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Abstract. From the ensemble of stations that monitor sur-
face air quality over the United States and Europe, we iden-
tify extreme ozone pollution events and find that they oc-
cur predominantly in clustered, multiday episodes with spa-
tial extents of more than 1000 km. Such scales are amenable
to forecasting with current global atmospheric chemistry
models. We develop an objective mapping algorithm that
uses the heterogeneous observations of the individual sur-
face sites to calculate surface ozone averaged over 1◦ by
1◦ grid cells, matching the resolution of a global model.
Air quality extreme (AQX) events are identified locally as
statistical extremes of the ozone climatology and not as
air quality exceedances. With the University of California,
Irvine chemistry-transport model (UCI CTM) we find there
is skill in hindcasting these extreme episodes, and thus iden-
tify a new diagnostic using global chemistry–climate models
(CCMs) to identify changes in the characteristics of extreme
pollution episodes in a warming climate.

1 Introduction

Links between climate change, global atmospheric chem-
istry, and air pollution are noted in early climate–chemistry
studies and have come to the forefront recently (e.g., Jacob
et al., 1993; Johnson et al., 1999; Prather et al., 2001; Jacob
and Winner, 2009; HTAP, 2010; Fiore et al., 2012; Kirtman
et al., 2013). Some studies indicate that climate change may
increase the intensity, duration, or frequency of ozone (O3)

pollution episodes (Mickley et al., 2004; Leibensberger et al.,
2008; Jacob and Winner, 2009). Future changes in air quality
are undoubtedly driven foremost by changes in local emis-

sions, and then by distant emissions, land-use change, and
climate change (e.g., Steiner et al., 2006; Meleux et al., 2007;
Tao et al., 2007; Lin et al., 2008a; Wu et al., 2008; Zhang et
al., 2008; Doherty et al., 2009; Carlton et al., 2010; HTAP,
2010; Steiner et al., 2010; Tai et al., 2010; Hoyle et al., 2011;
Lei et al., 2012; Wild et al., 2012; Stocker et al., 2013).

With climate change, several factors may affect local pol-
lution: changing meteorological conditions, shifting back-
ground atmospheric composition, and chemistry–climate in-
teractions that control the efficacy or residence time of
pollutants. All of these factors may alter the efficiency
of local emissions in generating pollution events (Weaver
et al., 2009) and need systematic evaluation. Thus, global
chemistry–climate models (CCMs) are a necessary compo-
nent in projecting future air quality on a continental scale
(Lamarque et al., 2012; Kirtman et al., 2013). Here, we pro-
vide an approach that can evaluate CCMs in terms of their
ability to match this new observed climatology of ozone pol-
lution, one that specifically examines how climate change
might alter the meteorological conditions that create the mul-
tiday, large-scale extreme ozone episodes found in the US
and Europe (EU) today (e.g., Barnes and Fiore, 2013).

Even at their best typical resolution (∼ 1◦
≈ 100 km), cur-

rent global chemistry models are known to have high biases
in their production of global tropospheric ozone from pollu-
tion (Wild and Prather, 2006). This high bias in production
extends to surface ozone on a continental scale (e.g., Nolte
et al., 2008; Appel et al., 2012; Lamarque et al., 2012; Ras-
mussen et al., 2012), although in one case the bias is negli-
gible (Mao et al., 2013). These chemistry-transport models
(CTMs) or CCMs also have serious limitations in modeling
peak ozone levels (Dawson et al., 2008). The use of such
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global models for air quality projections is seen as being
limited until such errors are accurately diagnosed and cor-
rected (Fiore et al., 2009; Murazaki and Hess, 2006; Reid-
miller et al., 2009). There is a need for observation-based
tests of the ability of atmospheric chemistry models to sim-
ulate pollution episodes over the time- and space scales pos-
sible in a global model. In this study, we develop such diag-
nostics, specifically a grid-average climatology of daily sur-
face ozone concentrations, with a focus on CTMs that should
be able to simulate past events (hindcasts) using a meteo-
rology representative of the time of the observations (e.g.,
ERA-Interim or GEOS MERRA). The goal is to characterize
statistical errors and systematic biases in the hindcast and to
provide clear metrics that can document improvements in the
model.

Observations of surface O3 from monitoring stations pro-
vide the basis for testing models, but measurements at in-
dividual stations are generally not representative of model
grid cells (Valari and Menut, 2008; Dennis et al., 2010). This
problem is referred to as “incommensurability” or “change
of support” (Gelfand et al., 2001; Swall and Foley, 2009) and
prevents ready quantitative assessment of model errors. If
station observations are used to generate an observed ozone
product that is directly comparable to what a model predicts,
viz. the average O3 concentration in a grid cell, then geo-
graphic patterns and statistics of the pollution episodes can
be readily and commensurably tested. In Sect. 2, we present
our new algorithm for mapping the individual station data
onto cell averages on a regular grid. As part of this analysis
we generate an objective measure, the quality of prediction
(QP), for the mapping of each cell (i.e., how many indepen-
dent points were used and how far away they are). This grid-
cell product has the added advantage of allowing direct and
commensurate comparison of independent sets of overlap-
ping but not collocated observing sites, and we examine the
biases between the two European ozone networks (European
Monitoring and Evaluation Programme (EMEP) and Air-
Base) for both clean and polluted periods. This assessment
uses a full decade of observations (2000–2009) from three
networks (Environmental Protection Agency (EPA) over the
US).

In Sect. 3, we compare the maximum daily 8 h average
(MDA8) grid-average observations over the US and Europe
with the University of California, Irvine chemistry-transport
model (UCI CTM)-simulated values for years 2005–2006.
The model errors are diagnosed in terms of location, time of
year, and pollution level by comparing different percentiles at
each grid cell while maintaining exact-day matches (concur-
rent sampling) over the 2 years. Simple comparison of high-
and low-end statistics of the ozone distribution is found to
be misleading. In Sect. 4 we define extreme pollution events
for each grid cell in a climatological sense, as the 100 worst
days (i.e., highest MDA8 concentrations) in a decade (∼ 97.3
percentile) or the 20 worst days in 2 years when comparing
the observations to the UCI CTM. We then identify the struc-

ture of the multiday, continental-scale pollution episodes that
make up most of these events. The CTM’s ability to match
these extreme episodes is shown to have considerable skill,
which degrades as the quality of prediction of the cell de-
creases and as random noise is added to the observations.
In Sect. 5, we develop statistics of the extreme events from
a decade of observations that can be used without hindcast-
ing to compare with free-running chemistry–climate models.
Using clustering algorithms, we define the size in space and
time of the episodes and the fraction of all events that oc-
cur within large clusters. In Sect. 6 we conclude and discuss
how to use the current climate archive Coupled Model Inter-
comparison Project Phase 5/Atmospheric Chemistry and Cli-
mate Model Intercomparison Project (CMIP5/ACCMIP), or
to design the next-generation chemistry–climate simulations,
to assess climate-driven changes in extreme ozone pollution
episodes.

2 Observations of surface O3 over the US and EU

For our observations of surface O3 we use 10 years
(2000–2009) of hourly surface O3 measurements from air
quality networks in the United States and Europe (see Ta-
ble 1 for summary of data sets). For the US we primarily use
the EPA’s Air Quality System (AQS). The EPA’s Clean Air
Status and Trends Network (CASTNET) is used for indepen-
dent evaluation as described in Sect. 2.3. For EU we combine
EMEP (Hjellbrekke et al., 2013) and the European Environ-
ment Agency’s AirBase network except in Sect. 2.4, where
we compare these two independent but overlapping data sets.
The AirBase data set includes information on the zoning type
of the stations (e.g., rural, suburban, urban, traffic), and we
choose to use all but the traffic stations for the most complete
and representative data, a decision corroborated by Pirovano
et al. (2012). The hourly measurements from EMEP and Air-
Base are reported as µg m−3 and are converted to parts per
billion (ppb= 10−9 mol mol−1

= nmol mol−1) using a tem-
perature of 20◦C; essentially mass concentrations are multi-
plied by 0.5 ppb ug−1 m3.

