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Abstract. We use a 2005–2009 record of isoprene emis-
sions over Africa derived from Ozone Monitoring Instru-
ment (OMI) satellite observations of formaldehyde (HCHO)
to better understand the factors controlling isoprene emission
in the continent and evaluate the impact on atmospheric com-
position. OMI-derived isoprene emissions show large sea-
sonality over savannas driven by temperature and leaf area
index (LAI), and much weaker seasonality over equatorial
forests driven by temperature. The commonly used MEGAN
(Model of Emissions of Gases and Aerosols from Nature,
version 2.1) global isoprene emission model reproduces this
seasonality but is biased high, particularly for equatorial
forests, when compared to OMI and relaxed-eddy accumula-
tion measurements. Isoprene emissions in MEGAN are com-
puted as the product of an emission factorEo, LAI, and
activity factors dependent on environmental variables. We
use the OMI-derived emissions to provide improved esti-
mates ofEo that are in good agreement with direct leaf mea-
surements from field campaigns (r = 0.55, bias= −19 %).
The largest downward corrections to MEGANEo values
are for equatorial forests and semi-arid environments, and
this is consistent with latitudinal transects of isoprene over

western Africa from the African Monsoon Multidisciplinary
Analysis (AMMA) aircraft campaign. Total emission of iso-
prene in Africa is estimated to be 77 Tg C a−1, compared
to 104 Tg C a−1 in MEGAN. Simulations with the GEOS-
Chem oxidant–aerosol model suggest that isoprene emis-
sions increase mean surface ozone in western Africa by up
to 8 ppbv, and particulate matter by up to 1.5 µg m−3, due to
coupling with anthropogenic influences.

1 Introduction

Isoprene is the dominant biogenic non-methane volatile or-
ganic compound (NMVOC) emitted by vegetation, account-
ing for about 50 % of global NMVOC emissions in cur-
rent inventories (Olivier et al,. 1996; Guenther et al., 2006).
Isoprene affects the oxidative capacity of the atmosphere
through reaction with OH (Ren et al., 2008; Lelieveld et al.,
2008) and as a precursor of O3 (Trainer et al., 1987). It is
also an important precursor for secondary organic aerosols
(SOAs) (Claeys et al., 2004) and a temporary reservoir for
nitrogen oxide radicals (NOx ≡ NO + NO2) by formation
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of organic nitrates (Paulot et al., 2012). Isoprene thus has a
range of impacts on air quality and climate that need to be in-
cluded in atmospheric composition models. The widely used
global Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN; Guenther et al., 2006, 2012) indicates that
80 % of global isoprene emission takes place in the tropics
and 25 % in Africa, but there are large uncertainties in these
estimates due to lack of data. In previous work we devel-
oped a method to estimate isoprene emissions from Africa
on the basis of observations of formaldehyde (HCHO) from
the Ozone Monitoring Instrument (OMI) satellite instrument
(Marais et al., 2012). Here we use our OMI-derived iso-
prene emissions evaluated with local data to better under-
stand the factors controlling isoprene emissions in Africa,
improve emission estimates for different African plant func-
tional types (PFTs), and assess the implications for atmo-
spheric oxidants and aerosols.

Isoprene produced in the chloroplasts of plants is released
to the atmosphere via the stomata of leaves (Sharkey and
Yeh, 2001). Above-canopy emission fluxesEISOP depend on
plant species, foliage density, leaf age, temperature, photo-
synthetically active radiation (PAR), and water stress (Guen-
ther et al., 1995). This is commonly represented in isoprene
emission models by multiplying an emission factorEo de-
fined for each PFT at standard conditions with an ensemble
of coefficients describing the sensitivity to local environmen-
tal variables. In the MEGAN (version 2.1) inventory (Guen-
ther et al., 2012) this is given as

EISOP= Eo × CCE× LAI × γPAR× γT × γAGE × γSM, (1)

where LAI is the leaf area index (m2 leaf surface per m2

of Earth surface) and the dimensionless activity factorsγ

describe the sensitivity to above-canopy radiation (PAR),
air temperature (T ), leaf age distribution (AGE), and soil
moisture (SM). The coefficientCCE = 1.3 (m2 Earth sur-
face per m2 leaf surface) enforcesEISOP= Eo under stan-
dard conditions, which for MEGAN are defined asT =

303 K; PAR= 1000 µmol photons m−2 s−1; a canopy with
LAI = 5 m2 m−2; leaf age distribution of 80 % mature, 10 %
growing, and 10 % senescing leaves; and volumetric soil
moisture of 0.3 m3 m−3.

