humidity,δ18O, and
δD (upper panel). Time derivative of the normalized response func-
tions (lower panel).

2.5 Instrumental inter-comparison and inter-site
variability

During autumn 2012, a second Picarro Inc. analyzer was in-
stalled in parallel with the original analyzer for a short pe-
riod of time. Each analyzer was calibrated independently us-
ing the above procedure. The comparison of the two records
allows us to directly estimate the uncertainty of the mea-
sured water vapor isotope signal, including the uncertainty
of the calibration steps. Based on 10 min averaged calibrated
data from the two analyzers, spanning a period of 5 days
(Fig. 8), the inter-instrument differences are normally dis-
tributed with a mean and standard deviation of 0.05± 0.14 ‰
(δ18O), −0.15± 0.85 ‰ (δD), and 0.3± 1.1 ‰ (d-excess).
The mean deviation forδ18O, δD, and d-excess being close
to zero rules out any systematic bias between the two an-
alyzers. Following Steen-Larsen et al. (2013), the standard
deviation of the inter-instrument differences is used as a con-
servative estimate for our precision. Our obtained precision
of 1.1 ‰ for d-excess far exceeds the precision of water
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35

Figure 9. Humidity, δ18O, and d-excess measured by two water va-
por analyzers separated to opposite ends of the island. We highlight
an event where an increase in humidity andδ18O is first recorded
at the northern site and 1 h later at Tudor hill as expected by surface
wind direction and wind speed during this period. The estimated
uncertainties forδ18O and d-excess (0.14 and 1.1 ‰) are indicated
next to the axes.

vapor cryogenic trapping capabilities and reaches the preci-
sion achieved by IRMS.

In order to investigate the regional coherency of the ob-
served water vapor isotopes, we moved the second ana-
lyzer to the opposite end of the Bermuda Islands, located
20 km away from the Tudor Hill Atmospheric Observatory
(Fig. 1), for a period of∼ 3 days at the beginning of au-
tumn (Julian day 249–252 of 2012). The comparison of the
two records (Fig. 9) depicts a gradient in humidity levels,
probably due to the altitude at which measurements were
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conducted (∼ 15 m a.s.l vs.∼ 49 m a.s.l. for Tudor Hill). Al-
together, a very good agreement is observed between obser-
vations at either end of the island. During an event at which
the wind blew parallel with the axis formed by the two sta-
tions, at day 251.1, we observe a 1 h delay between the first
increase of humidity and water vapor isotopic composition at
the northern site (Fig. 9, black solid line), and the same sig-
nals recorded at Tudor Hill (20 km away). This is fully con-
sistent with air mass transportation at the mean wind speed of
about 20 km h−1 without any significant change in the mag-
nitude of the water vapor isotopic signal between the two
sites. Based on this short comparison, we conclude that the
signal measured at Tudor Hill is representative of a regional
signal, without any significant local effects.

3 Results and discussions

During the more than 500-day measurement period the SST
is found to vary between∼ 20 and∼ 28◦C with minimum
and maximum occurring around mid-March and mid-July
(Fig. 10, light blue curve). Figure 10 shows our corrected
records of humidity (green), relative humidity at to SST
(red), δ18O (blue), and d-excess (black) for the period be-
tween November 2011 and June 2013 (6 h data). Thanks to
limited prolonged data gaps our data coverage is 95 %. The
first gap in the data (∼ 2012.25) was due to a flooded inlet

caused by heavy rain, while the second gap (∼ 2012.4) was
due to a failure of a vacuum pump.

The full year of data from 2012 allow us to compute the
annual mean value for the humidity,δ18O, δD, and d-excess:
∼ 20 500 ppmv, 70 % (RHSST), −11.81 ‰, −80.8 ‰, and
13.7 ‰, respectively. We find for 2012 a well-defined maxi-
mum (minimum) forδ18O (d-excess) to occur in July (−10.0
and 7.3 ‰), while the months November–February have
roughly similar minimum (maximum)δ18O (d-excess) mean
values (−12.5 to−12.8 ‰ and 16.8 to 17.7 ‰). Figure 10
clearly shows July–August to have less variability (standard
deviation (σ ) of the 6 h data) inδ18O and d-excess:∼ 1.03
and ∼ 3 ‰ less than January–February (σ(δ18O) andσ (d-
excess):∼ 1.8 and∼ 9 ‰). We notice the absence of a sig-
nificant diurnal variation in the humidity and isotopes, indi-
cating the absence of local diurnal processes related to the
boundary layer and plant transpiration (Welp et al., 2012;
Berkelhammer et al., 2013).