From these data sets we calculate the maximum daily 8 h
average O3 concentration (MDA8), which is the primary air
quality standard for the US (www.epa.gov/air/criteria.html)
and is commonly used in human and agricultural health stud-
ies (Chan and Wu, 2005; Bell et al., 2006) and climate studies
(e.g., Tagiris et al., 2007). We calculate the MDA8 by begin-
ning the 8 h averaging period at 24:00 LT and calculating 17
8 h averages for each day, picking the maximum of those 17
(i.e., the averaging only considers windows that fully reside
within 1 day). Thus the maximum can occur during different
8 h intervals at adjacent sites or on consecutive days at the
same station, although afternoon and early-evening maxima
are most common (Bruntz et al., 1974). The location of the
stations and their 10-year mean MDA8 surface O3 concen-
trations are shown in Fig. 1.
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Table 1.Observational data sets.

Surface ozone network Period No. URL or reference
stations

US EPA Air Quality System (AQS) 2000–2009 1608http://www.epa.gov/ttn/airs/aqsdatamart
US EPA Clean Air Status and Trends Network (CASTNET)* 2000–2009 92http://epa.gov/castnet/javaweb/index.html
European Monitoring and Evaluation Programme (EMEP) 2000–2009 162 Hjellbrekke et al. (2010)
European Environment Agency’s air quality database (AirBase) 2000–2009 2123http://www.eea.europa.eu/data-

and-maps/data/airbase-the-
european-air-quality-database-7

*CASTNET stations are used only as a validation data set and are not included in the interpolation over the US.
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Figure 1. Location of surface-O3-monitoring stations and their
10 yr (2000–2009) mean MDA8 (ppb) for(a) US (EPA AQS) and
(b) EU (combined EMEP and AirBase). The mask for interpolating
the 1◦ × 1◦ grid cells is also shown, with light gray indicating cells
with QP < 0.67 used here (see text).

2.1 Choosing a method for interpolating grid-cell
averages

We develop an interpolation scheme that provides grid-cell-
average values of surface O3 over the US and EU domains,
essential to compare observations to a gridded model. Our
goal is to use all representative station data, recognizing the
heterogeneity of surface O3 that must be averaged over to
compare with gridded model simulations. The most com-
monly used technique used to compare observations with
a gridded model is to simply average all observing sites
within the grid cells to be compared (e.g., Fiore et al., 2002).
This results in an incomplete domain as well as the cal-
culated averages disproportionately representing urban sta-
tions, especially in areas where exceedances are likely to oc-
cur. Fiore et al. (2003) accounts for the clustering of urban
stations by first averaging the station observations on a finer
grid (0.5◦ × 0.5◦) and then averages those cells to match the
coarser model grid. In any case, Diem (2003) notes that al-
most all ozone-mapping methods have major problems and
that this is neither a simple nor a solved task. The task here
is very different from that of interpolating spatial extremes
to infer regions of O3 exceedance (e.g., Cooley et al., 2007;
Padoan et al., 2010).

Inverse distance weighting (IDW) and ordinary Kriging
are the most common interpolation techniques, with gen-
erally small or modest differences found between the two
(Rojas-Avellaneda and Silvan-Cardenas, 2006). Both pro-
duce estimates at unmeasured points using a weighted linear
combination of the values at neighboring sites, determined
by some function of the separation between the unmeasured
point and observation sites. The difference is that the weights
in Kriging are formulated to minimize the variance in the es-
timated values (error) using a predefined model of the spatial
covariance of the data, while the weights in IDW are deter-
mined without specific need for the covariance function.

Kriging is often favored as it provides prediction error es-
timates and incorporates a declustering mechanism designed
to account for data redundancy, effectively treating highly
clustered data more like a single site (Wackernagel, 2003).
Since many observation sites in the US and EU data sets
are located in close proximity to one another, some form of
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declustering is desired in our interpolation. Isaaks and Sri-
vastava (1989) note that, when the effect of data clustering
is accounted for in IDW, the advantages of using Kriging are
slight. In addition, the covariance function required for Krig-
ing can easily be modeled incorrectly, especially at short sep-
aration distances (Diem, 2003), when many sites are close in
geographic space but their reported values differ by a large
amount, as in the case of air pollution. Many of the geograph-
ically clustered sites in our data sets are located in urban ar-
eas associated with high variability, so the covariance func-
tion could easily be incorrectly modeled at short separation
distances. Consequently, the Kriging weights given to these
clustered stations would not necessarily provide the desired
declustering. For this reason, we use a modified from of IDW
that incorporates a declustering scheme without the need to
model the underlying covariance function.

From O3 observationsZk at sitesxk, we interpolate the O3
mole fraction at an unobserved locationx as a weighted sum
of the observations

Z(x) =

K∑
k=1

wk · Zk

/
K∑

k=1

wk (1)

whereK is the number of observations sites and weightswk

are defined as follows. In standard inverse-distance weight-
ing wk = |x−xk|

−β , with β typically in the range 1≤ β ≤ 4.
We optimizeβ as described below after adjusting the weights
for distant and clustered observations. Weights are set to
zero when|x − xk| exceeds a thresholdL to avoid mean-
inglessly small contributions from distant sites. We choose
L = 500 km based on the typical scale of synoptic meteorol-
ogy that influences surface O3 and test other choices below.
We also reduce the weights of clustered stations, which tend
to lie in urban areas, to avoid excessive influence of the clus-
ter on surrounding rural regions and to avoid the shielding
effect whereby an observation site screens all those that are
located immediately behind it (Falke, 1999). The weight of
each observation site is reduced by a factorMk that is the
number of other observation sites located within a distance
D of sitek. We chooseD = 25 km as a typical size scale for
urban areas and test other choices below. Furthermore, all
observation sites within the region|x − xk| < D are given
equal weight to avoid singularities in the interpolation. Taken
together, the weights in Eq. (1) are

wk =


D−β

/
Mk if |x − xk| < D

|x − xk|
−β
/
Mk if D ≤ |x − xk| ≤ L

0 if |x − xk| > L

. (2)

If the sum of the weights for pointx from sitesk is zero,
a null value is given to that point. Our interpolation algo-
rithm calculates values at points for a single day using only
measurements from that day. Implementation of spatiotem-
poral interpolation is complex, with no specific implemen-
tation well agreed upon for applications to air quality data
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Figure 2. RMSE (ppb) for the mean value of each 10th percentile
of interpolated sites and grid cells, sorted byQP.

(Huang and Hsu, 2004). Falke (1999) incorporates a tem-
poral component by reducing the weights of highly variable
(mostly urban) sites using the variance of the sites. We do not
include this since we assume urban sites are representative
of the true processes controlling surface O3. In addition, the
weights of these sites are often already significantly reduced
by the declustering scheme.

We optimize the interpolation parameters using the leave-
k-out cross-validation scheme (Cressie, 1993). This involves
removingk = 10 % of observation sites and predicting their
values using the remaining observations and IDW interpo-
lation defined above, recording the root mean square error
(RMSE) of the predicted sites. This is done for 365 randomly
selected sample days from 2000 to 2009 with different ran-
domly selectedk sites for each day. The primary optimization
is forβ, keepingD = 25 km andL = 500 km fixed. All tested
β values use the same days and prediction sites. Where there
are many nearby sites, the RMSE is at a minimum of about
6 ppb (see Fig. 2 and discussion of quality of prediction be-
low) and does not change much for the range of 2.5 <β < 3.5.
The use of largeβ values can lead to sharp gradients near
sites, and, since we seek an average concentration over a
grid cell, we select the lower value of the shallow minimum,
β = 2.5. Subsequently we look at the error for a range ofD

andL values, and find it relatively insensitive (< 10 % change
from the mean) over reasonable values (D = 10 km, 25 km,
50 km; L = 250 km, 500 km) andβ = 2.5 (see Table S1 in
the Supplement). Thus we retain our original estimates forD

andL.
To obtain grid-cell-average values, we use the IDW pro-

cedure above to determine the ozone values at 25 equally
spaced points in latitude and longitude within each cell and
then use trapezoidal integration over the area, similar to
block Kriging (Cressie, 1993). The 4-corner points are each

Atmos. Chem. Phys., 14, 7721–7739, 2014 www.atmos-chem-phys.net/14/7721/2014/



J. L. Schnell et al.: Skill in forecasting extreme ozone pollution episodes 7725

shared with 4 grid cells, and the 12-edge points shared with
2 cells. The trapezoidal integration weights account for lat-
itudinal variation of the points. Thus the weightw∗

i of each
pointxi for i = 1 : 25 in the grid cellX is

w∗

i = Ti cosθi, (3)

whereθi is the latitude andTi is the trapezoidal integration
weight, which takes values of 0.25 for corner points, 0.5 for
edge points, and 1.0 for the interior points. The calculation of
the average ozone value at the grid cellX, ((Z̄)(X)), is then
the weighted sum of ozone at pointsxi , Zi :

Z̄ (X) =

25∑
i=1

w∗

i · Zi

/
25∑
i=1

w∗

i (4)

We do not report(Z̄)(X) for grid boxes where over half of
the interior pointsZ(xi) are zero.

