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Abstract. We estimate biomass burning and anthropogenic
emissions of black carbon (BC) in the western US for May–
October 2006 by inverting surface BC concentrations from
the Interagency Monitoring of PROtected Visual Environ-
ment (IMPROVE) network using a global chemical trans-
port model. We first use active fire counts from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) to im-
prove the spatiotemporal distributions of the biomass burn-
ing BC emissions from the Global Fire Emissions Database
(GFEDv2). The adjustment primarily shifts emissions from
late to middle and early summer (a 33 % decrease in
September–October and a 56 % increase in June–August)
and leads to appreciable increases in modeled surface BC
concentrations in early and middle summer, especially at the
1–2 and 2–3 km altitude ranges. We then conduct analyti-
cal inversions at both 2◦ × 2.5◦ and 0.5◦ × 0.667◦ (nested
over North America) horizontal resolutions. The a posteri-
ori biomass burning BC emissions for July–September are
31.7 Gg at 2◦ × 2.5◦ (an increase by a factor of 4.7) and
19.2 Gg at 0.5◦ × 0.667◦ (an increase by a factor of 2.8).
The inversion results are rather sensitive to model resolu-
tion. The a posteriori biomass burning emissions at the two
model resolutions differ by a factor of∼ 6 in California and
the Southwest and by a factor of 2 in the Pacific Northwest.
The corresponding a posteriori anthropogenic BC emissions
are 9.1 Gg at 2◦ × 2.5◦ (a decrease of 48 %) and 11.2 Gg
at 0.5◦ × 0.667◦ (a decrease of 36 %). Simulated surface BC
concentrations with the a posteriori emissions capture the ob-

served major fire episodes at most sites and the substantial
enhancements at the 1–2 and 2–3 km altitude ranges. The a
posteriori emissions also lead to large bias reductions (by
∼ 30 % on average at both model resolutions) in modeled
surface BC concentrations and significantly better agreement
with observations (increases in Taylor skill scores of 95 % at
2◦

× 2.5◦ and 42 % at 0.5◦ × 0.667◦).

1 Introduction

Black carbon (BC), as a component of fine particulate mat-
ter, has deleterious effects on human health (e.g., Anenberg
et al., 2011, 2012; Smith et al., 2009). BC is also known as
the agent to cause both degraded air quality (e.g., Anenberg
et al., 2011, 2012) and warming due to its strong absorption
of solar radiation (e.g., Ramanathan and Carmichael, 2008;
Horvath, 1993). BC thus has considerable impacts on global
climate (Fuglestvedt et al., 2010; Shindell et al., 2008; Levy
II et al., 2008; Reddy et al., 2007; IPCC, 2007; Jacobson,
2001, 2004). BC deposited on snow and ice can significantly
decrease the surface albedo (Warren and Wiscombe, 1980)
and quicken surface melt (e.g., Flanner et al., 2007, 2009;
Hansen and Nazarenko, 2004; Zwally et al., 2002). BC thus
has a significant contribution to the observed rapid glacier
retreats (Painter et al., 2013; Xu et al., 2009). Because of
its shorter lifetime relative to long lived greenhouse gases
such as carbon dioxide, BC shows a much stronger regional

Published by Copernicus Publications on behalf of the European Geosciences Union.



7196 Y. H. Mao et al.: Top-down estimates of biomass burning emissions of black carbon

warming effect and its reduction may provide an efficient so-
lution to mitigate near-term climate change and to improve
air quality and human health simultaneously (Bond et al.,
2013; Shindell et al., 2012; Kopp and Mauzerall, 2010; Ra-
mana et al., 2010; Jacobson, 2002, 2010; Bond and Sun,
2005; Hansen et al., 2005).

The transport and subsequent deposition of BC is known
to impact the regional climate and hydrological cycle in the
western US mountain ranges. Mountain snowmelt accounts
for over 70 % of the annual stream flows in this region (Qian
et al., 2009). Qian et al. (2009) showed that the deposition
of BC on snow over the western US mountain ranges re-
duced snow accumulation in winter, snowmelt in spring, and
runoff between April and June. The ongoing and most se-
vere drought on record during the last 5 decades in Califor-
nia (e.g., Mirchi et al., 2013) and the dwindling water level
of the Colorado River (e.g., Vano et al., 2013) both add even
more urgency to better understand the sources, transport, and
deposition of BC in the western US mountain ranges.

The uncertainty in current BC emission estimates ranges
from at least±50 % on global scales to a factor of 2–5 on
regional scales (Ramanathan and Carmichael, 2008; Streets
et al., 2001, 2003). The uncertainty of biomass burning BC
emissions in the western US is equally large, not only in the
absolute magnitudes of fire emissions but also in the tim-
ing and location of fires (Mao et al., 2011). Part of the large
uncertainty stems from estimates of burned area and fuel
load (Langmann et al., 2009), especially of small fires, in-
cluding agricultural burning (Randerson et al., 2012). Giglio
et al. (2006, 2010) have shown that small fires can lead to
high relative errors of 50–100 % in the burned area esti-
mates. The uncertainty is likely because of the lack of de-
tection of small fires in the burned area algorithms (Rander-
son et al., 2012; van der Werf et al., 2010; McCarty et al.,
2009; Roy and Boschetti, 2009; Korontzi et al., 2006). In
addition, the increases of fire frequency, fire season length,
and annual burned area observed in the western US in re-
cent decades have been linked to the warm climate (Peter-
son and Marcinkowski, 2014; Westerling et al., 2006). The
annual burned area in the western US is also projected to in-
crease by 25–125 % in the 2050s relative to the present under
future warming (Yue et al., 2013; Spracklen et al., 2009). It is
therefore conceivable that, biomass burning emissions as an
important source to BC will have an even larger contribution
to BC in the western US in the 21st century.

Understanding the distributions of a chemical species in
the atmosphere depends on the information of the emissions.
Bottom-up emission estimates generally rely on emission
factors using socioeconomic, energy, land use, or environ-
mental data (Bond et al., 2007, 2013; Lu et al., 2011). In
recent years, there has been an increasing emphasis on the
use of inverse methods to characterize the temporal and spa-
tial variability of emissions. Top-down inversions have been
widely used for estimating emission fluxes of long-lived trace
gases such as carbon dioxide (e.g., Pickett-Heaps et al., 2011;

Chevallier et al., 2007; Gloor et al., 1999), methane (e.g.,
Wecht et al., 2012; Meirink et al., 2008; Hein et al., 1997),
and carbon monoxide based on observations from surface
stations (e.g., Bergamaschi et al., 2000; Kasibhatla et al.,
2002), aircraft (e.g., Palmer et al., 2003, 2006), and satel-
lites (Jiang et al., 2011, 2013; Jones et al., 2009; Stavrakou
and Müller, 2006; Arellano et al., 2004, 2006), when the at-
mospheric concentrations are linearly or weakly non-linearly
dependent on their emissions (Müller and Stavrakou, 2005).
Top-down inversions, by nature, are a way to examine the
consistency of model results with observations. It is impor-
tant to note that the abovementioned studies have consis-
tently demonstrated that the bottom-up and top-down ap-
proaches are not mutually exclusive. Improving estimate of
emissions is inherently an iterative process and it is impera-
tive to optimally integrate both bottom-up and top-down ap-
proaches.