Isoprene emission data for African vegetation are very
limited, and emission models require extrapolation of data
from other continents and across plant species (Guenther et
al., 2006, 2012). This can lead to substantial errors, as dif-
ferences in isoprene fluxes within and across plant species
are large. Uncertainty in the distribution of land cover (PFT)
adds to the uncertainty (Pfister et al., 2008).

Space-based observations of HCHO, a high-yield oxida-
tion product of isoprene, have been used in a number of stud-
ies to infer isoprene emissions and evaluate inventories glob-
ally (Shim et al., 2005; Stavrakou et al., 2009a, b) and re-
gionally in southeastern Asia (Fu et al., 2007), South Amer-
ica (Barkley et al., 2008), North America (Palmer et al.,

2003, 2006; Millet et al., 2008), Europe (Dufour et al., 2009;
Curci et al., 2010), and Africa (Marais et al., 2012). These
studies have confirmed temperature as the dominant factor
controlling month-to-month variability of isoprene emissions
across North America (Palmer et al., 2006; Millet et al.,
2008) and Amazonia (Barkley et al., 2008). Leaf phenology
and PAR were found to be additional important drivers of
isoprene emission seasonality in Amazonia (Barkley et al.,
2008, 2009). Stavrakou et al. (2009a) found that water stress
reduces isoprene emissions in southern Africa during the dry
season. Here we use our previous work for Africa (Marais
et al., 2012) to better understand the factors controlling iso-
prene emissions across the African continent and evaluate
and improve the MEGANv2.1 emission inventory.

2 OMI-derived isoprene emissions in Africa

The derivation of isoprene emissions in Africa using OMI
HCHO data is described in Marais et al. (2012) and sum-
marized briefly here. OMI is a UV/VIS solar backscat-
ter instrument on the Aura polar Sun-synchronous satellite
launched in 2004 (Levelt et al., 2006). It has a 13 km× 24 km
nadir pixel resolution, daily global coverage through cross-
track viewing, and 13:30 local time (LT) overpass. HCHO
slant columns are obtained from Version 2.0 (Collection 3)
retrievals for 2005–2009 (http://disc.sci.gsfc.nasa.gov/Aura/
data-holdings/OMI/omhcho_v003.shtml). They are cor-
rected for instrument drift and converted to vertical columns
using local air mass factors (AMFs) for the scattering at-
mosphere (Palmer et al., 2001) with vertical HCHO profiles
from the GEOS-Chem chemical transport model (CTM) v9-
01-03 (http://www.geos-chem.org) and scattering weights
from the LIDORT (linearized discrete ordinate) radiative
transfer model (Spurr et al., 2001).

HCHO enhancements over Africa primarily originate from
isoprene emission, biomass burning, and fuel combustion.
Scenes affected by biomass burning are excluded on the basis
of MODIS (Moderate Resolution Imaging Spectroradiome-
ter) satellite observations of fire counts and OMI satellite
observations of aerosol absorption optical depth (AAOD)
(Torres et al., 2007). Scenes affected by gas flaring are ex-
cluded on the basis of a specialized hotspot product from
the Advanced Along Track Scanning Radiometer (AATSR)
satellite sensor (Casadio et al., 2012), and this leads to the
exclusion of much of Nigeria where that source is particu-
larly large and urban and industrial sources may contribute
as well (Marais et al., 2014).

Marais et al. (2012) thus obtained a 2005–2009 monthly
data set of vertical HCHO columns with 1◦

× 1◦ spatial
resolution screened against biomass burning and anthro-
pogenic influences and thus attributable to isoprene emis-
sions (Fig. 1, left panel). They used GEOS-Chem to de-
rive the sensitivity,S, of the HCHO column (�HCHO) at
12:00–15:00 LT to a perturbation1 in isoprene emission
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Figure 1. Annual mean (2005–2009) OMI HCHO vertical columns at 1◦
× 1◦ horizontal resolution screened against biomass burning and

anthropogenic HCHO (left), and resulting OMI-derived isoprene emissions (center), as derived by Marais et al. (2012) and summarized in
the text. The OMI observations are at 13:30 local time (LT) and the OMI-derived isoprene emissions are for 12:00–15:00 LT. The right panel
is a MODIS IGBP land cover map (Friedl et al., 2002) with numbers showing the location of isoprene flux measurements used to evaluate
the OMI-derived isoprene emissions (Table 1a and b).