2.2 Quality of prediction and the interpolation mask

The interpolation procedure should be limited to the region
being modeled and where a reliable prediction can be made.
We begin with a desired mask of 1◦

× 1◦ cells and then check
if the interpolation is adequate. For the US, we use the land-
mass of the contiguous states (CONUS) and include ocean
cells adjacent to CONUS. For EU we draw a similar mask
but also include areas in the North Sea and in the Mediter-
ranean Sea west of Italy. We then calculate a measure of the
quality of prediction,QP, for the points within this desired
mask to determine the final grid masks for the US and EU.
We defineQP as the effective number of independent stations
at a distance of 100 km that went into the interpolation.

QP
= 100β

K∑
k=1

wk (5)

Thus, forβ = 2.5, one station at 50 km or less distance counts
as 5.7 stations, and one at 200 km counts as 0.18 stations.
Grid-cell-averageQP values are calculated in the same man-
ner as the average O3 in Eq. (4). The observing sites do not
always provide continuous daily data for the decade 2000–
2009, and thus the numbers of sites that go into the daily
interpolation of each grid cell may vary. In order to keep the
masking consistent over the period, it is based on the loca-
tion of all observing sites, effectively the largest possibleQP

values over the time period. The declustering weighting for
each site,Mk, is recomputed on a daily basis.

TheQP values reflect the ability of the observing network
to predict O3; the highest (lowest)QP values have the small-
est (largest) RMSE (Fig. 2). Using this relationship and with
the intent of providing as nearly contiguous a grid for EU
and the US as possible, we select the value ofQP

= 0.67
as the cutoff for our masks. Figure 1 shows the constructed
masks (gray boxes) for the EPA (Fig. 1a) and combined EU

(Fig. 1b). When comparing the EU observations with the UCI
CTM, we truncate the mask northward of 65◦ N. Note that
the mask over the US excludes parts of Montana that are
too distant from sites. Figure S1 in the Supplement shows
the logarithm ofQP values for all of the retained grid cells
for the US and EU. The lowestQP values for our US mask
(apart from the coasts) are found from west-central Texas and
north, due to the low density of observing sites in this area.
The lowest values in EU are found in the northernmost and
easternmost edges of the domain for the same reason.

2.3 Interpolation error

The error of our interpolation method can be objectively
measured for the individual sites as described in Sect. 2.1.
The average RMSE for the sites can be plotted as a func-
tion of our estimate of the quality of the interpolation (QP)

as shown in Fig. 2. For large values ofQP the RMSE lev-
els off at about 6 ppb. This is a measure of the small-scale,
nearest-neighbor variability in ozone that is simply not re-
solved by our interpolation. Our analysis does show that the
RMSE begins to increase whenQP falls below about 30 (ef-
fective number of independent sites at a distance of 100 km).
Note that the lowestQP value for the US is about 3, because
the sites tend to be located near one another. ThusQP is a
measure of error in interpolation.

Deriving an error for the interpolated grid-cell-average
values is more difficult since we have no objective measure of
the cell-averaged ozone values. Clearly the minimum RMSE
of 6 ppb for individual sites is an exaggeration of the error
when averaging over a 1◦ grid cell (∼ 104 km2). Using the
error analysis done for the sites (removing randomly 10 %
of the sites), we can examine how the cell-average values
change relative to standard result using the full set of sites.
The RMSE for this case is also plotted in Fig. 2. It provides a
measure of the error in the cell-average ozone, but is at best a
lower limit. The RMSE remains small, at about 1 ppb or less,
for QP

= 0.7 to 100 and increases to 2 ppb forQP
= 0.33. It

is encouraging that relative error estimates can be made and
that our cutoff ofQP

= 0.67 is a good choice. Note that this
approach does not inform us about extrapolation error arising
from, e.g., gradients near the coasts. Results for both the US
and EU are similar, and the range ofQP is much larger than
in the site-error analysis because we are trying to interpolate
cells that are distant from sites.

With the daily MDA8 O3 values interpolated, we can begin
to analyze the results for each domain. Figure 3 shows a sam-
ple day of grid-cell (1◦ × 1◦) average MDA8 O3 values based
on the observing sites in the northeastern US. Note the var-
iegated nature of O3 at individual sites within some 1◦ × 1◦

cells. TheQP values for three sample cells are noted in the
figure caption. Cell A has a large number of independent sites
in surrounding cells; hence theQP is very high despite only
a few stations within the cell. Cell B has lower quality be-
cause the stations are more distant and located mostly in one
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Figure 3. Surface O3 MDA8 (ppb) on 11 August 2005 over a
section of the US and Canada. Values from the individual EPA
AQS stations are overlain on the grid-cell-average interpolated here
(see text). Boxes marked A–C have respectiveQP values of 60.1,
15.4, and 6.6. Gray cells are outside the range of interpolation (i.e.,
QP < 0.67).

direction. This is even more pronounced for cell C on the
edge of the domain.

Figure 4 shows the gridded, masked MDA8 ozone con-
centrations for both the US (Fig. 4a, c, e) and combined EU
(Fig. 4b, d, f) data sets for two representative percentiles,
the 95th (Fig. 4a–b) and 25th (Fig. 4c–d), and their dif-
ferences (95th minus 25th, Fig. 4e–f). The percentiles here
are calculated with respect to years 2005 and 2006, since
these are to be compared with the CTM hindcast. The high-
est 95th-percentile values (∼ 70 ppb) occur in California and
then in a broad swath from Texas to New England. For EU
they lie mostly around the Mediterranean. The lowest 95th
percentiles occur in the northern latitudes for both the US
and EU. The 25th percentile represents clean air, typically
in winter, and here the largest concentrations (∼ 40 ppb) in
the US occur over the Rocky Mountains and the plains to
the east, while for the EU ozone concentrations greater than
30 ppb are found only at the southern extent of the mask.
Note that Greece and southern Italy stand out as maximal in
both percentiles. The difference, 95th minus 25th percentile,
is a measure of the pollution buildup, and it tends to follow
the regions of largest emissions. California, the Midwest, and
the eastern seaboard have the greatest differences in the US
(> 40 ppb), while in EU the greatest differences are concen-
trated in central countries (e.g., France, Germany, northern
Italy).
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Figure 4.Gridded surface MDA8 O3 (ppb) corresponding to the(a,
b) 95th percentile,(c, d) 25th percentile, and(e, f) their difference
(95th minus 25th) calculated with respect to years 2005–2006. Left
column(a, c, e)shows results for the US and the right column for
EU (b, d, f). Note the change in color bars from(a, b) to (c, d, e, f).