Several studies have used multiple regressions to estimate
annual mean sources of primary carbonaceous aerosols over
the US (Park et al., 2003) and in China (Wang et al., 2013;
Fu et al., 2012). The goal of the present study is to improve
our understanding of sources of BC in the western US moun-
tain ranges, with a particular focus on biomass burning emis-
sions during May–October 2006, broadly encompassing the
fire season in the region. We first improve the spatial dis-
tributions and the seasonal and interannual variations of BC
emissions using high spatial resolution active fire counts. We
then apply top-down inversions of surface BC concentration
measurements using a global 3-dimensional chemical trans-
port model (CTM). We briefly describe the observations in
Sect. 2 and the model in Sect. 3. We then discuss in Sect. 4
improvements to the spatiotemporal distributions of biomass
burning emissions of BC. In Sect. 5, we describe the analyt-
ical inversion method. The inversion results and discussions
are presented in Sect. 6. We give a summary and draw con-
clusions in Sect. 7.

2 Observations

2.1 IMPROVE

The Interagency Monitoring of PROtected Visual Environ-
ment (IMPROVE) surface network in the US was created for
the protection of visibility in Class I remote areas (Malm et
al., 1994). Long-term measurements of aerosols with chem-
ical species including BC are available from the network
since 1987 (data available athttp://vista.cira.colostate.edu/
improve/). We use surface BC concentration data for 2006
from 69 sites across the western US (Fig. 1 and Supplement
Table S1). These are mostly remote sites located predomi-
nantly in national parks. BC mass concentration is measured
by the thermal optical reflectance (TOR) combustion method
based on the preferential oxidation of organic carbon (OC)
and BC at different temperatures (Chow et al., 2004). The
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Figure 1. The 69 IMPROVE sites (black dots) used in this
study (data available athttp://vista.cira.colostate.edu/improve/).
Also shown are the three biomass burning regions used to define
the state vector of the inversion analyses: the Rocky Mountains
(RM), California and the Southwest (CSW), and the Pacific North-
west (PNW). Terrain heights are indicated by color contours.

uncertainties of the method are difficult to quantify (Park et
al., 2003; Chow et al., 1993). The measurements are made
every 3 days and 24 h averages are reported. Previously, sul-
fate and nitrate aerosol measurements from the IMPROVE
network have been used to constrain their precursor emis-
sions using the GEOS-Chem CTM and its adjoint (Henze et
al., 2009).

2.2 MODIS

The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) active fire product (available at
ftp://fuoco.geog.umd.edu) detects fires in 1 km pixels
that are burning at the time of overpass under relatively
cloud-free conditions using a contextual algorithm (Giglio
et al., 2003). The detection utilizes the strong emission of
mid-infrared radiation from fires and applies thresholds to
the observed middle-infrared and thermal-infrared bright-
ness temperatures. The algorithm examines each pixel of
the MODIS swath, and ultimately assigns to each one of the
following classes: missing data, cloud, water, non-fire, fire,
or unknown. We use here MODIS active fire counts at the
spatial resolution of 0.5◦ × 0.5◦ and a temporal resolution of
8 days.

3 Model description and simulations

We apply the GEOS-Chem global 3-dimensional CTM (Bey
et al., 2001, with many updates thenceforth) to analyze IM-
PROVE surface BC observations. GEOS-Chem is driven by
assimilated meteorological observations from the Goddard

Earth Observing System (GEOS) of the NASA Global Mod-
eling and Assimilation Office (GMAO). Here we use GEOS-
Chem version 8-03-02 (available athttp://geos-chem.org)
driven by GEOS-5 meteorological data with a temporal res-
olution of 6 h (3 h for surface variables and mixing depths),
horizontal resolutions of 2◦ (latitude)× 2.5◦ (longitude) and
0.5◦ (latitude)× 0.667◦ (longitude), and 47 hybrid eta lev-
els in the vertical from the surface to 0.01 hPa. The lowest
model levels are centered at approximately 60, 200, 300, 450,
600, 700, 850, 1000, 1150, 1300, 1450, 1600, and 1800 m
above the local surface. GEOS-Chem simulations at the finer
horizontal resolution are typically nested over a continental-
scale domain within the global domain. Lateral boundary
conditions for the nested-grid simulations are archived from
a global simulation. The nested-grid simulation employs the
same meteorology, dynamics, and chemistry as the global
simulation, thus allows for consistent propagation of features
from the global to the nested domain via one-way nesting.

Tracer advection is computed every 15 minutes with a
flux-form semi-Lagrangian method (Lin and Rood, 1996).
Tracer moist convection is computed using GEOS convec-
tive, entrainment, and detrainment mass fluxes as described
by Allen et al. (1996a, b). The deep convection in GEOS-5 is
parameterized using the relaxed Arakawa-Schubert scheme
(Moorthi and Suarez, 1992; Arakawa and Schubert, 1974),
and the shallow convection treatment follows Hack (1994).
Simulation of aerosol wet and dry deposition follows Liu
et al. (2001). Wet deposition includes contributions from
scavenging in convective updrafts, rainout from convective
anvils, and rainout and washout from large-scale precipita-
tion. Dry deposition of aerosols uses a resistance-in-series
model (Walcek et al., 1986) dependent on local surface type
and meteorological conditions.

GEOS-Chem simulation of carbonaceous aerosols has
been reported previously by Park et al. (2003). Eighty percent
of BC and 50 % of OC emitted from primary sources are as-
sumed to be hydrophobic, and hydrophobic aerosols become
hydrophilic with an e-folding time of 1.2 days (Park et al.,
2003; Chin et al., 2002; Cooke et al., 1999). BC aerosols in
the model are assumed to be externally mixed. Global anthro-
pogenic (fossil fuel and biofuel) emissions of BC are based
upon Bond et al. (2007) with imposed seasonality following
Park et al. (2003). Biomass burning emissions of BC are from
the Global Fire Emissions Database version 2 (GFEDv2)
emissions with an 8-day temporal resolution (Randerson et
al., 2007; van der Werf et al., 2006). We include for compar-
ison BC emissions from GFEDv3 (van der Werf et al., 2010)
and the Fire Locating and Monitoring of Burning Emissions
(FLAMBE) inventory (Reid et al., 2009).