From the 6-hourly data, d-excess is strongly correlated
with RHSST (n =∼ 2100, R = −0.93), with a slope of
−42.6± 0.4 ‰ / % (Table 2, Fig. 11a). For the remainder of
this section, we further investigate the stability of the rela-
tionship between d-excess and RHSST, comparing the results
obtained under different wind regimes and different seasons
(based on SST values).

The observed relationships are compared to theoretical
calculations based on MJ79 performed for a smooth surface
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Table 2. The slope and intersect of d-excess vs. relative humidity for the complete data set as well as seasonal, wind direction, and wind
speed subsets.

Slope Intercept R2 N

(‰ (RHSST
−1)) (‰)

All data −42.6± 0.4 43.5± 0.3 0.86 1926
High wind speed (> 7 m s−1) −42.0± 0.5 42.9± 0.4 0.89 679
Low wind speed (< 6 m s−1) −43.0± 0.6 43.9± 0.4 0.82 1016

Summer data −51.9± 1.5 50.8± 1.1 0.76 398
Wind direction 0–180◦ −45.2± 2.1 46.3± 1.5 0.69 208
Wind direction 180–360◦ −56.7± 2.1 54.1± 1.6 0.80 180

Winter data −40.7± 0.5 41.4± 0.4 0.88 738
Wind direction 0–200◦ −41.7± 0.8 42.5± 0.6 0.88 287
Wind direction 200–250◦ −49.1± 1.0 48.6± 0.8 0.92 164
Wind direction 250–360◦ −38.7± 1.1 39.8± 0.6 0.82 275

Autumn data −37.4± 1.1 41.8± 0.7 0.90 135

Spring data −39.1± 1.8 40.0± 1.4 0.85 90

(wind speed below 6 m s−1) and a rough surface (wind
speed above 7 m s−1 – kinetic fractionation value taken for
10 m s−1) and for SST of 20◦C and 30◦C. The best linear
fit to our observations is extremely close to MJ79 predictions
for a smooth surface, and bracketed by calculations for SST
between 20 and 30◦C. It is also found that the predictions
corresponding to a rough surface and SST of 20◦C consti-
tute a lower bound for the observations.

Note that this comparison relies on the implicit assump-
tion that Tudor Hill winds and relative humidity (measured
at about 49 m a.s.l.) are representative of meteorological con-
ditions of the lower boundary layer. Based on the similarity
of humidity variations (despite a systematic offset) with the
other end of the Bermuda Islands (Fig. 1), and the lack of
a strong diurnal variability, which could be driven by changes
in the marine boundary layer height, we assume this implicit
hypothesis to be valid.

In order to investigate if the observed relationship depends
on the wind regime, Fig. 11b shows the subsets of obser-
vations corresponding to wind conditions associated with
a smooth surface (wind speed< 6 m s−1 – blue dots) and
a rough surface (wind speed> 7 m s−1 – red dots). We made
the separation according to the discontinuity in the kinetic
fractionation factor defined by MJ79. A small difference be-
tween the two subsets appears for RHSST< 0.6, with smooth
conditions associated with higher ranges of d-excess. The
slope of the relationship between d-excess and RHSST is
slightly more negative (−43 ‰ / % vs.−42 ‰ / %) for data
corresponding to low winds (see also the Supplement). How-
ever, this observed difference is much smaller than inferred
from MJ79 (from−42.7 to−28.5 ‰ / % when shifting from
smooth to rough surface). This indicates that either the wind
regimes defined in MJ79 might not be appropriate for this
area or the observed d-excess of the local water vapor is af-

fected by past wind conditions at remote areas of evapora-
tion. The differences between the result of this study and the
results by Uemura et al. (2012) and Benetti et al. (2014) il-
lustrates that more studies are needed to clarify the effect of
wind speed on the d-excess signal in the marine boundary
layer.