2.4 Comparison of overlapping observational O3
networks

The grid-cell-average O3 MDA8 product developed here pro-
vides a ready comparison of the two independent but over-
lapping networks, for which individual adjacent stations are
not available. For the comparison, we calculateQP values
for each data set and apply a mask using a cutoff of 0.33
rather than 0.67 in order to examine a larger area. We de-
fine the bias as AirBase minus EMEP and present biases
for the 25th, 50th, and 95th percentiles calculated with re-
spect to years 2000–2009 (Fig. 5). Note that these compar-
isons are not exact-day matches, and hence each percentile
may correspond to a different day. The AirBase data set is
mostly biased low over all three percentiles, with greatest dif-
ferences (below−10 ppb) for the 25th percentile in Alpine
regions. In this case the area-weighted mean bias (MB) is
−3.9± 3.1 ppb. After investigating the average altitude of
stations for each network, we found this bias is possibly
reflecting preferential station placement, as the mean alti-
tude bias in the region of northern Italy and southern France
is about−540 m (i.e., EMEP stations are chosen to reflect
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Figure 5. Bias of the gridded MDA8 O3 concentration (ppb) created using only AirBase stations vs. using only EMEP stations for the years
2000–2009 (bias= AirBase minus EMEP). Biases are shown for the(a) 25th, (b) 50th, and(c) 95th percentiles and are calculated using
independent sampling. This mask includes only grid cells with aQP greater than 0.33 for both data sets. The area-weighted mean bias and
1σ for each percentile are given with the graph. All mean biases are negative.

background O3, so they are placed at more remote, higher-
altitude locations; while AirBase is selected to reflect pop-
ulation exposure, so stations are more readily placed in the
valleys, where the population is greater). The bias could also
reflect interpolation errors at the edge of the EMEP domain,
as there are far fewer stations than in AirBase. Differences
between AirBase and EMEP are much smaller in the 50th
and 95th cases, with MBs of−2.7± 1.9 and−1.7± 2.2 ppb,
respectively. The biases could also be due the cumulative
production of O3 as polluted air disperses since the EMEP
sites are located in rural areas while AirBase sites are gener-
ally in or near populated areas.

We also present the difference between the interpolation
using only AQS data compared to using only CASTNET data
in Fig. S2 in the Supplement. We present the bias (= AQS
minus CASTNET) for the 25th, 50th, and 95th percentiles
calculated using independent sampling with respect to years
2000–2009. For the comparison, we calculateQP values for
each data set and apply a mask using a cutoff of 0.10 rather
than 0.67 to examine a larger area. In addition, this value of
QPcorresponds to having one station at a distance of 250 km
(i.e., the station is representative of a∼ 5◦

× 5◦ grid cell).
This figure shows that the AQS interpolation is systemati-
cally lower than the CASTNET one for almost all locations
and percentiles, particularly over California and from the
central plains east to New York City. The bias is least for the
most polluted times (95th percentile). Similar to the EMEP–
AirBase comparison, CASTNET sites are located in rural ar-
eas while AQS sites are generally in or near populated areas,
and thus we believe this difference is due to the titration of
O3 by NOx emissions and then the cumulative production of
O3 as polluted air disperses.

Overall, these comparisons show excellent agreement
across the networks, particularly in the high-O3 events. Fur-
ther comparisons of the AirBase and EMEP networks and the
AQS and CASTNET networks could use a smaller mask with
higher-quality score and focus on exact-day matches (con-
current sampling) as we do with the CTM hindcasts below.

3 UCI CTM simulation of years 2005–2006

We use the gridded daily O3 observations described above
to evaluate the UCI CTM. This model is a tropospheric
CTM driven by meteorology from the European Centre
for Medium-Range Weather Forecasts (ECMWF) Integrated
Forecast System. The model is configured as described by
Tang and Prather (2010, 2012a, b). Simulations are 1◦

× 1◦

resolution with 40 vertical layers, which is amongst the high-
est resolution for current global chemistry models, and cov-
ers 2005–2006, which is the duration of the high-resolution
meteorological fields. The lowest model layer is about 80 m
thick, and we use that layer-mean value as the surface O3
concentration. MDA8 values are calculated from hourly sim-
ulated mole fractions in the same way as the observations.
As noted above, the MDA8 most often occurs during the af-
ternoon, which coincides with periods of a deep convective
boundary layer and avoids problems with the poorly modeled
nighttime boundary layer (Lin et al., 2008b; Lin and McEl-
roy, 2010). The present model configuration was designed for
studies of stratosphere–troposphere exchange, rather than for
surface air quality analysis. As a result, emissions are speci-
fied monthly, based on the Quantifying the Climate Impact
of Global and European Transport Systems (QUANTIFY)
inventory (Hoor et al., 2009), and do not account for daily,
weekly, or monthly cycles. Because the surface O3 simula-
tion has not been optimized, the CTM performance described
below may be similar to chemistry–climate models that are
used for present to future scenarios.

3.1 Evaluating the central tendency of O3 in models

Many global chemistry models, including the UCI CTM, pre-
dict surface O3 concentrations that are higher than observa-
tions (Dawson et al., 2008; Nolte et al., 2008; Zanis et al.,
2011; Appel et al., 2012; Lamarque et al., 2012; Rasmussen
et al., 2012). The CTM grid-cell O3 averaged over years
2005–2006 is larger than observed everywhere for both US
and EU, in both summer and winter (see Fig. 6; Table S2 in
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Figure 6. Top two rows(a, b, c, d)show the model mean bias (MB
= CTM minus observed) of surface MDA8 O3 (ppb) calculated us-
ing independent sampling. Bottom two rows(e, f, g, h) show the
model correlation coefficient (MCC). Left column(a, c, e, g)is the
US and right column(b, d, f, g) is EU. Both MB and MCC are cal-
culated with respect to years 2005–2006. First and third rows(a, b,
e, f) are for winter months (DJF), and second and fourth rows(c,
d, g, h)are for summer months (JJA). The area-weighted mean and
1σ are given for each plot. Note the difference in color scales for
MB in winter and summer and between MB and MCC.

the Supplement). Summer typically has the days of highest
O3 percentile, and winter those of lowest O3 percentile. The
pattern gives a level of detail that helps us identify possible
sources of model error.

The winter domain model bias of the average O3
(MB = CTM minus observation (OBS), Fig. 6a–b) is
+19± 6 ppb (standard deviation across the grid cells) for the
US and+18± 5 ppb for EU. The high-latitude background
air (northern EU, upper Midwest US) has only a small bias
(5–15 ppb); but air coming in from the mid-latitude oceans
(east and west coast US, southern EU) has a higher bias (20–
30 ppb) and extends beyond just polluted regions. The winter
domain model correlation coefficient (MCC) derived from
the daily time series of MDA8, shown in Fig. 6e–f, shows
relatively good model hindcasting with an average MCC of
0.47± 0.13 for the US and 0.61± 0.10 for EU. MCC is

greatest for the most part whereQP is large and lowest in
coastal areas. For wintertime, most of the variability is driven
synoptically by large-scale gradients in background O3.

The summer domain average MB (Fig. 6c–d) is larger than
in winter:+30± 14 ppb for the US and+29± 8 ppb for EU.
Here the largest biases are often in polluted regions, like the
Los Angeles basin and the Chicago-to-New York corridor,
and the easternmost part of the EU domain. This pattern in-
dicates exaggerated photochemical production of O3 in the
model, possibly a consequence of NOx plumes being spread
over the 100 km model grid or other nonlinear interactions
involving hydrocarbons and NOx (Lin et al., 2008b; Pusede
and Cohen, 2012; Rasmussen et al., 2012). Supporting this
hypothesis, the model’s summertime bias for the US has a
similar pattern to our measure of pollution buildup (95th mi-
nus 25th percentile, Fig. 4e, the two maps have a correla-
tion coefficient,r = 0.66). For EU, this conclusion is less
obvious (Fig. 4f,r = 0.20). In terms of MCC, the verisimil-
itude of the model hindcast of daily summertime pollution
is quite good (Fig. 6g–h) because in this case the variabil-
ity is driven synoptically by buildup of regional pollution:
MCC= 0.60± 0.16 for the US and 0.55± 0.19 for EU. In
addition, the bias for each month of the year at three rep-
resentative percentiles (84th, 50th, and 16th) can be derived
from Table S2 in the Supplement.

3.2 Developing objective measures of model biases

While evaluation of the central tendency of a model provides
an important test and can be used to identify bias in either
hindcasts or climate simulations, it is the distribution of ex-
tremes, both high and low, that we want our climate models
to simulate accurately. The lows tell us about baseline (clean-
air) O3, and the highs show the efficiency of O3 production
from the local emissions. Here we examine the distribution
of MDA8, combining the daily gridded US and EU values
for a season over the 2 years 2005–2006 from both obser-
vations and the CTM hindcast. The probability distribution
functions (PDFs) for winter (DJF) and summer (JJA) months
are shown in Fig. 7. The observations, sorted into percentile
bins (0–5 %, 5–10 %, etc.) calculated separately for each grid
cell and plotted relative to the median, are shown in red;
the CTM values, sorted independently of the observations,
are in blue; and the CTM values sorted according the ob-
served percentiles (concurrent sampling) are in green. For
concurrent sampling, the CTM values are averaged for exact-
day matches for each day and location of the observations
that fall in that percentile bin. In a perfect model, the green
and red curves would match, meaning that the CTM predicts
changes relative to the median at the right time and place.
The blue curve treats the CTM effectively like a climate sim-
ulation and does not try to locate the high-O3 periods over the
correct cells at the correct time. Because the CTM hindcast
has errors, the sorting by observed percentiles will always re-
sult in a shallower curve, which may not even be monotonic.