GFEDv2 was derived using satellite observations includ-
ing active fire counts and burned areas in conjunction with a
biogeochemical model (Randerson et al., 2007; van der Werf
et al., 2006). Burned area was derived using monthly 1◦

× 1◦

active fire and 500 m burned area data from MODIS (Giglio
et al., 2006). Total carbon emissions were then calculated
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as the product of burned area, fuel load, and combustion
completeness. Fuel load depends on vegetation type, climate,
soil type, and time passed since the last fire, while combus-
tion completeness (the fraction of the available fuel com-
busted during a fire) depends on the type of fire, fuel (e.g.,
stems, leaves, and litter) and its moisture content (Lang-
mann et al., 2009). The Carnegie–Ames–Stanford Approach
(CASA) biogeochemical model was used to estimate com-
bustion completeness as well as fuel load and the associ-
ated spatial variability (van der Werf et al., 2006, and ref-
erences therein). BC emissions were then derived from the
total carbon emissions and BC emission factors. GFEDv3
includes several updates over GFEDv2: a finer spatial res-
olution (0.5◦), a better mapping method in estimating 500 m
global burned area, a local (in lieu of regional) regression in
producing the indirect, active-fire based estimates of burned
area, and an improved CASA model.

FLAMBE provides carbon emissions at a 1◦
× 1◦ spa-

tial resolution and hourly temporal resolution based on
both MODIS and Geostationary Operational Environmental
Satellites (GOES) fire counts. Hourly emissions are avail-
able from 2005. Fire pixel detections and subpixel burning
characterizations were computed based on the operational
NOAA/NESDIS GOES Wildfire Automated Biomass Burn-
ing Algorithm (WF_ABBA) for most of the Western Hemi-
sphere. For the rest of the globe, the near real time Univer-
sity of Maryland/NASA MODIS fire products from Terra
and Aqua were used. The Advanced Very High Resolution
Radiometer (AVHRR) Global Land Cover Characteristics
(GLCC) data (v2.0) was used to assign surface emissivity
and to screen for false alarms. Based on the thermal anomaly
and fire radiative power in a subpixel fire, FLAMBE provides
hourly burned areas and carbon emissions. Following Fisher
et al. (2010), we calculate BC emissions using emission fac-
tors from Andreae and Merlet (2001).

For computational expediency, we conduct GEOS-Chem
“offline” simulations of carbonaceous aerosols following
Mao et al. (2011). We conduct simulations for 2006 at both
2◦

× 2.5◦ and 0.5◦ × 0.667◦ resolutions. The first 3 months
are used for initialization and we focus our analysis on
May through October. The finer resolution is nested over
North America (40–140◦ W longitudes, 10–70◦ N latitudes,
cf. Fig. 1 in Wang et al., 2004). Wang et al. (2004) re-
ported the first nested-grid GEOS-Chem simulations of car-
bon monoxide over North America. Chen et al. (2009) pro-
vided a detailed description of the one-way nesting in the
model.

Model results are sampled at the corresponding locations
of the IMPROVE sites. IMPROVE observations are 24 h av-
erages sampled every 3 days and we sample the model ac-
cordingly. It is known that comparing localized observations
such as the IMPROVE data with model results that are rep-
resentative of a much larger area is inherently problematic
(Mao et al., 2011; Fairlie et al., 2007). Furthermore, many of
the IMPROVE sites are at high elevations and the associated

upslope flow is difficult to represent in a coarse-resolution
model.

4 Spatiotemporal distributions of biomass burning BC
emissions

Mao et al. (2011) pointed out that the GFEDv2 inventory
not only underestimated the magnitude but also inadequately
captured the temporal (and presumably spatial) distribution
of biomass burning emissions in the western US (WUS, de-
fined hereinafter as 30–50◦ N, 100–125◦ W for clarity). Am-
ple evidence has suggested that the root cause of these de-
ficiencies was likely the lack of detection of small fires, for
example, prescribed and agricultural burning (e.g., Rander-
son et al., 2012; Giglio et al., 2010). Randerson et al. (2012)
pointed out that current global burned area products largely
missed small fires because such fires were typically well be-
low the detection limit of the burned area algorithms. For
instance, GFEDv2 burned area was derived from MODIS
500 m surface reflectance, suited for detecting large fires with
fire scars greater than 500 m (Giglio et al., 2006, 2010). Ac-
tive fire data has long been used as a proxy for burned area
due to the lack of long-term global burned area data (Giglio
et al., 2006, 2010). MODIS active fire data, based on thermal
anomalies, allows for the detection of fires that are an order
of magnitude smaller in size than those detected by MODIS
500 m surface reflectance. MODIS active fire data thus pre-
serves detailed aspects of the spatial distribution and sea-
sonality of burning (Randerson et al., 2012, and references
therein).

Here we use MODIS active fire counts from 2005–2007
to improve the spatiotemporal distribution of GFEDv2 BC
emissions in North America. The adjusted emissions will be
the a priori for the inversions presented hereinafter. There are
large uncertainties in relating fire counts to actual burned area
because of inadequate temporal sampling, variability in fuel
conditions and cloud cover, differences in fire behavior, and
issues related to spatial resolution (Giglio et al., 2006; Kasis-
chke et al., 2003). We choose the 3-year period in part to min-
imize such uncertainties. We adjust the emissions for three
zones: boreal North America, temperate North America, and
Mexico and Central America, following the geographic re-
gions defined in the GFED inventory (Giglio et al., 2006,
2010). We first sum up for each zone the monthly carbon
emissions and MODIS active fire counts from 2005–2007.
We then redistribute the emissions according to the ratio of
the active fire counts for each 8-day period within each grid
box (0.5◦ × 0.5◦) to the total fire counts. We note that the
adjusted GFEDv2 emissions have the same total emissions
as the original GFEDv2. We would like to point out that,
fuel loading and combustion completeness are also basic fac-
tors to derive emissions and have large spatial and tempo-
ral variations. The emission adjustment presented here there-
fore would introduce some uncertainties without considering
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Figure 2. MODIS active fire counts (top panel) and the GFEDv2
biomass burning emissions of BC (middle and bottom panels)
summed over the western US from 2005 to 2007. The emissions
before (middle panel) and after (bottom panel) applying spatiotem-
poral adjustments based on the active fire counts (see text for details
on the adjustments) are both shown. Data shown here has an 8-day
temporal resolution. MODIS active fire counts data are available at
ftp://fuoco.geog.umd.edu. GFED data are available athttp://daac.
ornl.gov/VEGETATION/guides/global_fire_emissions_v2.1.html.

these issues. We make another emission adjustment with the
same calculation method but using daily active fire counts
and carbon emissions only in the WUS for 2006 to partially
measure these uncertainties. The resulting emissions are es-
sentially the same as the former adjusted emissions and we
thus focus our analysis on the former adjusted emissions
hereinafter.