(S = 1�HCHO/1EISOP). Values ofS increase linearly with
NOx under low-NOx conditions (boundary-layer NOx <

500 pptv) and remain constant above 500 pptv NOx. The lo-
cal regime for individual scenes was determined from con-
current observations of OMI tropospheric NO2 columns.
Scenes affected by smearing (displacement of HCHO from
the isoprene emission source) were diagnosed with anoma-
lously high values ofS and excluded from the data set. See
Marais et al. (2012) for further details.

Marais et al. (2012) obtained in this manner a monthly iso-
prene emission inventory for 2005–2009 on a 1◦

× 1◦ grid
(Fig. 1, center panel). The OMI overpass is at 13:30 LT
and the corresponding isoprene emissions are for 12:00–
15:00 LT, typically the diurnal maximum. Also shown in
Fig. 1 is the MODIS IGBP (International Geosphere Bio-
sphere Programme) land cover map (Friedl et al., 2002).
Dominant vegetation types in Africa are roughly defined
by latitudinal bands, with evergreen (broadleaf) trees along
the Equator successively transitioning to the north and south
to woody savannas (30–60 % tree coverage), savannas (10–
30 %), grasslands, and deserts. The HCHO column data fol-
low this vegetation gradient and so do the inferred isoprene
emissions.

Marais et al. (2012) presented a detailed error charac-
terization of their OMI-derived isoprene emissions. Spec-
tral fitting of the HCHO column has an error standard de-
viation of 8× 1015 molecules cm−2 for individual observa-
tions. Relating the fitted slant HCHO columns to isoprene
emissions incurs errors in the AMF estimate (20 %), the iso-
prene oxidation mechanism (15 %), the use of OMI NO2 to
obtainS under low-NOx conditions (20–40 %), and smear-
ing (30 % for high-NOx conditions, 30–70 % for low-NOx).

The resulting error in isoprene emission estimates for indi-
vidual scenes, adding in quadrature all error contributions,
is 40 % for high-NOx conditions and 40–90 % for low-NOx
conditions (Marais et al., 2012). A monthly mean estimate
for a 1◦

× 1◦ grid square typically averages 3000 individual
scenes. Averaging reduces the error though only to the extent
that the error components are random.

3 Evaluation with canopy flux measurements

Canopy-scale isoprene flux measurements by relaxed-eddy
accumulation (REA) are available from a few African field
campaigns (Table 1a). Figure 2 compares OMI-derived iso-
prene emissions to REA measurements over equatorial ev-
ergreen trees (Greenberg et al., 1999; Serça et al., 2001),
woody savannas (Greenberg et al., 1999), and savannas
(Harley et al., 2003) in central and southern Africa (sites 1–4
in Fig. 1 and Table 1a). Also shown are the values calcu-
lated using Eq. (1) with MEGANv2.1 emission factors, com-
bined Terra and Aqua MODIS LAI (Yang et al., 2006), and
the Goddard Earth Observing System (GEOS-5) assimilated
meteorological data. The Serça et al. (2001) and Harley et
al. (2003) measurements (sites 1 and 4) are from walk-up
towers with a flux footprint of about 600 m, while the Green-
berg et al. (1999) measurements (sites 2 and 3) are from air-
craft with a flux footprint of∼ 100 km× 100 km at site 2 and
30 km× 30 km at site 3. All values in Fig. 2 are for 12:00–
15:00 LT. REA fluxes at sites 2–3, obtained in the morning
(9:30–11:30), are increased by a factor of 1.4 as a diurnal
correction for temperature and PAR following MEGAN.
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Table 1a.Relaxed-eddy accumulation (REA) isoprene flux measurements in Africaa.

Siteb
Observation period

Platform EISOP Land coverd Reference
[1012atoms C cm−2 s−1]c

Date Time

1 Mar 1996 12:00–13:00 LT Tower 3.5 Equatorial trees Serça et al. (2001)
Nov 1996 12:00–13:00 LT 1.4

2 Nov–Dec 1996 09:30–11:30 LT Aircraft 1.5 Equatorial trees Greenberg et al. (1999)
3 Nov–Dec 1996 09:30–11:30 LT Aircraft 0.91 Woody savanna Greenberg et al. (1999)
4 Feb 2001 12:00–13:00 LT Tower 1.2 Savanna Harley et al. (2003)

a Data used to evaluate OMI-derived and MEGAN isoprene emissions (Fig. 2).b See Fig. 1 for the location of each site.c Mean values at 12:00–15:00 local time.d MODIS
IGBP land cover classification (Fig. 1).