Atmos. Chem. Phys., 14, 7721–7739, 2014 www.atmos-chem-phys.net/14/7721/2014/



J. L. Schnell et al.: Skill in forecasting extreme ozone pollution episodes 7729

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

20

Percentile

M
D

A
8 

O 3 (p
pb

) 

a)                    US Winter (DJF)

 

 
OBS − Median = 31 ppb
CTM (NOT Exact)
Median = 49 ppb
CTM (Exact)    
Median = 48 ppb

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

20

Percentile

M
D

A
8 

O
3 (p

pb
) 

b)                    EU Winter (DJF)

 

 
OBS − Median = 28 ppb
CTM (NOT Exact) 
Median =  45 ppb
CTM (Exact)     
Median =  45 ppb

0 10 20 30 40 50 60 70 80 90 100
−30

−20

−10

0

10

20

30

40

Percentile

M
D

A
8 

O
3 (p

pb
) 

c)                    US Summer (JJA)

 

 
OBS − Median = 49 ppb
CTM (NOT Exact)
Median = 78 ppb
CTM (Exact)    
Median = 79 ppb

0 10 20 30 40 50 60 70 80 90 100
−30

−20

−10

0

10

20

30

40

Percentile

M
D

A
8 

O
3 (p

pb
) 

d)                    EU Summer (JJA)

 

 
OBS − Median = 42 ppb
CTM (NOT Exact) 
Median =  70 ppb
CTM (Exact)     
Median =  71 ppb

Figure 7.PDFs of surface MDA8 O3 (ppb) for the observations and
CTM binned at every 5th percentile for years 2005–2006. PDFs of
the CTM are shown for both independent (NOT Exact) and concur-
rent sampling (Exact). Left column(a, c) is US and right column
(b, d) is EU. Top row(a, b) shows the PDFs for winter months
(DJF), and bottom row(c, d) for summer months (JJA). The me-
dian of each PDF was subtracted prior to plotting and is listed in the
legend.

From Fig. 7 we conclude (correctly) that during summer the
CTM has a uniform bias of+30 ppb over the full range about
the median (−15 to +20 ppb), but that during winter it has
serious errors beyond the median bias of+17 ppb probably
related to the baseline tropospheric O3. If we had done this
as a climatology comparison, we would have completely re-
versed this diagnosis. We show maps of model bias as cal-
culated using independent and concurrent sampling and their
difference at five representative percentiles (5th, 25th, 50th,
75th, and 95th) for the US and EU in Figs. S3 and S4 in the
Supplement, respectively. Biases at the 5th percentile calcu-
lated using independent sampling are 7± 3 ppb (5± 2 ppb)
less than concurrent sampling for the US (EU); however for
increasing percentiles the trend reverses, with biases for inde-
pendent sampling at the 95th percentile 9± 5 ppb (8± 4 ppb)
greater than concurrent sampling for the US (EU). We con-
clude that O3 PDFs simply cannot be used in comparing ob-
servations with climate models.

4 Identifying and characterizing extreme events

To determine if air quality extreme (AQX) events involv-
ing high O3 concentrations are changing with climate, we
must be able to characterize those AQX events observed to-
day and demonstrate that global chemistry models can repro-
duce them. As demonstrated for the UCI CTM above, sur-
face O3 concentrations in global chemistry models are often
biased high, with higher biases often occurring during peak
pollution episodes, but there is skill in hindcasting pollution
variability. These biases hinder the ability to predict AQX
events based strictly on absolute concentrations (Dawson et
al., 2008; Nolte et al., 2008; Zanis et al., 2011).

We define AQX events based on the local PDF of O3 con-
centrations, rather than based on exceeding a concentration
threshold. This enables us to identify linked extreme events
whose absolute magnitudes evolve over space and time. For
example, Fig. 8 shows daily MDA8 O3 for June 2002 in
four grid cells in the Midwest and eastern US (Chicago, IL;
Cincinnati, OH; New York, NY; and rural Virginia). The time
series are highly correlated across these sites, but the peak
magnitudes differ across sites. In Chicago, MDA8 values
above 67 ppb exceed the local 97.3 percentile and frequently
occur a few days before local maxima in New York and Vir-
ginia, due to west-to-east motion of weather systems. If ex-
tremes were identified based on an absolute threshold (e.g.,
75 ppb), then the peak values in Chicago might not be labeled
as extremes, and their connection to extremes in the eastern
US might be overlooked.

4.1 Defining individual, grid-cell level ozone pollution
extremes

We define the threshold value for AQX events as a frequency
(return time) based on the local climatology. This is shown
in Fig. 8 by the colored arrows, which are the∼ 97.3 per-
centiles, or the 100 worst days in a decade (2000–2009) for
each site. This threshold varies from 68 to 78 ppb for these
four grid cells, and filled circles denote the AQX events at
each site. For comparison with the UCI CTM hindcast, we
take the 20 worst days in years 2005–2006. Thus, over the
2 years, both CTM and observations have 20 AQX events
in each grid cell. This definition of AQX highlights times at
each grid cell when O3 pollution is at its highest, generally
when the effect of nearby precursor emissions is exacerbated
by meteorology. Indeed, Lei et al. (2012) highlight the need
to explore this type of method (i.e., exceedance of historical
extremes) to determine their relationship to climate change.
Unfortunately, by defining AQX in terms of frequency, we
are unable to test for climate change impacts in terms of the
number of such events alone, and must search for a suitable
diagnostic that characterizes the scale and structure of large
AQX episodes (see Sect. 5).

The choice of 10 days per year (upper 2.7 %) instead of 20
days per year (upper 5.4 %) or another number is somewhat
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Figure 8. Time series (1 July–1 August 2002) of surface MDA8 O3 (ppb) for four grid cells in the US observations encompassing from west
to east: Chicago, IL; Cincinnati, OH; rural area, VA; and New York City, NY. The colored arrows on the left denote the O3 concentration
corresponding to an AQX event (97.3 percentile) for each location, calculated with respect to years 2000–2009.

arbitrary, and such choices can have undesirable results in
some cases (e.g., Coles, 2001). While the top 2.7 % of O3
MDA8 may seem extreme, most of these events occur during
the summer, and hence the AQX events are essentially the
upper 10 % of summer days. In general, the wider the range
for defining an extreme event, the easier it will be for the
model to simulate.

4.2 Skill of the CTM

We define the skill of the CTM for each grid cell as the per-
centage of events that match the day of the observed AQX
events. With this definition a random model is expected to
correctly identify 2.7 % of events. This metric does not take
into account the geographic pattern or persistence of AQX,
for which we apply clustering algorithms (see Sect. 4.4).
Skill here is calculated over all months of both years (2005–
2006), although almost all AQX events occur from May to
September.

Figure 9 shows the geographic pattern of CTM skill for US
and EU domains. For the US it is 24.4± 12 % (standard devi-
ation across grid cells) and a min-to-max range of 0 to 65 %
for the grid cells (Fig. 9a). The CTM skill was slightly better
for EU: 32.2± 17 % (Fig. 9b). For the wider AQX threshold
of 94.5th percentile, the skill increases as expected and the
standard deviation is reduced: 35.6± 11 % for the US and
37.5± 14 % for EU. While CTM skill at individual grid cells
in the US shows no distinct pattern, that in EU shows a strong
east–west trend, with significantly higher skill to the west.
These patterns of skill are evident for both threshold choices
with correlations (R2) between them of 0.86 for the US and
0.87 for EU. The east–west gradient in EU, as well as the
lack of pattern in the US, can partly be understood from the
relationship between skill andQP. Low CTM skill is caused
by model errors as well as errors in observations and interpo-

lation. As shown in Fig. S5 in the Supplement, the CTM skill
is largest in grid cells with largeQP and small interpolation
errors.