Figure 2 shows the active fire counts and the biomass
burning BC emissions (before and after the adjustments),
summed over the WUS, from 2005 to 2007. Of the 3 years,
2006 is a relatively large fire year. Fire seasons in the WUS
typically last from late June to October even November,
as evident in both the fire counts and the emissions. The
fire season in 2006 is from July to September primarily.
The adjustment largely shifts emissions from late to mid-
dle and early summer. Take 2006 for example, the adjust-
ment results in a 33 % decrease in September–October and
a 56 % increase in June–August. The spatial distributions
of monthly BC emissions for July–September 2006, before
and after the adjustments, are shown in Fig. 3. There are
significant increases in the agricultural areas in August and
September, e.g., Columbia River Basin in Washington, Ore-
gon, and Idaho, and Snake River Basin in Idaho. These in-
creases reflect improved spatial allocation of biomass burn-
ing emissions using MODIS active fire counts, which now
presumably pick up (small) agricultural burning. The ad-
justed emissions track spatiotemporally MODIS active fire
counts (Fig. 3a), as expected.

The spatiotemporal shift of the emissions manifests in
higher BC concentrations in some regions and lower con-
centrations in others. Figure 4 compares modeled surface
BC concentrations against observations for May–October
2006 at six IMPROVE sites. Model results are from simu-
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Figure 3. Monthly MODIS active fire counts and biomass burning
emissions of BC (unit: g m−2) in the western US for July, August,
and September 2006, respectively:(a) MODIS active fire counts,
(b) standard GFEDv2 BC emissions,(c) GFEDv2 BC emissions
adjusted spatiotemporally based on the active fire counts (see text
for details on the adjustments), and(d) the difference between(c)
and(b).

lations at 2◦ × 2.5◦ or 0.5◦ × 0.667◦ horizontal resolutions.
There are substantial increases of surface BC concentra-
tions (up to∼ 100 %) after the emission adjustment, at Bend,
MT (47.6◦ N, 108.7◦ W, 0.89 km) and North Cheyenne, MT
(45.7◦ N, 106.6◦ W, 1.28 km) in early and middle summer,
while concentrations are appreciably lower (up to∼ 10 % at
2◦

× 2.5◦) at Starkey, OR (45.2◦ N, 118.5◦ W, 1.26 km) and
Mt. Cabinet, MT (48.0◦ N, 115.7◦ W, 1.44 km) in September
and October. The resulting changes to modeled surface BC
concentration are largely consistent between the two resolu-
tions but are considerably more pronounced at 2◦

× 2.5◦ than
at 0.5◦ × 0.667◦ at Starkey and Mt. Cabinet.

Figure 5 shows modeled vs. observed surface BC concen-
trations averaged for sites at the 0–1, 1–2, 2–3, and 3–4 km
altitude ranges for May–October 2006. The adjusted emis-
sions lead to small yet significant relative enhancements of
model surface BC concentrations (up to∼ 0.05 µg m−3) at
both model resolutions from late June to August. These en-
hancements are particularly evident at the 1–2 and 2–3 km
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Figure 4. Observed (red line) and simulated 24 h average sur-
face BC concentrations (µg m−3) at six IMPROVE sites for May–
October 2006. Values shown are 24 h averages for every 3 days.
Model results are from simulations at 2◦

× 2.5◦ (solid line) and
0.5◦ × 0.667◦ (dotted line) horizontal resolutions and with the stan-
dard (black line) and the adjusted (green line; see Figs. 2 and 3)
GFEDv2 emissions. Model results are sampled at the time and lo-
cation of IMPROVE observations.

altitude ranges at 0.5◦ × 0.667◦ and yet insignificant at 3–
4 km sites. The adjustments also provide better agreement
with the observations at sites below 1 km, especially at
0.5◦

× 0.667◦. The adjustment to the emissions reduces the
median model bias by 64 % at 0.5◦

× 0.667◦ but has little to
no effect on the model bias at 2◦

× 2.5◦ (Fig. 6).

5 Analytical solution to the inverse problem

Analytical inversion methods are applicable for linear or
weakly non-linear conditions between emissions and atmo-
spheric concentrations (Müller and Stavrakou, 2005). Previ-
ous studies have shown that the GEOS-Chem simulations of
BC were linear with respect to BC emissions (e.g., Wang et
al. 2011, 2013; Kopacz et al., 2011). Considering the prob-
lem of inferring emissions (state vectorX) given observa-
tions (observation vectorY ) with errorε, the two are related
via a forward modelF as follows (Rodgers, 2000):

Y = F(X) + ε, (1)

whereX is monthly BC emissions (Fig. 1) in the present
study,Y the 24 h average BC surface concentrations (Fig. 1
and Supplement Table S1), andF the GEOS-Chem model.
Based on Bayes’ theorem and the assumption of Gaussian
error distributions (Rodgers, 2000), the optimal or maximum
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Figure 5. Observed (red line) and simulated 24 h average surface
BC concentrations (µg m−3) at IMPROVE sites for May–October
2006, averaged for four altitude ranges: below 1 km (averages at 18
sites), 1–2 km (averages at 30 sites), 2–3 km (averages at 18 sites),
and above 3 km (averages at three sites). Model results are from
simulations at 2◦ × 2.5◦ (solid line) and 0.5◦ × 0.667◦ (dotted line)
horizontal resolutions and with the standard (black line) and the
adjusted (green line; see Figs. 2 and 3) GFEDv2 emissions.

a posteriori (MAP) solution to Eq. (1) is equivalent to finding
the minimum of an error-weighted least squares cost function
J (X) (Rodgers, 2000),

J (X) = (Y −KX)TS−1
6 (Y −KX)+(X−Xa)

TS−1
a (X−Xa),

(2)

whereXa andSa are the a priori emissions and the associated
error covariance,S6 the observational error covariance, and
K = ∇XF the Jacobian matrix. Minimization ofJ (X) yields

X̂ = Xa+ (KTS−1
6 K + S−1

a )−1KTS−1
6 (Y − KXa) (3)

Ŝ= (KTS−1
6 K + S−1

a )−1
= (I − A)Sa(I − A)T

+ GS6GT, (4)

WhereX̂ is the a posteriori emissions,Ŝ the a posteriori er-

ror covariance,I the identity matrix,G =
∂X̂
∂Y

the gain ma-
trix (the sensitivity of the retrieval to the observations), and

A =
∂X̂
∂X

= GK = I − ŜS
−1
a the averaging kernel matrix. In a

successful inversion, the cost function should be of the same
order as the number of observations, provided that errors are
properly specified (Palmer et al., 2003).