3.1 Seasonal d-excess vs. RH

We now investigate whether the relationship between d-
excess and RHSST varies as a function of SST and season.
The winter period is defined for SST below 21.0◦C, summer
for SST above 26.0◦C, and spring and autumn for SST be-
tween 23.0 and 25.0◦C. Figure 11c and d show the d-excess
vs. RHSST for the different periods as well as the best linear
fits (summarized in Table 2). The average RHSST for both the
complete data set and for the winter subset data is approxi-
mately 60–65 %. Comparing for this RHSST the absolute val-
ues of the best fit shown in Fig. 11 and in Table 2 reveals the
winter d-excess to be about 1 ‰ lower compared to that for
the complete data set (∼ 17 ‰ compared to∼ 18 ‰). This
offset is consistent with the theory of MJ79 and the depen-
dency of d-excess on SST: 3◦C lower winter SST is expected
to decrease winter d-excess by approximately 1 ‰. With sim-
ilar SST and RH ranges, we also observe that d-excess is sys-
tematically higher in autumn than in spring, which also trans-
lates into different intercepts of d-excess vs. RHSST regres-
sions (Fig. 11d, Table 2). This feature, which cannot be ex-
plained by local meteorological parameters (i.e., SST), points
to a change of moisture source region(s) and/or condition
between spring and autumn. The validation of this hypoth-
esis requires specific investigations such as moisture back-
trajectory calculations and water tagging using atmospheric
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Figure 11. (A) Complete set of 6-hourly observations of d-excess vs. relative humidity (RHSST) at sea surface temperature (black dots),
with a best fit (grey line). Results from the theory of MJ79 are displayed for a rough and smooth surface, and for SST of 20 and 30◦C. (B)
The complete set of 6-hourly observations of d-excess vs. RHSSTseparated into calm (< 6 m s−1 – cyan dots) and strong winds (> 7 m s−1

– grey dots). MJ79 calculations are shown for a rough and smooth surface at 20◦C. (C) Observations collected during winter (defined as
SST< 21◦C – blue dots) and summer (defined as SST> 26◦C – red dots) period. The best linear fits to winter and summer observations
are shown as black and grey solid lines.(D) Observations collected during the spring (23◦C< SST< 25◦C – green dots) and autumn
(23◦C< SST< 25◦C – brown dots) period. Best linear fits to the spring and autumn period are shown as, respectively, green and brown
solid lines.

general circulation models, which are beyond the scope of
this manuscript.

Finally, Fig. 11c and d and Table 2 highlight that the slope
between d-excess and RHSST is much more negative in sum-
mer than for other seasons. The distribution of the summer
d-excess data shows a subset of points for RHSST> 0.65
which are aligned on the same d-excess vs. RHSST relation-
ship as for the winter season. However, a subset of abnormal
high summer d-excess data corresponding to RHSST< 0.65,
and dominant northwesterly winds, lead to a much more neg-
ative slope with respect to local RHSST. Section 3.3 will sys-

tematically investigate the influence of wind direction on the
d-excess.

3.2 d-excess vs. RH on different timescales

Figure 10 clearly depicts enhanced winter variability in sur-
face humidity and isotopic composition. This is supported
by a wavelet analysis (not shown here) showing signifi-
cant power in the variability of the humidity and isotopes
with periodicities between 3 and 8 days from mid-November
to mid-February. During the summer months (mid-April to
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Figure 12.Slope of d-excess vs. RHSST for different averaging pe-
riods varying from 1 day to 30 days.

mid-September), no period with a significant power shows
up. This is consistent with the buildup and westerly shift of
the Bermuda–Azores high-pressure system during summer.
This prevents frontal systems from passing through the area
compared to the winter period, when the high-pressure sys-
tem is weaker and frontal systems are able to move across
Bermuda (Huang et al., 1999; Portis et al., 2001). As differ-
ent weather systems dominate the isotopic variability during
different seasons, we used a wavelet coherence analysis to
characterize the relationship between d-excess and RHSST in
the frequency and time domain (not shown). It confirms that
d-excess and RHSST time series are strongly anti-correlated
over the full data period on timescales of∼ 1–2 days up to
2 months (the length of data set does not allow this analysis to
be extended on longer timescales). The lack in correlation on
timescales below 1–2 days may be due to the analytical lim-
itation, and the too-low signal-to-noise ratio of our d-excess
measurements.

Due to the strong anti-correlation between d-excess and
RHSST on timescales of days to months, it is possible to in-
vestigate the relation between d-excess and RHSST for dif-
ferent averaging timescales. We divide the record into sepa-
rate non-overlapping periods ranging from one day up to one
month. The estimated slope of the daily to monthly averaged
d-excess vs. RHSSTvalues is shown in Fig. 12 as a function of
the averaging period. We find that the slope for d-excess vs.
RHSST changes from∼ −43.6± 0.7 (R2

= 0.86, n = 494)
to ∼ −52.0± 3.3 ‰ / % (R2

= 0.86, n = 36) when increas-
ing the averaging time from 1 day to 2 weeks. Increasing the
averaging time from 2 weeks to 1 month does not signifi-
cantly affect this slope further. We note that time averaging
allows for integration across synoptic systems. This is com-
parable to a spatial averaging across air masses in the region
around the Bermuda Islands. While the daily slope is con-
sistent with that of MJ79, increasing averaging time causes
the slope to deviate from the theoretical slope of MJ79 and

to become closer to the value found by Uemura et al. (2008)
from their transect across the Southern Ocean. As the the-
oretical slope of MJ79 is based on the closure assumption,
we hypothesize that the deviation from this slope with in-
creased averaging time (averaging across synoptic systems)
reflect that this assumption is no longer valid. Further studies
are required to support this hypothesis. Future comparisons
between observations and results from atmospheric general
circulation models should clearly include the analysis of the
relationship between d-excess and RHSSTalong different fre-
quencies, as shown in Fig. 12.