4.3 Organized episodes of AQX events

The AQX events often occur as clustered, multiday episodes
with spatial extents of more than 1000 km (note that an event
is a single identified AQX event and an episode is a grouping
of AQX events). Figure 10 shows an example of one of the
larger episodes of the 2005–2006 period for EU, 3–8 July
2006. The episode, although not completely shown, is one
of the largest observed, with a size of 1500× 104 km2-days,
and also the largest in the CTM hindcast, at 1700× 104 km2-
days (104 km2 is our basic areal unit since our grid resolution
is 1◦). The skill of the CTM on these 6 days was 75.4 %, with
both data sets showing the episode’s structure and trajectory.
These extreme events are connected in space–time and can
be reproduced in a hindcast by a global model. These at-
tributes provide an opportunity to develop a climatology of
extreme ozone episodes (e.g., areal extent, duration, inten-
sity, seasonal cycles) that can be used as metrics to test global
chemistry climate models’ (GCCMs) future climate simula-
tions.

The size of the largest AQX episodes (defining an episode
as connected events as in Fig. 10) is driven by a com-
bination of meteorology as well as regionally connected
emissions and active photochemistry. To objectively identify
these episodes we use an agglomerative hierarchal cluster
analysis. Ideally, the clustering algorithm will connect AQX
events occurring within a large, slow-moving, stagnant, high-
pressure system over several days. Locations and times of
AQX events are provided to the clustering algorithm, which
then groups them into clusters that we call AQX episodes.
The linkage criteria that define the clusters are flexible, and
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Figure 9. Skill of the CTM (i.e., percentage of events identified in
the observations that were correctly reproduced in the CTM) at each
grid cell for the(a) US and(b) EU for years 2005–2006. Domain
mean skill and 1σ are shown for each plot.

we choose AQX events to be clustered if they are within a
predefined cutoff in both space and time. We use the Cheby-
shev (maximum coordinate difference) distance metric and
the single (nearest-neighbor) linkage criterion. We prescribe
a cutoff value of 1 (i.e., events are not connected at greater
than 1◦ and 1 day ahead or behind). We recognize two ob-
vious limitations to using this linkage method: (1) we have
essentially considered time as another dimension in space
(i.e., 1◦ = 1 day), and (2) geographic distance between two
grid cells varies with latitude and is not accounted for in the
clustering. We consider the former to be of no consequence
since a time separation cutoff of less than 1 day is not possi-
ble using daily MDA8 values to identify AQX events. Also,
a larger cutoff value would be unfavorable since events could
be statistically linked even if they occurred at the same grid

OBS CTM

03 Jul 2006

04 Jul 2006

05 Jul 2006

06 Jul 2006

07 Jul 2006

08 Jul 2006

Interp. Mask Non−Event Event

Figure 10. Six days (3–8 August 2006) of a large AQX episode in
EU. Left column is the observations and right column is the CTM.

cell and were separated by a full day. We avoid problems as-
sociated with latitudinal variations by developing statistical
measures that are independent of resolution (see Sect. 5.2).

Since we want to characterize AQX episodes by their size,
effectively a measure of their areal extent (km2) and dura-
tion (days), the robustness of the clustering algorithm, partic-
ularly the linkage across days, needs to be examined. Most
episodes showed a progression of area vs. time that resem-
bled a normal distribution. Occasionally episodes resemble
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Table 2.Domain mean number of air quality extreme events (AQX) defined for the grid-cell interpolated MDA8 O3 series and the MDA8 O3
concentration (ppb) corresponding to the 84th, 50th, and 16th percentiles for each month of the year and day of the week for the 2000–2009
observations in the US and EU. The 84th- and 16th-percentile values are given relative to the 50th percentile. Correlation coefficients (R2)

are defined with respect to the number of AQX events per month of the year or day of the week.

Unit Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec R2

US AQX No. 0.0 0.2 0.8 10.6 17.8 30.2 25.0 22.9 11.0 1.2 0.1 0.0 1.00
O3 84% ppb +6.7 +7.1 +7.6 +8.8 +10.2 +12.8 +11.7 +12.0 +12.3 +11.3 +8.0 +6.7 0.77
O3 50 % ppb 30.3 36.1 42.6 48.2 48.9 48.6 49.2 48.0 42.9 35.1 30.7 28.6 0.71
O3 16 % ppb −8.0 −7.9 −7.9 −9.0 −10.4 −13.1 −13.9 −14.2 −12.6 −9.8 −8.3 −7.8 0.48

EU AQX No. 0.0 0.1 3.4 22.4 24.5 21.1 25.6 19.0 3.7 0.1 0.0 1.00
O3 84 % ppb +7.2 +6.5 +6.6 +8.2 +9.6 +12.8 +15.7 +15.1 +12.9 +7.5 +7.8 +8.1 0.84
O3 50 % ppb 26.9 32.3 39.6 44.6 44.7 42.7 40.4 38.9 33.5 28.1 24.8 23.8 0.75
O3 16 % ppb −7.8 −9.9 −7.0 −6.7 −6.9 −8.7 −10.2 −10.3 −7.5 −7.1 −8.1 −8.6 0.66

Sun Mon Tue Wed Thu Fri Sat R2

US AQX No. 9.1 8.3 9.9 10.2 10.6 10.9 11.0 1.00
O3 84 % ppb +13.4 +13.8 +14.4 +14.7 +14.5 +14.5 +14.2 0.77
O3 50 % ppb 40.4 39.5 39.4 39.5 39.5 39.5 40.1 0.00
O3 16 % ppb −11.6 −11.5 −12.0 −12.2 −12.2 −12.2 −11.9 0.19

EU AQX No. 9.9 8.7 9.2 9.9 10.9 10.5 11.0 1.00
O3 84 % ppb +12.2 +12.6 +12.8 +13.3 +13.5 +13.5 +13.0 0.87
O3 50 % ppb 35.8 34.6 34.5 34.5 34.6 34.4 35.3 0.03
O3 16 % ppb −10.5 −10.8 −11.3 −11.4 −11.5 −11.3 −11.0 0.00

a multi-peaked or bimodal distribution. In our first algo-
rithm these bimodal episodes were counted as a larger, single
episode, but human discernment identifies them as two dif-
ferent episodes adjoined by only a small number of events.
Our revised algorithm defines a cutoff in order to separate
these dangling episodes. For each episode identified with the
primary algorithm, we calculate the area of the events for
each day and the area of events that are shared with the pre-
vious day (i.e., the same grid cell on 2 consecutive days). If
the ratio of the shared area divided by the total area of that
day is less than 0.10, we truncate the episode at the previous
day and start a new episode on the current day. We do not ap-
ply this secondary algorithm to the first 2 or last 2 days of an
episode, to provide flexibility for formation and dissipation.
In addition, this detaching can occur more than once as we
follow the evolution of an episode.

5 Developing climatologies

The grid-cell-average statistics for MDA8 developed here
provide a climatology of surface O3 that can be used to test
and evaluate CCMs. This approach holds promise given that
one global CTM has skill in hindcasting specific years and
events in spite of some large systematic errors in surface O3
abundance. Here we seek to develop climate records for sur-
face O3 over the US and EU that can be used to improve
both CTMs and CCMs and to develop confidence in CCM
projections of changing air quality in a warming climate.
First, we develop statistics for the basic cycles of O3 over
a week, a season, and a year, using a decade of observa-

tions (Sect. 5.1). These statistics present a useful climatol-
ogy for testing the means and perhaps standard deviations
(see Chang and Hanna (2004) for more examples), but ex-
treme high- and low-probability events are not so useful as a
climatology (Sect. 3.2). The characterization of AQX events
as large-scale, multiday episodes is investigated with cluster-
ing algorithms (Sect. 5.2), and we develop climate statistics
on the scale of these episodes as a new data set to evaluate
CCMs (Sect. 5.3) and opening a novel test of whether climate
change alters theses extreme episodes.

5.1 Weekly and annual cycles

The well-known weekly and annual cycles (Bruntz et al.,
1974) in MDA8 O3 concentrations are summarized for our
decadal data sets in Table 2, where we combine typical mea-
sures (16th, 50th, 86th percentiles in ppb) with AQX fre-
quencies (based on 100 per decade). Higher percentiles are
of interest, but then the geographic patterns need to be ex-
amined. The table gives an average over the entire domain
(US or EU), and the results for each grid cell or region can
be derived from the supplementary data, but are not shown
here. The day-of-the-week and month-of-the-year statistics
include a decade of observations (years 2000–2009). The di-
rect comparison with the CTM, for weekly and annual cycles
using only statistic from years 2005–2006, is in the supple-
mentary material (Table S2 in the Supplement) and shows ex-
cellent agreement, except for the weekly cycle, an expected
result (see below).