The matrix of averaging kernel and the number of de-
grees of freedom for signal (DOFs) are useful metrics for
inspecting the ability of the observing system to uniquely
constrain individual element of the state vector (Kasibhatla
et al., 2002). The averaging kernel matrix represents the sen-
sitivity of the a posteriori estimates to the unknown true state.
Averaging kernels peaking at their own state vector element
denote a well constrained source, which shows the inversion
system has enough information to constrain the source cat-
egories independently. DOFs is the trace of the averaging
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Figure 6. Number frequency of model bias for May–October 2006.
Model bias is defined as the difference between simulated and ob-
served 24 h average surface BC concentrations (µg m−3) at IM-
PROVE sites. Model results are from simulations at 2◦

× 2.5◦ and
0.5◦ × 0.667◦ horizontal resolutions and with the standard, the ad-
justed (see Figs. 2 and 3), and a posteriori emissions. Also shown
are the mean, median, standard deviation, and fitted Gaussian dis-
tribution curve of the biases.

kernel matrix (Rodgers, 2000). The number of pieces of in-
formation from a perfect inversion system is expected to be
the size of the state vector. Following Jaffe et al. (2008), we
initially include in the state vector five regions of biomass
burning: the northern Rocky Mountains, the southern Rocky
Mountains, California, the Southwest, and the Pacific North-
west. Upon examining the averaging kernel and DOFs, we
find that the inversion system is unable to distinguish the
biomass burning from the northern vs. the southern Rockies.
Therefore, we lump these two regions. We also lump Cali-
fornia and the Southwest for the same reason. Our analyses
show that biomass burning emissions in the WUS account for
∼ 85 % of the total biomass burning contribution to surface
BC in the region for May–October 2006. The corresponding
contribution from Canadian fire is∼ 7 %. We thus define a
four-component state vector (Fig. 1): biomass burning emis-
sions in the Rockies (BBRM), California and the Southwest
(BBCSW), and the Pacific Northwest (BBPNW), and anthro-
pogenic emissions in the WUS (ANTHWUS).

We assume a 50 % uncertainty for the anthropogenic BC
emissions in North America, within the 30–60 % range sug-
gested by Bond et al. (2004). GFEDv2 fuel loading has an
uncertainty of 22 % for woody biomass and 44 % for herba-
ceous biomass, while combustion completeness has an un-
certainty of∼ 50 % (van der Werf et al., 2010). GFEDv2
burned area has an uncertainty of 10–40 % for large fires and
50–100 % for small fires (Giglio et al., 2006). BC emission
factor has an uncertainty of∼ 40 % for savanna, grasslands,
and extra-tropical forest (Andreae and Merlet, 2001). Mao et
al. (2011) suggested that GFEDv2 BC emissions were likely
biased low by a factor of 2–3 in the WUS. We assume for
separate inversions presented here uncertainty of 200, 300,
or 500 % for biomass burning emissions of BC in the WUS.
We assume that the a priori errors are spatially uncorrelated.

The observation error includes contributions from pre-
dominantly model transport error, representation error, and
measurement error (Heald et al., 2004). We estimate the
transport error by computing the variance of the relative
difference between the observations and the corresponding
model BC concentrations, following Palmer et al. (2003) and
Heald et al. (2004). The mean model bias, as diagnosed by
the mean relative difference, is a result of errors in the a pri-
ori sources, while the variance of the relative residual er-
ror is chiefly because of errors in the transport. The result-
ing model transport error is∼ 20 %, consistent with previous
studies (Kopacz et al., 2009; Heald et al., 2004; Palmer et
al., 2003). Jiang et al. (2011) used the differences in GEOS-
Chem simulated carbon monoxide distributions with two dif-
ferent GEOS meteorological fields (GEOS-3 vs. GEOS-4) as
an alternative measure of model transport error. They found
that such transport error introduced an error of up to 20 % on
the source estimates. The representation error describes the
mismatch between model results and the corresponding ob-
servations. This error arises because model results are aver-
ages over a large model grid scale (e.g.,∼ 200× 250 km2 at
2◦

× 2.5◦), while as observations are typically point measure-
ments. Palmer et al. (2003) estimated a representation error
(for carbon monoxide) of 5–10 % of observations for GEOS-
Chem simulations at 2◦ × 2.5◦. Their estimate was based
upon aircraft measurements, mostly 1 km over the ocean, and
corresponding model simulations over the western Pacific. It
is likely that the representation error in the WUS should be
larger than 5–10 % merely because of the complex terrain,
which is more difficult (relative to remote oceans) to resolve
in coarse-resolution models. We thus assume a 5–10 % rep-
resentation error as a lower limit in the analyses presented
here. We further assume a measurement error of 5–10 % for
IMPROVE BC measurements. The total observation error is
set at 30 or 50 %.

Inspection of the averaging kernels and DOFs shows that
an a priori biomass burning error of 500 % and an observation
error of 30 % provide the best overall inversion results, with
higher resolution in the averaging kernels (Fig. 7) and highest
values of DOFs (Table 1). The averaging kernels at the two
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Figure 7. The averaging kernels for inversions (May–October 2006) of BC emissions in the western US, with each line corresponding to an
emission source or source region: biomass burning emissions in the Rockies (BBRM, black line), biomass burning emissions in California and
the Southwest (BBCSW, red line), biomass burning emissions in the Pacific Northwest (BBPNW, green line), and anthropogenic emissions in
the western US (ANTHWUS, blue line). Results here are from simulations at 2◦

× 2.5◦ (solid line) and 0.5◦ × 0.667◦ (dotted line) horizontal
resolutions and with best set of error characterizations (30 % for observations and 500 % for biomass burning emissions; bottom two rows in
Table 1).

Table 1.Number of degrees of freedom for signal (DOFs) for inversions (May–October 2006) using different error characterizations and at
2◦

× 2.5◦ and 0.5◦ × 0.667◦ horizontal resolutions.

Error DOFs

specification May Jun Jul Aug Sept Oct

2◦
× 2.5◦

S6 = 50%
SaBB = 300 %

2.36 2.68 3.60 3.85 3.81 2.99

S6 = 30%
SaBB = 300 %

2.87 2.80 3.80 3.93 3.91 3.41

S6 = 30%
SaBB = 200 %

2.30 2.56 3.61 3.85 3.82 2.95

S6 = 30%
SaBB = 500 %

3.44 3.03 3.92 3.97 3.96 3.74

0.5◦ × 0.667◦ S6 = 30%
SaBB = 500 %

3.57 3.14 3.93 3.98 3.97 3.82

model resolutions are essentially indistinguishable. Overall
the retrievals are slightly better constrained at 0.5◦

× 0.667◦

than at 2◦ × 2.5◦, as evident in the higher DOFs. Figure 7
shows that the inversion system is able to constrain each el-
ement of the state vector independently, especially during
July to September and to a lesser degree in October. How-
ever, the system has insufficient information to distinguish
anthropogenic from biomass burning BC emissions in May
and June.

The cost function provides yet another metric for apprais-
ing the quality of an inversion. The inversions presented here
see large cost function reductions (42 % at 2◦

× 2.5◦ and
38 % at 0.5◦ × 0.667◦). In addition, the cost function values
are of the same order as the number of observations (∼ 690).
Palmer et al. (2003) showed that the value of the cost func-
tion in a successful inversion should be of the same order
as the number of observations, provided that the errors are
properly specified.
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Figure 8. Monthly BC emissions in the western US for May–October 2006: a priori BC emissions (pink); a posteriori emissions of biomass
burning BC from the Rockies (BBRM), from California and the Southwest (BBCSW), and from the Pacific Northwest (BBPNW), and a
posteriori emissions of anthropogenic BC from the western US (ANTHWUS). The a posteriori emissions are from inversions at 2◦

× 2.5◦

(blue, green, orange) and 0.5◦
× 0.667◦ (red) horizontal resolutions, color-coded by error characterizations (see text for details). For the

purpose of clarity, anthropogenic emissions are divided by 3 in the figures. Error bars represent estimated uncertainties of the emissions.