Figure 2.Mean canopy-scale isoprene emissions at African sites 1–
4 (see Fig. 1 and Table 1a) measured by relaxed-eddy accumulation
(REA), and comparison to OMI-derived and MEGAN values. All
values are for 12:00–15:00 local time, with diurnal correction for
REA measurements at sites 2 and 3 (see text). Vertical bars on the
REA measurements for sites 2–3 are the interquartile ranges over
the aircraft sampling domain given in Greenberg et al. (1999). OMI-
derived and MEGAN values are 2005–2009 monthly averages for
the site locations and observation times, with interannual standard
deviations shown as vertical bars. Mar: March; Nov: November.

No correction is applied to the REA flux measurements
to account for interannual variability between 1996 (sites 1–
3), 2001 (site 4), and the satellite observation period (2005–
2009). As will be discussed in Sect. 4, temperature is the
dominant modulator of isoprene emissions in Africa, and it
does not drive significant interannual variability except in
northern savannas in August (not represented in Fig. 2).

OMI and MEGAN are sampled for the 1◦
× 1◦ grid square

coincident with the observation site and for the correspond-
ing months. Interannual variability is of similar magnitude in
the OMI-derived and MEGAN data at sites 1 (November),
2, and 3 where multi-year OMI data are available. The vari-
ability is driven in MEGAN predominantly by temperature.

At site 3 there are no OMI data in the months of observa-
tion (November–December) because of biomass burning in-
terference, and we show instead OMI-derived emissions in
September–October, which should be similar to November–
December at this site according to MEGAN.

For the equatorial evergreen tree sites in central Africa
(sites 1 and 2) OMI-derived isoprene emissions are on av-
erage 2 times higher than the REA measurements, and
MEGAN is 5 times higher. The flux tower sampled veg-
etation with a relatively low fraction of isoprene emitters.
Nearby landscapes include monodominant stands of the
Gilbertiodendrontrees that have a high isoprene emission
factor (Serça et al., 2001). The distribution of this tree species
beyond the sampling domain is uncertain and application of
its emission factor to land cover in equatorial Africa con-
tributes to the overestimate in MEGAN. OMI and MEGAN
reproduce the March–November decline at site 1, and this is
driven in MEGAN by temperature.

Fluxes at site 2, where the REA sampling footprint is sim-
ilar to OMI, have large spatial variability, implying that dif-
ferences in the sampling footprint contribute to discrepancies
at other sites. Greenberg et al. (1999) applied a positive cor-
rection of∼ 20 % to flux measurements at sites 2–3 to ac-
count for the transport of isoprene that was not accumulated
in the two REA reservoirs. A similar negative bias may affect
measurements at sites 1 and 4, but the reported values have
not been adjusted. The aircraft REA measurements (sites 2
and 3) may have an additional negative bias of∼ 25 % due
to the vertical flux divergence between the measurement al-
titude and the surface (Karl et al., 2013).

At the woody savanna site OMI is 2.2 times higher than the
REA measurement (1.8 times higher if a 25 % upward cor-
rection is applied to the REA measurement), while MEGAN
is 8 times higher. At the savanna site OMI is 1.3 times higher
than the REA flux measurement, while MEGAN is 2.4 times
higher. The discrepancy at site 4 is partly due to the low
(< 10 %) proportion of isoprene-emitting vegetation within
the flux tower footprint as compared to∼35 % for savannas
surveyed at surrounding field sites (Harley et al., 2003).
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Figure 3. Coherent regions used for analysis of the factors con-
trolling OMI-derived isoprene emissions. Land cover definitions are
from the MODIS IGBP map (Fig. 1).

Overall the REA flux measurements indicate canopy-scale
isoprene emissions that are somewhat lower than derived
from OMI and much lower than derived from MEGAN. As
we will show in Sect. 5, landscape-level isoprene emission
factors measured during African field campaigns are more
consistent with OMI.