For Table 2, the annual cycle of the number of AQX
events in the US follows a normal distribution with most
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events identified in June, while in EU the cycle is slightly
weighted towards spring months. Similar patterns are seen
in the 84th- and 50th-percentile values, while the highest
values in the 16th percentile are slightly weighted towards
the spring. These MDA8 values corresponding to these per-
centiles show excellent agreement with the monthly AQX
frequencies. For the 2005–2006 case (Table S2 in the Sup-
plement), July dominates in the EU observations due to the
2006 summer having 14 out of 20 of the events, while in
the CTM June had the most, with 2006 having slightly less
events than the observations at 12 out of 20 events.

The weekly cycle is also evident in both observational data
sets. The largest values of AQX events, the 84th percentile,
and the 50th percentile, generally occur at the end of the
week (Friday, Saturday, Sunday), a phenomenon termed “the
weekend effect” with lower values in the beginning of the
week (Cleveland et al., 1974; Karl, 1978; Tonse et al., 2008;
Pierce et al., 2010). For the 16th percentile, the trend is less
obvious. The 84th-percentile values show excellent agree-
ment with the day-of-week AQX frequencies. As expected,
we did not see significant evidence of a weekly cycle in the
CTM, as there is not a parameterization for the day of the
week within the model. The mean skill of the CTM was gen-
erally higher for months and days that had higher combined
numbers of events. Although seemingly trivial, this result
provides us with assurance that the CTM is accurately repre-
senting the mechanisms responsible for the ozone episodes’
formation and not just representing general interannual cy-
cles.

In Table 3, the AQX frequencies for each year clearly show
the extraordinary 2003 and 2006 summer heat waves in Eu-
rope, as well as a declining number of events throughout
the decade (more evident for the US than EU), associated
with reductions in criteria pollutants like NO2 (seewww.
epa.gov/airtrends/nitrogen.htmlandwww.epa.gov/airtrends/
ozone.html; Hudman et al., 2009). We also show the an-
nual mean summertime (June, July, August) MDA8 concen-
trations from our interpolated product and the raw station
data, both of which show excellent agreement with the an-
nual AQX values.

5.2 Size distribution of extreme episodes

We define the size of an episode as the integral of AQX area
over time (km2-days). The area of a low-latitude grid cell in
the US is about 104 km2, while that in EU northern latitudes
is about 0.6× 104 km2. From size we can estimate two addi-
tional metrics – mean daily areal extent (km2) and duration
(days) of the episode. Since we only want the effective du-
ration (i.e., the time frame that includes the majority of the
episode), we do not take the total duration from first to last
day. Instead, we define the duration of the peak episode to be
2 times the weighted standard deviation of the time indices,
where the weight for each time index is the areal extent of
the episode on that day. This method reduces the effect of

the tails of the episode (early and late days with few events),
providing a more robust measure of the duration of extreme
pollution. The mean daily areal extent is simply the total size
divided by the duration. Finally, we define the mean episode
size,(S̄), over a given time frame (e.g., individual years, full
decade) as the weighted geometric mean of AQX episodes:

S̄ = exp

(
n∑

i=1

(Si · lnSi)

/
n∑

i=1

(Si)

)
, (6)

wheren is the number of episodes andSi is the size of the
episode. Equation (6) was chosen over the simple arithmetic
mean to reduce the influence of the numerous small episodes
while giving more weight to larger episodes.

The majority of AQX events are grouped into large-area,
multiday clusters that we define as AQX episodes. The com-
plementary cumulative distribution function (CCDF= 1 mi-
nus cumulative distribution function) of the percentage of the
total areal extent of all events as a function of episode size
is shown in Fig. 11. For years 2005–2006 and gridded US
observations, about 74 % of all events occurred in episodes
greater than 100× 104 km2-days and about 31 % in episodes
greater than 1000× 104 km2-days; for the CTM, the corre-
sponding fractions are 66% greater than 100× 104 km2-days
and 37 % greater than 1000× 104 km2-days (Fig. 11a). For
years 2005–2006 and gridded EU observations the fractions
are 84 and 67 %, respectively; for the CTM, the fractions are
73 and 42 %, respectively (Fig. 11b). In EU, the events are
clustered into larger-size episodes.

Figure 11 also shows that the decadal climatology (years
2000–2009) of episode sizes (green) is quite different from
the 2 yr climatology (blue) that overlaps with the CTM hind-
cast. Thus, interannual variability is an important factor that
must be considered, but interannual variability is also an im-
portant diagnostic that provides a key test for the CCMs
as well as a metric that can help assess the significance of
changes between two different decades. This is especially
evident when each year’s individual CCDF is examined (see
Fig. S6 in the Supplement). In addition to climate variabil-
ity in AQX episodes, there is the problem of stationarity in
the observations due primarily to continuing mitigation of
emissions. For the US, a clear pattern of decreasing episode
sizes for successive years in the decade can be seen, con-
sistent with reductions in precursor emissions. For EU, this
pattern is less apparent; however the standout features are the
CCDFs for 2003 and 2006, which have much larger episodes
than other years. The annual number of AQX events and(S̄)

values support this conclusion, as seen in Table 3.
The sensitivity of these diagnostics to grid resolution

needs to be determined as we have differing resolution across
CCMs and the climatology is a useful model diagnostic only
if it is robust across different model resolutions. We create
a 2◦

× 2◦ data set (typical of CCM resolution) using simple
means of the MDA8 concentrations from the 1◦

× 1◦ obser-
vational data set. AQX events and episodes are defined as
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Table 3.Climatology of O3 air quality and extreme episodes (AQX) observations over the US and EU (2000–2009). Each grid cell has AQX
events defined as the 100 worst days per decade, except for AQXyr, which is normalized to have 10 events per year. The mean AQX size(S̄)

((S̄)yr for the 10-events-per-year case) is computed from Eq. (6) after the clustering algorithm that couples nearest neighbors and successive
days, with units of 104 km squared days (km2d), where 104 km2 is about a 1◦ × 1◦ grid cell. Average summertime (JJA) MDA8 O3 (ppb)
from the grid-interpolated data (grid) is area weighted, but the station average (station) is raw with all stations equally weighted. The mean
(µ) and standard deviation (σ) of the annual values over the decade are given. Correlation coefficients (R2) are defined with respect to the
number of AQX events per year. Using the stations’ redundancy weightings derived here gives a slightly greaterR2, but still less than that
for the gridded O3.

Unit 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009µ ± σ R2

US AQX events No. 13.5 11.5 16.5 15.0 4.6 11.2 13.3 8.1 4.6 1.7 10.0± 5.0 1.00
(S̄) 104 km2d 618 373 1239 581 82 435 515 186 70 32 413± 363 0.78
AQXyr events No. 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0± 0.0 0.00
(S̄)yr 104 km2d 264 295 337 276 217 329 222 232 208 199 256± 50 0.55
O3 (grid) ppb 49.3 49.4 51.4 50.1 45.5 48.8 50.7 47.5 46.2 43.7 48.3± 2.4 0.96
O3 (station) ppb 51.3 52.1 55.0 51.0 46.9 50.8 52.0 50.1 48.8 45.0 50.3± 2.8 0.85

EU AQX events No. 7.4 8.3 11.0 19.9 10.0 8.2 16.5 6.0 8.3 4.4 10.0± 4.8 1.00
(S̄) 104 km2d 280 502 187 793 415 287 2528 210 240 140 558± 718 0.43
AQXyr events No. 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0± 0.0 0.00
(S̄)yr 104 km2d 388 419 237 446 404 319 1149 437 305 367 447± 255 0.25
O3 (grid) ppb 40.1 41.7 44.3 47.3 42.7 41.4 45.2 41.2 41.5 40.0 43.4± 2.3 0.94
O3 (station) ppb 43.5 46.6 45.7 54.9 45 45.1 49.5 43.5 44.1 44.6 46.2± 3.5 0.85

before (note that the clustering cutoff distance is essentially
2◦

= 1 day). The resulting episode size CCDFs are shown
in Fig. 11 (red) and are extremely similar to the 1◦

× 1◦ case.
This is encouraging for CCM comparisons. From our 1◦

× 1◦

CTM simulation (black) we find too many small episodes,
but the correct likelihood for the larger episodes that com-
prise about 50 % of all AQX events. This test does not use
the hindcast, exact-day matching and thus should be a robust
climate statistic that can test CCMs in the CMIP5 archive.