6 Results and discussions

6.1 A posteriori estimates of BC emissions

Figure 8 shows the a priori (i.e., adjusted GFEDv2, see
Sect. 4) and the a posteriori estimates of monthly BC emis-
sions in the WUS for May–October 2006. The anthropogenic
emissions are divided by 3 in the figures, for the sake of
clarity, because the anthropogenic emissions are consider-
ably larger than biomass burning emissions. The a posteri-
ori biomass burning emissions increase (by a factor of 3–5
on average) dramatically and consistently, while the a pos-
teriori anthropogenic emissions decrease (by∼ 50 %) sub-
stantially. The retrievals also largely reduce the uncertainties
of the emissions by more than 50 %. An a priori biomass
burning emissions error of 500 % and an observational er-
ror of 30 % provide the best overall inversion results, with
larger reductions in uncertainties (Fig. 8), larger DOFs (Ta-
ble 1), and better-resolved averaging kernels (Fig. 7). By the
same metrics, the inversion results are appreciably better at
0.5◦

× 0.667◦ than at 2◦ × 2.5◦. As expected, model simu-
lations with the former also result in better agreement with
observations.

Table 2 presents the a priori and a posteriori monthly
biomass burning and anthropogenic BC emissions in the
WUS for May–October 2006. The a posteriori biomass burn-
ing BC emissions are 31.7 Gg at 2◦

× 2.5◦ (4.7 times the
a priori) and 19.2 Gg at 0.5◦ × 0.667◦ (2.8 times the a pri-
ori) for July–September. The a posteriori biomass burning
emissions show large regional and month-to-month differ-

ences between the two model resolutions. For example, the a
posteriori biomass burning emissions at 2◦

× 2.5◦ for July–
September increase by factors of 7.0 in the Rockies and 4.3
in the CSW, relative to the corresponding a priori. The a
posteriori biomass burning emissions in the WUS increase
by factors of 6.3 (4.1) in July and 3.6 (2.2) in August at
2◦

× 2.5◦ (0.5◦
× 0.667◦). The a posteriori anthropogenic BC

emissions are 9.1 Gg at 2◦
× 2.5◦ (a 48 % reduction relative

to the a priori) and 11.2 Gg at 0.5◦
× 0.667◦ (a 36 % reduc-

tion relative to the a priori) for July–September 2006. These
decreases in anthropogenic BC emissions estimates are con-
sistent with the findings by Rao and Somers (2010), who
showed that BC emissions in the US had declined by∼ 30 %
from 1990 to 2005 and were expected to decline by an ad-
ditional 80 % by 2030. Murphy et al. (2011) have shown
that observed BC concentrations from 50 IMPROVE sites
decreased by more than 25 % on average from 1990 to 2004,
reflecting effective anthropogenic BC emission control in the
US.

It is useful to compare biomass burning BC emissions in
the WUS between the a priori, a posteriori, GFEDv3, and
FLAMBE. The total BC emissions for 2006, however, are
lower in GFEDv3 than in GFEDv2 (and the a priori emis-
sions) (van der Werf et al., 2010). Here we focus on July–
September 2006. The emissions are 8 % higher in GFEDv3
than in the a priori. These differences are largest in Au-
gust (20 %) and September 2006 (15 %). GFEDv3 emis-
sions are considerably lower than the a posteriori estimates
at 2◦

× 2.5◦ (by a factor of 4.4) and at 0.5◦
× 0.667◦ (by a
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Table 2.Monthly biomass burning BC emissions from three regions (see Fig. 1) and anthropogenic BC emissions in the western US for May–
October 2006 (unit: Gg). A priori and a posteriori biomass burning emissions from inversions at 2◦

× 2.5◦ and 0.5◦ × 0.667◦ are shown. Also
shown are the Global Fire Emissions Database version 3 (GFEDv3) and the Fire Locating and Monitoring of Burning Emissions (FLAMBE)
for comparison.

Source region Emissions BC Emissions (Gg), 2006

May Jun Jul Aug Sep Oct Jul–Sep total

BBRM A priori GFEDv2 0.13 0.19 0.93 1.26 0.82 0.17 3.01
A posteriori 1.72 1.62 7.83 7.60 5.77 1.55 21.20
(2◦

× 2.5◦) (0.22∗) (0.26) (0.69) (0.68) (0.46) (0.24) (1.82)
A posteriori 2.23 2.20 5.99 4.08 4.23 1.55 14.30
(0.5◦ × 0.667◦) (0.23) (0.30) (0.56) (0.42) (0.38) (0.21) (1.36)
GFEDv3 0.00 0.12 0.61 1.47 0.73 0.05 2.81
FLAMBE 0.47 0.82 4.73 5.96 3.86 0.21 14.55

BBCSW A priori GFEDv2 0.14 0.49 0.60 0.48 0.99 0.26 2.07
A posteriori 2.11 1.38 2.63 1.41 4.84 3.44 8.88
(2◦

× 2.5◦) (0.33) (0.35) (0.42) (0.25) (0.55) (0.40) (1.23)
A posteriori 1.95 2.14 0.26 0.08 1.17 1.50 1.51
(0.5◦ × 0.667◦) (0.27) (0.33) (0.12) (0.06) (0.23) (0.21) (0.41)
GFEDv3 0.02 0.30 0.49 0.48 1.31 0.11 2.28
FLAMBE 0.61 3.25 5.78 1.96 9.05 0.62 16.79

BBPNW A priori GFEDv2 0.09 0.02 0.23 0.98 0.46 0.19 1.67
A posteriori 1.16 0.19 0.55 0.89 0.21 0.70 1.65
(2◦

× 2.5◦) (0.20) (0.07) (0.19) (0.23) (0.14) (0.24) (0.56)
A posteriori 0.87 0.19 0.95 1.90 0.52 0.57 3.37
(0.5◦ × 0.667◦) (0.16) (0.07) (0.24) (0.30) (0.17) (0.26) (0.71)
GFEDv3 0.00 0.01 0.27 1.31 0.56 0.02 2.14
FLAMBE 0.26 0.28 2.35 3.97 2.40 0.29 8.72

BBWUS A priori GFEDv2 0.36 0.70 1.76 2.72 2.27 0.62 6.75
A posteriori 4.99 3.19 11.01 9.90 10.82 5.69 31.73
(2◦

× 2.5◦) (0.75) (0.68) (1.30) (1.16) (1.16) (0.88) (3.61)
A posteriori 5.05 4.53 7.20 6.06 5.92 3.62 19.18
(0.5◦ × 0.667◦) (0.66) (0.69) (0.92) (0.79) (0.77) (0.69) (2.48)
GFEDv3 0.02 0.43 1.37 3.26 2.60 0.18 7.23
FLAMBE 1.34 4.35 12.86 11.89 15.31 1.12 40.06