4 Seasonality of isoprene emissions in Africa

We examined the factors driving the seasonality of OMI-
derived isoprene emissions, focusing on three seasonally and
ecologically coherent regions in Africa where emissions are
highest (Fig. 3): (1) equatorial forests dominated by tropical
broadleaf evergreen trees, (2) northern savannas (including
woody), and (3) southern savannas (including woody). Fig-
ure 4 shows the seasonality of OMI-derived isoprene emis-
sions for these three regions together with MODIS LAI and
GEOS-5 2 m air temperature. Isoprene emissions and 2 m
temperature are for 12:00–15:00 LT, and MODIS LAI is the
combined Terra and Aqua product (Yang et al., 2006). Multi-
year averages (2005–2009) are shown; the regionally aver-
aged interannual variability is small, except over northern sa-
vannas in August as discussed below. Soil moisture and PAR
are not included in Fig. 4 as soil moisture only appears to
affect southern savannas during the dry season, and PAR in
southern and northern savannas is convolved with tempera-
ture.

OMI-derived isoprene emissions for equatorial forests are
a factor of 2 lower than MEGAN, and both show similar
weak seasonality, with a decline from March to November
that is consistent with Serça et al. (2001) (Fig. 2) and is driven
in MEGAN principally by temperature. Although LAI ex-
hibits similar seasonality, it remains above 3.5 m2 m−2 year-
round, and MEGAN is not sensitive to LAI values above 2–
3 m2 m−2 due to shading of lower-canopy leaves (Guenther
et al., 2006).

Availability of OMI-derived isoprene emission data for the
northern savannas is limited to April–November because of
pervasive biomass burning influence during the December–
March dry season. Emissions are maximum in April, at the
beginning of the wet season, and minimum in August when
the West African monsoon (WAM) is fully developed over
the continent (Janicot et al., 2008), resulting in cooler tem-
peratures. OMI-derived emissions largely follow temperature
over the April–November period. Year-to-year variability in
the WAM affects temperature in August, leading to inter-
annual variability in August OMI isoprene emissions over
the 2005–2009 period that is correlated with temperature
(r = 0.55).

The complete seasonality simulated by MEGAN in
northern savannas shows low isoprene emissions in the
December–March dry season when LAI is less than
1 m2 m−2, and a broad maximum in the April–November
wet season as the August minimum in temperature is com-
pensated by a corresponding maximum in LAI. MODIS LAI
in the northern savannas is less than 2.5 m2 m−2 year-round,
sufficiently low that the MEGAN dependence on LAI does
not saturate (Guenther et al., 2012). However, MODIS may
underestimate LAI in western Africa during the wet season
because of cloud contamination (Gessner et al., 2013).

OMI-derived emissions for southern savannas are in close
agreement with MEGAN, featuring a minimum in the winter
dry season and a maximum in the summer wet season. The
seasonal minimum follows that of temperature (June–July)
with a 1-month lag that reflects the very dry conditions in
July–September. We find that LAI and temperature are both
important for driving the seasonality of isoprene emissions
in southern savannas.

5 Satellite-derived isoprene emission factors for Africa

The general ability of MEGAN to reproduce the seasonal
variation of OMI-derived isoprene emissions suggests that
the MEGAN activity factors (γ in Eq. 1) are appropriate for
conditions in Africa, with temperature and LAI as the prin-
cipal drivers. The large MEGAN bias over equatorial forests
and northern savannas can therefore be attributed to an over-
estimate of emission factors (Eo in Eq. 1).

The emission factors in MEGAN represent iso-
prene fluxes for a canopy with leaves at standard
conditions of air temperature (T = 303 K) and light
(PAR= 1000 µmol photons m−2 s−1). They are gridded
using a detailed regional land cover map for Africa south of
the Equator (Otter et al., 2003) and the Olson et al. (2001)
global ecoregion data in the north (Guenther et al., 2006).
Here we infer emission factors (E0) from the OMI-derived
canopy-level isoprene emission data (EISOP) using Eq. (1).
In so doing we only consider data with individual activity
factorsγ in the range 0.5–1.5 so as to avoid errors driven by
large departures from standard conditions.

www.atmos-chem-phys.net/14/7693/2014/ Atmos. Chem. Phys., 14, 7693–7703, 2014
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Figure 4. Seasonality of isoprene emissions and environmental variables averaged over the coherent African regions of Fig. 3. Monthly
mean OMI-derived (black) and MEGAN (red) isoprene emissions are shown together with GEOS-5 2 m temperature (blue) and MODIS
LAI (green). OMI-derived isoprene emissions are not available for northern savannas in December–March because of biomass burning
interference. Emissions and 2 m temperature are for 12:00–15:00 LT. LAI is the combined Terra and Aqua product (Yang et al., 2006). All
data are means for 2005–2009.