5.3 Developing climate statistics of AQX episodes

The episode size distributions in Fig. S6 in the Supplement
show clear differences across the years; however we need
an objective measure of these differences. The Anderson–
Darling (AD) test (Anderson and Darling, 1952) compares
two CDFs (equivalently CCDFs) and gives a confidence
level that they occur from the same underlying and unknown
distribution (the AD null hypothesis). The AD test is non-
parametric, distribution free, does not require normality, and
it is more sensitive to differences in the tails of the distribu-
tion than the widely used Kolmogorov–Smirnoff test (Eng-
mann and Cousineau, 2011). We compare the distributions
in Fig. 11 for episodes larger than 10× 104 km2-days (10 to
16 connected grid cells) since we are mostly interested in the
largest episodes and, further, more than 90 % of the events
are in episodes of size greater than this. For the US, the CTM
hindcast was found to be statistically different (p < 0.05)
from the observations, while for EU both distributions are
the same (p < 0.05).

By defining AQX events as the 100 worst days per decade,
we can quantify interannual variability in the number of

events or large episodes per year. If we wish to ascertain
whether individual years have differences in their pollution
episodes in terms of areal extent or duration, then the events
need to be renormalized (i.e., 10 worst days per year). In the
100-per-decade case, those years with more events will more
likely to have bigger episodes, with all else being equal. This
can easily be seen by the CCDFs in Fig. S6 in the Supplement
and the(S̄) values in Table 3. Even when each year is forced
to have the same number of events, the CCDFs for each of the
years are not similar (see Fig. S7 in the Supplement). Using
these renormalized AQX episode size distributions, we test if
we can statistically identify “good” and “bad” years (based
on row one of Table 3) by comparing the individual years to
one another. The AD test shows that, in EU, year 2006 (a rel-
atively bad year) was statistically different from several years
(2000, 2001, 2002, 2004, 2005) at the 95 % confidence level
and 2009 at the 90 % level. For the US, the year 2009 (good)
was found to be statistically different (p < 0.05) from the year
2005 (bad); at the 90% level, the year 2005 was also found to
be different from years 2000 and 2003. The tests can also be
performed on the distributions of areal extent. For example,
the year 2006 in EU was once again found to be statistically
different (p < 0.05) than the years listed above for the dis-
tributions of areal extent. At the 90 % level, it was different
from all years except 2007. Finally, the mean episode size
(Table 3, denoted(S̄)yr for the 10-per-year case) also varies
from year to year and shows a strong agreement with the
annual number of AQX events in the 100-per-decade case.
This agreement provides strong evidence that the severity of
a given year is largely dependent on its meteorology, since
all years’ values of(S̄)yr are derived using the same number
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Figure 11. Complementary cumulative distribution function of the
percentage of the total areal extent of all individual AQX events as
a function of AQX episode size (104 km2-days) they are clustered
into for the(a) US and(b) EU. Results are shown for the 2 yr ob-
servations at 1◦ and 2◦, the CTM at 1◦, and the 10 yr observations
at 1◦. Note: only latitudes <65◦ N were used for the 10 yr EU OBS.

of events. These tests, among others to be further developed,
provide us with a measure of the interannual variability of
meteorologically driven AQX episodes and thus allow us to
test different decades from the ACCMIP climate simulations
to detect a shift in such episodes that falls outside the ex-
pected variations.

6 Conclusions

In evaluating a future scenario for air quality, one can iden-
tify four major contributing factors: (1) global emissions
that alter atmospheric composition and thence baseline levels
(lowest percentiles) of near-surface O3 and particulate matter
(PM); (2) global changes in climate that also alter these base-
lines (e.g., temperature, water vapor, convection, lightning,
biogenic emissions); (3) climate-driven changes in the me-
teorological regimes over polluted regions that lead to AQX
episodes; and (4) changes in the efficacy of local emissions to
generate pollution within a governance region (e.g., air qual-
ity management district, an EU country). While these fac-
tors are all part of a coupled system, an integrated model that
combines all would be almost impossible to verify. Thus an
assessment approach would be to evaluate each of them sep-
arately using observations and an ensemble of models (e.g.,
HTAP, 2010; Kirtman et al., 2013). This paper focuses on
factor (3), providing clear measures of bias and skill in global
chemistry models run in hindcast mode, and developing cli-
matologies that can be used to test climate models and to
detect a climatic shift in AQX episodes.

The approach developed here establishes a reliable method
for gridding the air quality station observations so that di-
rect comparison with global atmospheric chemistry mod-
els can be made. We then examine climatologies of sur-
face ozone (percentiles, seasonality, probability distributions,
AQX episodes) based on the observations and use them to
test a chemistry-transport model (UCI CTM) run in hindcast
mode, attempting to simulate each day’s MDA8 O3 concen-
trations for the years 2005–2006. Surprisingly, we find that
the often-used test of the probability distribution of MDA8
O3 values over a region gives different results when testing a
hindcast model than when treating the identical model simu-
lation as climate statistics. Nevertheless, comparing the grid-
ded observations directly with the hindcast MDA8 O3 values
clearly defines model deficiencies in terms of biases, baseline
values (lowest percentiles at ocean boundaries), seasonality,
and the ability to predict the relative increase in O3 during
high-pollution events. When used to test a chemistry–climate
model, more caution is needed.

AQX events are defined here in terms of the return time of
such events for each cell (i.e., as in climate extremes) rather
than as an absolute O3 threshold. Such definition clearly
identifies large-scale pollution episodes associated with stag-
nant meteorological regimes. The AQX events (10 worst
days per year= 97.3 percentile) contain a disproportionately
large fraction of the excess MDA8 O3. We test the ability
the UCI CTM to hindcast the 1000 km, multiday giant AQX
episodes that include most of the individual, cell-based AQX
events. Although we have no formal error estimate of the
gridding procedure, we feel our quality of prediction (QP)

provides a similar quantity, as shown with both the obser-
vations themselves (Fig. 2) and with the ability of the UCI
CTM to hindcast AQX events (Fig. S4 in the Supplement).
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We also tested our interpolation algorithm by applying ran-
dom noise to the raw station data and then recalculating the
cell-average values. This analysis, although not shown, re-
vealed the CTM’s skill did not significantly degrade until the
amplitude reached±10 ppb.

Our goal of providing observational validation of the air
quality simulated by the chemistry–climate models is cen-
tered on the size and duration of AQX episodes and their
interannual variability. This is a bias-free test as shown with
the UCI CTM, and should be able to identify when more bad
years occur in a decade under a future climate, independent
of global changes in baseline levels of pollutants. Our statis-
tics will be used to test the chemistry–climate models used in
the recent IPCC assessment (CMIP5/ACCMIP).

One advantage of the approach here is that it can be read-
ily applied to satellite observations. The regridding allows
for somewhat sparse measurements resulting from day-to-
day cloud obscuration to be filled to a regular grid with a
measure of the quality of the prediction (QP). Our definition
of AQX events takes into account natural gradients in aerosol
optical depth or tropospheric ozone column.

Uncertainties and unresolved issues remain. AlthoughQP

provides a measure of the cell-averaged data, it still lacks
a formal uncertainty estimate. The decade analyzed here
(2000–2009) has an apparent trend in O3 concentrations
driven at least in part by reductions in precursor emis-
sions (Turner et al., 2013). For climate statistics, this non-
stationary pattern needs to be recognized and if possible cor-
rected for. One could remove a linear trend from the station
observations prior to their use in the interpolation or calculate
a fit to the O3 precursor emissions over the decade and ad-
just the data year by year. In terms of AQX events, one could
define them on a year-by-year basis and look at size only;
however the absolute interannual variability over a decade
remains a very important test of the models.

The Supplement related to this article is available online
at doi:10.5194/acp-14-7721-2014-supplement.
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