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Table S1 Averaged Optical properties of (level 2) of Mediterranean AERONET sites
used in this study. ‘N’ represents the number of level 2 observation days used in analyses
(entire data). The subscripts of parameters name show wavelength in nm. Period (L2)*
shows the time span of available AERONET level 2 data for respective sites. More
details on seasonal availability of level 2 data for each site can be found in Mallet et al.

(2013).

Site Name N AAEsq0.870 EAEgs070  AODgg0 SSAz40 AAOD 4 ASYP 44 Period (L2)*
Pollution Dominated Sites

Athens 708 1.35+0.42 1.39+0.41 0.23#0.12 0.91+0.03 0.04+0.01 0.70+0.02 2008-2012
Avignon 1816 1.23+0.46 1.47+0.32 0.20+0.13 0.91+0.03 0.04+0.01 0.70+0.03  2000-2012
Barcelona 1220 1.25+0.49 1.40+0.32 0.20+0.12 0.92+0.04 0.04+0.02 0.70+0.03 2005-2012
Burjassot 1045 1.27+0.45 1.28+0.33 0.18+0.12 0.93+0.03 0.03+0.02 0.70+0.03  2007-2013
Ersa 557 1.31+0.46 1.42+0.38 0.17#0.10 0.96+0.02 0.02+0.01 0.70+0.03  2008-2013
Ispra 1465 1.35+0.35 1.57+0.25 0.35+0.31 0.92+0.04 0.05+0.02 0.71+0.04 1997-2013
Lecce 1327 1.49+0.50 1.401+0.43 0.23+0.13 0.92+0.04 0.04+0.02 0.69+0.03 2003-2012
Messina 739 1.29+0.44 1.32+0.46 0.22+0.13 0.94+0.04 0.03+0.02 0.70+0.03  2005-2012
Modena 769 1.32+0.27 1.52+0.29 0.33+0.20 0.93+0.03 0.04+0.02 0.71+0.03 2002-2011
Moldova 1519 1.17+0.26 1.52+0.27 0.25+0.17 0.94+0.03 0.03+0.02 0.70£0.03  1999-2012
Potenza 608 1.33%0.72 1.35%0.41 0.17#0.11 0.92+0.05 0.04+0.03 0.70+0.03 2006-2012
Rome 1473 1.48+0.49 1.40+0.38 0.22+0.12 0.91+0.04 0.04+0.02 0.69+0.03 2001-2012
Thessaloniki 1042 1.28+0.26 1.56+0.31 0.30+0.16 0.94+0.03 0.03+0.01 0.70+0.03 2005-2012
Toulon 1008 1.27+0.44 1.4940.30 0.174#0.11 0.93+0.03 0.03+0.01 0.69+0.03 2005-2010
Villefranche 975 0.98+0.36 1.50+0.33 0.20+0.14 0.95+0.03 0.03#0.01 0.71+0.03  2004-2012
Dust Affected Sites

Blida 953 1.92+0.49 0.98+0.42 0.24+0.17 0.89+0.03 0.06+0.02 0.71+0.03 2004-2010
Malaga 869 1.57+0.47 1.06%0.37 0.17#0.11 0.90+0.03 0.05+0.02 0.71x0.02 2009-2012
Granada 1193 1.75%0.52 1.15%0.41 0.18%+0.11 0.90+0.03 0.05+0.02 0.69+0.04 2005-2013
Forth Crete 1057 1.69+0.59 1.24+0.49 0.23+0.12 0.93+0.03 0.03#0.02 0.71+0.03  2003-2011
Lampedusa 789 2.17+0.67 0.95+0.50 0.20+0.14 0.92+0.03 0.04+0.02 0.71x0.03  2003-2012
Erdemli 1322 1.07+0.46 1.29+0.35 0.31+0.17 0.93+0.04 0.04+0.02 0.71x0.03  1999-2011
Sde Boker 3403 1.44+0.63 0.94+0.41 0.21+0.14 0.92+0.02 0.05+0.02 0.72+0.02  1996-2013
Nes Ziona 1264 1.37+0.62 1.05+0.43 0.28+0.16 0.91+0.06 0.05+0.04 0.72+0.04 2000-2012
Oristano 515 1.54+0.61 1.19+0.49 0.23#0.16 0.90+0.03 0.06+0.03 0.71x0.03  2000-2003
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Fig. Sla The optical and microphysical properties of dust (EAE<0.6) aerosols for
different dust affected sites in Mediterranean basin. The effect of sea salt could be seen in
case of Lampedusa and Forth Crete in both SSA and AAOD spectral dependency. In
spite of different plausible dust sources both eastern and western basin sites show a good
consistency in optical and microphysical properties and could be regarded as dust model
for the Mediterranean Basin.
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Fig. S1b Optical and microphysical properties of polluted continental (EAE>1.4) aerosols
for different pollution dominated sites in Mediterranean Basin.
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Fig. S2 Flow chart of screening methodology for CALIOP extinction profiles used in
present study. The details can be found in Winker et al., 2013.
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Fig. S3 AOD, SSA and ASYM for three different aerosol types in 0.25 — 20 um
wavelength region. The errors in calculation are shown by transparent shaded area. The
methodology of calculation is given in main text (methodology section).
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Fig. S4 Vertical distribution of standard deviation [km™] of monthly mean aerosol
extinction coefficient (left panel) and seasonal mean (averaged from monthly mean)
aerosol extinction coefficient for different dominant aerosols (right panel) during summer
2010. All points of individual profiles which did not characterized as aerosol (below<6
km altitude) are given 0.0 km™ extinction values, which in results the higher standard
deviation values.
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Fig. S5 CALIOP-derived relative frequency of total observations of absorbing aerosols
over the ROI during summer 2010. This absorbing aerosols profile (averaged for dust,
polluted dust and polluted continental aerosols types) is showing maximum number of
aerosol layers resides between ~ 400-2200 m altitude ranges.
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Fig. S6 (a) Occurrence frequency of MODIS AOD for ff<0.5 case during June — August,
2010, and (b) 7-day running mean of daily averaged AOD (upper panel) and atmospheric
temperature at 4 pressure levels over the ROI.
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Fig. S7 Variation of radiative forcing of aerosol types (dust, polluted dust and polluted
continental) with solar zenith angles (SZA) at TOA (upper panel), at SRF (middle panel)
and in ATM (lower panel).
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Fig. S8 Comparison of Aerosol Direct Radiative Forcing (ADRE) for sza=60° with
Cos(sza) weighted mean for all three absorbing aerosols types at TOA, at SRF and in
ATM.
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Fig. S9 Dependence of aerosol radiative forcing (integrated over the solar spectrum
(0.25-20 pm and SZA = 60°% on aerosol properties [AOD (tg4s), SSA (w044) and
asymmetry parameter (go.44) at 0.44 um] for different absorbing aerosols calculated from
SBDART radiative transfer calculation. For each aerosol property the upper panel
denotes forcing at top of the atmosphere (AFtoa), middle one present forcing at surface
(AFsrr) and the lower one shows forcing in the atmosphere (AFatm).
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Fig. S10 Radiative forcing of different aerosol types as a function of wavelength in SW
and LW region at TOA, SRF and in ATM.
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