Table 1b.Leaf-level isoprene flux measurements in Africaa.

Siteb Observation period Eo Land coverc Reference
[mg C m−2 h−1]

1 1996 3.6 Equatorial trees Serça et al. (2001)
2 1995–1996 1.0 Equatorial trees Klinger et al. (1998)
3 1995–1996 1.2 Woody savanna Greenberg et al. (1999)
4 Feb 2001 0.47 Savanna Harley et al. (2003)

Dec 1992 2.4 Savanna Guenther et al. (1996)
5 1995–1996 1.4 Woody savanna Klinger et al. (1998)
6 1995–1996 3.0 Woody savanna Klinger et al. (1998)
7 1995–1996 0.95 Savanna Klinger et al. (1998)
8 Dec 1992 4.4 Savanna Guenther et al. (1996)

Feb–Mar 2001 4.5 Savanna Otter et al. (2002)
9 Feb–Mar 2001 0.70 Shrubs Otter et al. (2002)
10 Feb–Mar 2001 0.70 Savanna Otter et al. (2002)
11 Feb–Mar 2001 8.2 Woody savanna Otter et al. (2002)

Feb–Mar 2001 3.6 Woody savanna Otter et al. (2002)

a Emission factorsEo for standard conditions of temperature and PAR (Eq. 1) used to compare to MEGAN and
OMI-derived values in Fig. 5.b See Fig. 1 for the location of each site.c MODIS IGBP land cover classification (Fig. 1).

Figure 5 shows the resulting distributions of MEGAN and
OMI emission factorsEo over Africa together with observa-
tions from the field campaigns of Table 1b. The latter are at
the landscape level and were obtained by scaling measured
leaf-level isoprene fluxes for representative plant species
with foliage density and species distribution data. Leaf-level
measurements at standard conditions were obtained by us-
ing enclosure measurements with controlled temperature and
PAR (Serça et al., 2001; Otter et al., 2002), or adjusting to
standard conditions with MEGAN activity factors for tem-
perature and PAR (Guenther et al., 1996). For the former an
upward correction applied to the Serça et al. (2001) land-
scape emission factor accounts for isoprene fluxes obtained
from shade-adapted leaves that have lower emissions at stan-
dard conditions than sunlit leaves (Guenther et al., 1999).
Leaf-level fluxes of Klinger et al. (1998) were determined to
be at standard conditions with coincident measurements of

temperature and PAR, but we exclude the data from shaded
leaves at dense forest sites.

We find from Fig. 5 remarkable agreement between OMI-
derived emission factors and the field data (r = 0.55, OMI
normalized mean bias= −19 %). Woody savannas in Zam-
bia and savannas in South Africa have large variability in
Eo (0.5–4.5 mg C m−2 h−1), which is reproduced by OMI.
The two sites in Botswana have low emission factors as
the site to the north is dominated by monoterpene-emitting
mopane vegetation, while the site to the south is predomi-
nantly shrubland (Otter et al., 2002).

Differences between OMI and MEGAN emission factors
are largest for equatorial forests, and the field enclosure ob-
servations are in good agreement with OMI and much lower
than MEGAN. The equatorial forest enclosure measurements
are used in MEGAN to estimate emission factors there, but
a large positive correction is applied to account for leaf
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E. A. Marais et al.: Improved model of isoprene emissions in Africa 7699

Figure 5. Isoprene emission factors (Eo in Eq. 1) representing the
emission flux under standard conditions. Measured landscape-level
emission factors from field sites (circles; see Fig. 1 and Table 1b)
are compared to those used in MEGAN (left) and obtained with
OMI (right). White indicates missing OMI data.

enclosure measurements of shade-adapted leaves. Our OMI-
derived emission factors do not support such a correction,
and this is also reflected in the MEGAN overestimate of REA
flux measurements (Fig. 2). OMI emission factors for equa-
torial forests are larger in the west than east, and this may
result from differences in the proportion of isoprene-emitting
species. The west is dominated by dry tropical forests, while
the east is dominated by permanently or seasonally flooded
forests (White, 1983).