ANTHWUS A priori 6.13 5.98 5.85 5.82 5.92 6.15 17.59
A posteriori 3.39 3.26 2.79 2.81 3.47 3.11 9.07
(2◦

× 2.5◦) (0.36) (0.27) (0.33) (0.24) (0.36) (0.38) (0.94)
A posteriori 3.30 2.96 3.61 3.07 4.56 3.95 11.24
(0.5◦ × 0.667◦) (0.36) (0.26) (0.31) (0.24) (0.34) (0.35) (0.89)

∗ Uncertainties in parentheses.

factor of 2.7). The emissions are substantially higher (by a
factor of 6) in FLAMBE than in the a priori emissions. We
note that the a priori emissions have the same total emissions
as the original GFEDv2 emissions and are thus known to
underestimate biomass burning BC emissions in the WUS
(Randerson et al., 2012; Mao et al., 2011). The difference
between FLAMBE and the a posteriori emissions, however,
is substantially smaller. The emissions are 26 % higher in
FLAMBE than in the a posteriori at 2◦ × 2.5◦. The differ-
ence is a factor of two between FLAMBE and the a posteri-
ori at 0.5◦ × 0.667◦. Previous studies have indicated substan-
tial reductions to the FLAMBE inventory for Russia (53 %,
Wang et al., 2011) and for Southeast Asia (45 %, Fisher et
al., 2010).

6.2 Evaluation of the a posteriori estimates with
IMPROVE observations

Figure 9 shows model simulated and observed surface BC
concentrations for May–October 2006 at 10 sites in the
Rockies (a–d), the Pacific Northwest (e–g), and California
and the Southwest (h–j). Model results are from simulations
at 2◦

× 2.5◦ and 0.5◦ × 0.667◦ and with the a priori and the a
posteriori emissions. The a posteriori emissions significantly
improve model agreement with observations, not only at in-
dividual sites (Fig. 9) but also on average over each of the
aforementioned three regions (Fig. 10) and at four altitude
ranges (below 1, 1–2, 2–3, and above 3 km) (Fig. 11). The
improvements are most pronounced for July–September, the
strongest part of the fire season, reflecting the large increases
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Figure 9. Observed (red line) and simulated 24 h average surface
BC concentrations (µg m−3) at 10 IMPROVE sites in the Rocky
Mountains(a–d), in the Pacific Northwest(e–g), and in California
and the Southwest(h–j) for May–October 2006. Model results are
from simulations at 2◦ × 2.5◦ (solid line) and 0.5◦ × 0.667◦ (dotted
line) horizontal resolutions and with the a priori (black line; see
Figs. 2 and 3) and a posteriori (green line) emissions.

in biomass burning emissions in the a posteriori inventory
(Sect. 6.1 and Table 2). The improvements are especially
evident in the Rockies and to a lesser degree in the Pacific
Northwest (Fig. 10), a result of the large increases in the a
posteriori biomass burning emissions in these regions. Fig-
ure 9 shows that model results with the a posteriori emis-
sions now reproduce the observed synoptic variability in sur-
face BC and capture the major fire episodes, for example,
at Craters of the Moon, ID (43.5◦ N, 113.6◦ W, 1.82 km),
North Cheyenne, MT (45.7◦ N, 106.6◦ W, 1.28 km), Jarbidge
Wild, NV (41.9◦ N, 115.4◦ W, 1.87 km), Three Sisters, OR
(44.3◦ N, 122.0◦ W, 0.89 km), Starkey, OR, and Indian Gar-
dens, AZ (36.1◦ N, 112.1◦ W, 1.17 km). The a posteriori
emissions lead to mean bias reductions of 32 % at 2◦

× 2.5◦

and 13 % at 0.5◦ × 0.667◦ for May–October (Fig. 6). The
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Figure 10. Observed (red line) and simulated 24 h average sur-
face BC concentrations (µg m−3) averaged at IMPROVE sites in
the Rockies (top left panel, 31 sites), in California and the South-
west (top right panel, 28 sites), and in the Pacific Northwest (bot-
tom panel, 10 sites) for May–October 2006. Model results are from
simulations at 2◦ × 2.5◦ (solid line) and 0.5◦ × 0.667◦ (dotted line)
horizontal resolutions and with the a priori (black line; see Figs. 2
and 3) and a posteriori (green line) emissions.

bias reduction is∼ 30 % on average in the simulated surface
BC concentrations at the 1–2 km altitude range.

Figure 12 presents the Taylor diagram (and skill scores)
of our model results and the observations. The diagram pro-
vides a (visual) measure of model accuracy in comparison
with observations. It relates the centered root mean square
error (RMSE), the pattern correlation and the standard devi-
ation of observations and model results (Taylor, 2001). Sim-
ulated fields are located in the first quadrant if the correlation
with the reference data is positive (Gleckler et al., 2008).
The Taylor skill score (ranges from 0 to 1) is a quantita-
tive measure of model accuracy. It increases as the correla-
tion becomes larger or as the modeled variance approaches
the observed variance. Figure 12 shows that the a posteriori
emissions increase both the average correlation coefficient
(∼ 37 % increase at both model resolutions) and the average
model standard deviations (45 % increase at 2◦

× 2.5◦ and
26 % at 0.5◦ × 0.667◦), lower the centered RMSE, and in-
crease the Taylor skill scores on average by 95 % at 2◦

× 2.5◦

and by 42 % at 0.5◦ × 0.667◦.
To investigate the robustness of our inversion results, we

set aside 10 (random) IMPROVE sites and use the remaining
59 sites for our inversions. The measurements from those 10
sites are then used as independent observations for evaluating
the inversions. We find that the resulting a posteriori emis-
sions (using the aforementioned 59 sites) lead to substan-
tial reductions (∼ 30 % reduction at 2◦ × 2.5◦ and∼ 10 % at
0.5◦

× 0.667◦) in the mean bias of simulated surface BC con-
centrations averaged for the 10 sites that are not used in the
inversions. The a posteriori BC emissions are essentially un-
changed (within 8 % at 2◦ × 2.5◦ and 5 % at 0.5◦ × 0.667◦)
compared with the a posteriori emissions with 69 sites. In
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Figure 11. Same as Fig. 5, but for simulations at 2◦
× 2.5◦ (solid

line) and 0.5◦ × 0.667◦ (dotted line) horizontal resolutions and with
the a priori (black line; see Figs. 2 and 3) and a posteriori (green
line) emissions.

addition, the differences in the simulated surface BC con-
centrations averaged at those 10 sites are rather small (< 7 %
at 2◦

× 2.5◦ and < 4 % at 0.5◦ × 0.667◦) between the two sets
(one with 59 sites and the other with 69 sites) of a posteriori
BC emissions (Supplement Fig. S1).