3.3 Influence of wind direction on d-excess

In previous sections, we have reported several findings which
suggest that changes in moisture advection (and moisture
sources) might affect the variability of the d-excess measured
in Bermuda. Figure 13 depicts the distribution of d-excess
(contours) as a function of relative humidity (x axis) and
wind direction (y axis), for summer (upper panel) and winter
(lower panel), and the differences in relationships between d-
excess and RHSST for subsets based on specific sectors (sub-
jectively defined) of wind direction. In summer, we find that
the d-excess vs. RHSST obtained during wind from the west-
ern sector has a very negative slope of−56.7± 2.2 ‰ / %.
We conclude that westerly winds cause high summer d-
excess levels, possibly due to high kinetic effect induced by
warm, dry air masses coming off the American continent
(Pfahl and Sodemann, 2014; Gat et al., 2003). In winter, dif-
ferences in slopes are also identified for specific wind sectors,
the southwestern sector (wind directions 200–250◦) leading
to the most negative slope and the highest d-excess levels
for a given RHSST (Table 2). The dependency of the slope of
d-excess vs. RHSSTagainst wind direction illustrates the lim-
itation of the closure assumption and the need for long-term
monitoring in order to deduce the drivers of the d-excess in
the marine boundary layer.

4 Conclusions

In order to monitor the drivers of marine boundary layer d-
excess of the subtropical North Atlantic, we have presented
continuous long-term observations of surface water vapor
isotopic composition over a∼ 1.5 yr period between Novem-
ber 2011 and June 2013 from the Bermuda Islands. Thanks
to meticulous independent calibration protocols, the inter-
comparison of two parallel analyzers shows that the accuracy
and precision of 10 min averages ofδ18O, δD, and d-excess
are, respectively, 0.14, 0.85, and 1.1 ‰. Tests on our mon-
itoring system show that isotopic signals can be accurately
retrieved with a temporal resolution down to 1 min intervals.
Parallel measurements recorded over a few days by separated
water vapor isotope analyzers on each end of the Bermuda Is-
lands show a common signal within these 20 km, suggesting
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Figure 13. d-excess as a function of wind direction and relative humidity for the summer period (SST> 26◦C) (upper panel) and for the
winter period (SST< 21◦C) (lower panel).

limited effect of the island. We conclude that the signal is
dominated by the marine boundary layer moisture.

The accuracy and precision of the d-excess measurements
allow us to document and investigate the controls on the d-
excess variability. In accordance with theory, d-excess vari-
ability is driven by the relative humidity of the air at the

sea surface temperature. However, we could not identify
any shifts in relationship with wind speed. In Bermuda,
the relationship between d-excess and relative humidity de-
pends on the season, and thereby SST. Moreover, specific
wind directions (western winds in summer and southwestern
winds in winter) lead to unusually high d-excess values for
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a given humidity level, and a higher negative slope between
d-excess and humidity. This feature stresses the limitation of
the closure assumption and calls for long-term monitoring in
order to characterize the complete set of processes control-
ling the variability of surface moisture d-excess. Such long-
term monitoring indeed allows to evidence processes other
than relative humidity (e.g., SST, wind direction), which act
on d-excess. We have clearly demonstrated the change of d-
excess vs. relative humidity slope as a function of the aver-
aging period (from 1 day to 2 months). Extending our record
in time will allow for the investigation of the drivers of d-
excess at the inter-annual scale. A next step will be to di-
agnose changes in moisture source and remote evaporation
conditions, using back-trajectory calculations and water tag-
ging within atmospheric models in order to take into account
the advection effects highlighted by the impact of wind di-
rections. Our data set will in the future be used to test the
validity of deuterium retrievals based on remote sensing (La-
cour et al., 2012), and to benchmark atmospheric general cir-
culation models equipped with water-stable isotopes (Werner
et al., 2011; Risi et al., 2010; Yoshimura et al., 2008).

The Supplement related to this article is available online
at doi:10.5194/acp-14-7741-2014-supplement.
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