Table 2 shows mean isoprene emission factors for individ-
ual PFTs as obtained by mapping the data from Fig. 5 onto
the MODIS IGBP land map (Fig. 1; Friedl et al., 2002) and
the Global Land Cover (GLC) 2000 land map (Mayaux et al.,
2006). The distribution of MODIS IGBP woody savannas
is spatially consistent with GLC 2000 broadleaf trees, and
MODIS IGBP savannas correspond to GLC 2000 shrubs in-
terspersed with broadleaf trees and cultivated land. The GLC
2000 classification scheme is more consistent with the PFTs
of MEGANv2.1 (Guenther et al., 2012). OMI gives higher
emission factors for forested vegetation than for grasslands,
but the difference is not as large as MEGAN and more con-
sistent with the field enclosure observations. The largest dif-
ferences between OMI and MEGAN emission factors are
for broadleaf evergreen trees and for semi-arid vegetation
(shrubs and herbs).

The OMI-derived emission factors in Fig. 5 can be used to
improve the MEGAN isoprene emission estimates as com-
puted from Eq. (1). Figure 6 compares the resulting isoprene
concentrations simulated by GEOS-Chem with a latitudinal
profile of isoprene concentration measurements below 1 km
across western Africa during the African Monsoon Multidis-
ciplinary Analysis (AMMA) wet season aircraft campaign in
July–August 2006 (Murphy et al., 2010). There is a strong
vegetation gradient along the AMMA flight track from the
Gulf of Guinea to Benin woodlands to arid conditions in
the north that is reflected in the isoprene data. Simulated

Table 2. Isoprene emission factors for African plant functional
typesa.

Plant functional type
Emission factor
[mg C m−2 h−1]

MEGAN OMI

MODIS IGBP classificationb

Evergreen broadleaf trees 4.3± 2.0 2.7± 1.0
Deciduous broadleaf trees 4.4± 1.7 2.9± 0.2
Woody savannas 3.2± 1.3 2.6± 1.0
Savannas 2.9± 1.2 2.3± 0.8
Shrubs 3.0± 1.3 1.6± 0.8
Grasses 1.8± 0.9 1.6± 0.9
Crops 1.4± 0.9 1.6± 0.6
Mosaic of crops and natural vegetation 2.3± 1.1 2.5± 1.0

GLC 2000 classificationc

Evergreen broadleaf trees 4.4± 1.9 2.5± 1.0
Deciduous broadleaf trees 3.0± 1.3 2.7± 0.9
Shrubs 3.1± 1.6 2.2± 1.0
Herbs 2.4± 1.3 1.9± 0.9
Sparse herbs or shrubs 2.4± 1.2 1.5± 0.7
Cultivated land 1.8± 1.1 2.2± 0.9
Mosaic of crops and natural vegetation 3.0± 1.3 2.7± 0.7
Mosaic of crops and shrubs or grasses 2.6± 1.0 1.9± 0.9

a Isoprene emission factorEo in Eq. (1) at standard conditions of air temperature
(303 K) and photosynthetically active radiation (1000 µmol photons m−2 s−1). Values
are means and standard deviations obtained by mapping theEo data from Fig. 5 onto
the MODIS IGBP and GLC 2000 land maps. Plant functional type classifications are
as given by each land map.b Friedl et al. (2002) and shown in Fig. 1.c Mayaux et
al. (2006).

isoprene in GEOS-Chem is a factor of 2 too low over Benin
woodlands, likely due to a seasonal low bias in MODIS LAI
over western Africa from cloud contamination (Gessner et
al., 2013). Isoprene emissions over the AMMA domain are
sensitive not only to LAI but also MEGAN emission factors
(Ferreira et al., 2010). The OMI-derived emission factors are
much better able to reproduce the latitudinal gradient than
the original MEGAN emission factors, including in particu-
lar the decline to the north associated with increased aridity.
Throughout Africa MEGAN emission factors are too high for
semi-arid PFTs, as indicated by the overestimate in MEGAN
for GLC 2000 sparse herb/shrub cover in Table 2.

6 Implications for oxidants and aerosols

We use the GEOS-Chem chemical transport model to
(1) evaluate the change in atmospheric composition that re-
sults from replacing MEGAN emission factors with those ob-
tained using OMI, and (2) determine the impact of isoprene
emissions on aerosols and oxidants. GEOS-Chem includes
the standard representation of oxidant–aerosol chemistry as
described for example by Mao et al. (2010) with updates to
the isoprene oxidation (Paulot et al., 2009a, b).
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Figure 6. Latitudinal variability of isoprene in western Africa. Left
panel shows the July–August 2006 AMMA flight tracks superim-
posed on July–August 2005–2009 OMI-derived isoprene emissions
(Marais et al., 2012). Right panel shows boundary-layer (< 1 km)
isoprene concentrations along the AMMA flight tracks; observa-
tions averaged over 0.5◦ latitude bands are compared to GEOS-
Chem model results using either MEGAN or OMI-derived isoprene
emission factorsEo. Dominant MODIS IGBP biomes along the
flight tracks are indicated.