6.3 Sensitivity to model resolution

In this section, we compare and contrast the a posteriori
emissions and the resulting model surface BC concentra-
tions at both 2◦ × 2.5◦ and 0.5◦ × 0.667◦ resolutions. GEOS-
Chem simulations of surface BC with the a priori and a pos-
teriori emissions are very sensitive to the model horizon-
tal resolution. The 0.5◦ × 0.667◦ resolution generally pro-
vides better results (compared with the observations) than
the 2◦ × 2.5◦ resolution does. This is expected because the
finer resolution allows for better resolved topography, mete-
orological fields, transport and emissions, and therefore pro-
vides better agreement with observations, as shown in pre-
vious modeling studies (e.g., Zhang et al., 2012; Chen et
al., 2009; Wang et al., 2004). The surface BC simulations at
0.5◦

× 0.667◦ with the a priori emissions show better agree-
ment with the observations compared with those at 2◦

× 2.5◦,
as evident in both a lower (by 44 % on average, Fig. 6) model
bias and a higher (by 71 %, Fig. 13) Taylor skill score. In-
versions at 0.5◦ × 0.667◦ also lead to larger reductions in
the uncertainties of emissions, larger values of DOFs, and
higher-resolution averaging kernels, compared with those at
2◦

× 2.5◦. The resulting simulated surface BC concentrations
at 0.5◦ × 0.667◦ show improved agreement with observa-
tions, too. The mean biases of the simulated surface BC con-
centrations are 29 % lower at 0.5◦

× 0.667◦ than at 2◦ × 2.5◦

(Fig. 6) and the corresponding Taylor skill score is higher by
24 % on average (Fig. 13).

The difference in the two a posteriori biomass burning
emissions (at the two resolutions) is most evident from July
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Figure 12. Taylor diagram and Taylor scores for simulations at
2◦

× 2.5◦ (solid circle) and 0.5◦ × 0.667◦ (open circle) horizontal
resolutions and with the standard (blue circle), the adjusted (red cir-
cle; see Figs. 2 and 3) and a posteriori (green circle) emissions for
May–October 2006. Values are averages for the 69 IMPROVE sites
in the western US (Fig. 1).

through September 2006. The a posteriori biomass burning
emissions are substantially higher (by 65 % in the WUS,
48 % in the RM, and nearly a factor of six in the CSW; Ta-
ble 2) at 2◦ × 2.5◦ than at 0.5◦ × 0.667◦. In contrast, the re-
sulting surface BC concentrations averaged at the IMPROVE
sites are higher at the finer resolution and in better agreement
with the observations. The larger discrepancies between the
coarser-resolution model results and the observations to a
large degree reflect the considerably larger smearing out (“di-
lution”) of emissions at the coarse resolution than at the
nested finer resolution (Chen et al., 2009). Consequently,
these larger discrepancies (for the coarser-resolution model
results) dictate that the inversion system, which seeks to min-
imize the very differences, imposes larger emissions at the
coarser resolution than at the finer resolution.

7 Summary and conclusions

We have applied Bayesian linear inversions to derive top-
down estimates of biomass burning and anthropogenic emis-
sions of BC in the WUS for May–October 2006 by invert-
ing surface BC concentrations from the IMPROVE network.
We conducted analytical inversions using the GEOS-Chem
chemical transport model at both 2◦

× 2.5◦ and 0.5◦ × 0.667◦

(nested over North America) horizontal resolutions. Model
simulated surface BC concentrations with both the a priori
and the a posteriori emissions were compared with observa-
tions.

We first used MODIS active fire counts to improve the
spatiotemporal distributions of the GFEDv2 biomass burn-
ing emissions of BC. The adjustment primarily shifted emis-
sions from late to middle and early summer (a 33 % de-
crease in September-October and a 56 % increase in June–
August) and led to significant enhancements in model simu-
lated surface BC concentrations in early and middle summer,
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particularly evident at the 1–2 and 2–3 km altitude ranges
and at 0.5◦ × 0.667◦. The adjustment also reduced the me-
dian model bias by 64 % at 0.5◦

× 0.667◦ but had little to no
effect on the model bias at 2◦

× 2.5◦. The resulting emissions
were then used as the a priori for the inversions.

The examination of the averaging kernels and DOFs at
both 2◦ × 2.5◦ and 0.5◦ × 0.667◦ indicated that the inversion
system had sufficient information to uniquely constrain the
four elements of the state vector and our retrievals were re-
liable with specified errors, especially for July–September
2006. The inversions led to large reductions in cost func-
tions (42 % at 2◦ × 2.5◦ and 38 % at 0.5◦ × 0.667◦) and the
uncertainties of the emissions (> 50 %). An a priori biomass
burning emissions error of 500 % and a total observation er-
ror of 30 % provided the best overall inversion results, with
larger reductions in uncertainties, larger values of DOFs, and
better-resolved averaging kernels.

The a posteriori biomass burning BC emissions for July–
September are 31.7 Gg at 2◦

× 2.5◦ (an increase by a factor
of 4.7) and 19.2 Gg at 0.5◦ × 0.667◦ (an increase by a factor
of 2.8), relative to the a priori. The corresponding a posteri-
ori anthropogenic BC emissions were 9.1 Gg at 2◦

× 2.5◦ (a
decrease of 48 %) and 11.2 Gg at 0.5◦

× 0.667◦ (a decrease
of 36 %). The GFEDv3 BC emissions were higher than the
a priori estimates (8 %) and lower than the a posteriori esti-
mates (by factors of 4.4 at 2◦

× 2.5◦ and 2.7 at 0.5◦ × 0.667◦)
in the WUS for July–September 2006. FLAMBE emissions
were higher than the a priori emissions (by a factor of 5.9)
and similar to the a posteriori emissions (factors of 1.3 at
2◦

× 2.5◦ and 2.1 at 0.5◦ × 0.667◦) in the WUS during July
to September 2006. Model surface BC concentrations with
the a posteriori emissions captured the major fire episodes
at many IMPROVE sites, especially at the 1–2 and 2–3 km
altitude ranges. The a posteriori estimates significantly im-
proved the model agreement with observations, especially at
0.5◦

× 0.667◦, in the Rockies, and for July–September. The a
posteriori emissions substantially reduced the bias of the sim-
ulated surface BC concentrations (∼ 30 % on average) and
increased the resulting Taylor skill scores (95 % at 2◦

× 2.5◦

and 42 % at 0.5◦ × 0.667◦).
The inversion results are rather sensitive to the model hor-

izontal resolution. The a posteriori biomass burning emis-
sions showed large regional and month-to-month differences
between the two model resolutions. The biomass burning
emissions were generally lower at 0.5◦

× 0.667◦ than at
2◦

× 2.5◦. The large differences in the two a posteriori emis-
sions suggested that the inversion system likely imposed
larger emissions at the coarser resolution than at the finer
resolution to minimize the larger differences between the
coarser-resolution model results and the observations, be-
cause of the larger smearing out of emissions at the coarse
resolution.

The Supplement related to this article is available online
at doi:10.5194/acp-14-7195-2014-supplement.
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