Total annual isoprene emissions in Africa averaged
over 2005–2009 using OMI-derived emission factors are
77 Tg C a−1, as compared to 104 Tg C a−1 in MEGANv2.1.
The difference is mainly for the equatorial evergreen forest
PFT in central Africa, where OMI-derived isoprene emis-
sions are 2–3 times lower than MEGAN. GEOS-Chem us-
ing OMI-derived isoprene emissions indicates a factor of 4
increase in boundary layer OH concentrations over central
Africa relative to MEGAN, a 4 ppbv increase in surface O3,
and an 8 ppbv decrease in surface isoprene.

Figure 7 shows the effect of African isoprene emissions
(using OMI-derived emission factors) on surface concentra-
tions of daily maximum 8 h average (MDA8) O3, particu-
late matter (PM), NOx, and OH. The largest effect on O3 is
over western Africa because of high anthropogenic, soil, and
biomass burning NOx emissions (Marais et al., 2014). The
largest effect on PM is also over western Africa and reflects
the availability of high preexisting primary PM from com-
bustion (biomass burning and fuel) on which isoprene oxida-
tion products can condense. NOx declines in western Africa
and the tropics due to formation of isoprene nitrates. Loss
of OH from reaction with isoprene is highest in the tropics
where low levels of NOx limit the recycling of HOx radicals.

7 Conclusions

We used a 2005–2009 data set of monthly isoprene emissions
in Africa derived from OMI satellite observations of HCHO
to study the factors controlling these emissions in different
areas of the continent. Our goal was to achieve a better rep-
resentation of isoprene emission in CTMs, in part through

Figure 7. Effect of African isoprene emissions on regional oxidant
and particulate matter (PM) concentrations in surface air. Shown are
the annual mean differences1 between GEOS-Chem simulations
with and without African isoprene emissions. Isoprene emission is
computed using OMI-derived emission factors.

evaluation and improvement of the commonly used MEGAN
emission inventory, and to examine the implications for oxi-
dants and aerosols over the continent.

We began by evaluating the OMI-derived isoprene emis-
sions with REA flux measurements obtained from above-
canopy towers and aircraft during African field campaigns.
OMI-derived isoprene emissions are on average 2 times
higher than REA measurements over the equatorial forest
and woody savannas, but this could reflect biases in the mea-
surements. MEGAN emissions are 5–10 times higher.

We subdivided Africa into three seasonally and ecologi-
cally coherent regions to examine the seasonality in OMI-
derived isoprene emissions, and compare to the seasonality
in MEGAN and in driving environmental variables. Equa-
torial forests exhibit weak seasonality that is driven pre-
dominantly by temperature, while seasonality in savannas is
driven by both temperature and LAI, in a manner consistent
with MEGAN.

Isoprene emissions in MEGAN are computed as the prod-
uct of (1) an emission factorEo characteristic of the PFT,
(2) the LAI, and (3) activity factors dependent on local en-
vironmental variables. We applied the LAI and MEGAN
activity factors to our OMI-derived isoprene emissions to ob-
tain emission factors representative of different PFTs. These

Atmos. Chem. Phys., 14, 7693–7703, 2014 www.atmos-chem-phys.net/14/7693/2014/



E. A. Marais et al.: Improved model of isoprene emissions in Africa 7701

agree well with the ensemble of leaf-level flux measurements
in Africa and imply large downward corrections to MEGAN
emission factors for equatorial forests and semi-arid vege-
tation. Such corrections are consistent with the latitudinal
gradient of isoprene across western Africa measured in the
AMMA field campaign.

The OMI-derived emission factors can be incorporated
into the MEGAN formalism (Eq. 1) to improve model-
ing of isoprene emissions in Africa. The resulting isoprene
emissions for the continent are 77 Tg C a−1, as compared to
104 Tg C a−1 in the standard MEGAN inventory. Most of the
difference is over equatorial Africa. We conducted GEOS-
Chem simulations with and without African isoprene emis-
sions (using OMI-derived emission factors) to examine the
impact on regional PM and oxidants. The largest effect of
isoprene emissions on surface O3 is over western Africa
where NOx is high, and the largest effect on PM is also over
western Africa because of preexisting high concentrations of
primary PM from combustion.
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