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Abstract. Fire emissions estimates have long been based oapplications. Results of the analysis of FEER.v1 data for
bottom-up approaches that are not only complex, but als®004-2011 show that 65—-85 Tgyrof TPM is emitted glob-
fraught with compounding uncertainties. We present the deally from open biomass burning, with a generally decreasing
velopment of a global gridded {X& 1°) emission coeffi- trend over this short time period. The FEER @4 product
cients (Ce) product for smoke total particulate matter (TPM) is the first global gridded product in the family of “emission
based on a top-down approach using coincident measurdactors”, that is based essentially on satellite measurements,
ments of fire radiative power (FRP) and aerosol optical thick-and requires only direct satellite FRP measurements of an
ness (AOT) from the Moderate-resolution Imaging Spectro-actively burning fire anywhere to evaluate its emission rate
radiometer (MODIS) sensors aboard the Terra and Aquan near-real time, which is essential for operational activities,
satellites. This new Fire Energetics and Emissions Researcbuch as the monitoring and forecasting of smoke emission
version 1.0 (FEER.v1Y, product has now been released impacts on air quality.

to the community and can be obtained fréwtp://feer.gsfc.

nasa.gov/along with the corresponding 1-to-1 mapping of

their quality assurance (QA) flags that will enable ¢heval-

ues to be filtered by quality for use in various applications.1 Introduction

The regional averages af. values for different ecosys-

tem types were found to be in the ranges of 16-21gMJ Smoke emitted from biomass burning is composed of a wide
for savanna and grasslands, 15-32 gifor tropical for- variety of particle and trace gas species that can influence
est, 9-12 g M3 for North American boreal forest, and 18— air quality, weather, and climate variability in a significant
26gMJ ! for Russian boreal forest, croplands and natu-Way (e.g., Crutzen and Andreae, 1990; Andreae and Merlet,
ral vegetation. The FEER.v@, product was multiplied by 2001; Randerson et al., 2006; Schultz et al., 2008). Among
time-integrated FRP data to calculate regional smoke TPMPther sources of important atmospheric constituents (natu-
emissions, which were compared with equivalent emissiond@l and anthropogenic), open-air biomass burning is one of
products from three existing inventories. FEER.v1 showedthe largest contributors of both gaseous and particulate emis-
higher and more reasonable smoke TPM estimates than twdions to the atmosphere, and is estimated to be responsible
other emissions inventories that are based on bottom-up agor 34-38% and 40 % of the global loadings of total car-
proaches and already reported in the literature to be too lowPonaceous aerosols and black carbon (BC), respectively, as
but portrayed an overall reasonable agreement with anotheiell as 25% of the total global carbon dioxide (€)0n-
top-down approach. This suggests that top-down approached€ases since pre-industrial times (e.g., Forster et al., 2007).
may hold better promise and need to be further developed his is because open biomass burning occurs in most vege-
to accelerate the reduction of uncertainty associated with firdated parts of the world annually, in the form of natural or

emissions estimation in air-quality and climate research andnan-made burning of forests, savannas, peat lands, agricul-
tural residues, and other ecosystem types. It is recognized
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that an accurate understanding of smoke impacts can only bsion factors (EFs) of different smoke constituents derived
accomplished through accurate estimates of fire emissionfom laboratory or field experiments to obtain the smoke
(e.g., Langmann et al., 2009). Therefore, researchers havemissions of these constituents (e.g., Chin et al., 2002, Ito
invested considerable effort over the last several decades tand Penner, 2004; Hoelzemann et al., 2004, Liousse et al.,
estimate smoke emissions at different spatial and tempora2004; Michel et al., 2005; van der Werf et al., 2006, 2010;
scales from various types of biomes. Before the advent ofGeneroso et al., 2007). Examples of such inventories that are
satellite remote sensing, smoke emissions were estimatecurrently being used by the community include GFED (van
through small-scale biomass burning experiments, modelingder Werf et al., 2006, 2010), GFAS (Kaiser et al., 2012),
or by approximation based on proxy data such as populatiofrLAMBE (Reid et al., 2009), FINN (Weidinmyer et al.,
or cultural practices (e.g., Seiler and Crutzen, 1980; Hao an@011), and GBBEP-Geo (Zhang et al., 2012). Recent re-
Liu, 1994; Liousse et al., 1996). The satellite era has broughsearch findings suggest that such bottom-up approaches lead
significant improvement in biomass burning characterizationto severe underestimations particularly of smoke aerosols un-
and emissions estimation (e.g., Dozier, 1981; Prins and Menless bias correction is applied through modeling (e.g., Li-
zel, 1992; Justice et al., 1993, 2002; Cahoon et al., 1994pusse et al., 2010; Kaiser et al., 2012). Top-down approaches
Kaufman et al., 1998; Giglio et al., 2003, 2008; Wooster etare starting to be investigated for deriving biomass-burning
al., 2003, 2005; Ito and Penner, 2004; Ichoku and Kaufmangmissions, sometimes in conjunction with model assimila-
2005; Ichoku et al., 2008, 2012; Schroeder et al., 2005, 2014tion (e.g., Sofiev et al., 2009; Kaiser et al., 2012; Darmenov
van der Werf et al., 2006, 2010; Giglio, 2007; Roberts andand da Silva, 2013). Although biomass burning emits several
Wooster, 2008; Zhang et al., 2008; Reid et al., 2009; Vermotalozens of particulate and gaseous species (e.g., Andreae and
et al., 2009; Kaiser et al., 2012). Merlet, 2001; Akagi et al., 2011), this study is specifically
Despite the considerable advancement achieved in satefocused on smoke aerosol or total particulate matter (TPM)
lite remote sensing and atmospheric modeling during the lasémissions.
couple of decades, there still remains a large uncertainty in This paper presents the development of the first gridded
the overall atmospheric impacts of aerosols and certain shortglobal top-down biomass burning aerosol emission coeffi-
lived trace gases, particularly those originating from biomasscients product that is based strictly on locally collocated
burning such as BC and carbon monoxide (CO) (e.g., Urbansatellite measurements of both fire radiative power (FRP)
ski et al., 2011; Yurganov et al., 2011; Ichoku et al. 2012; and aerosol optical thickness (AOT). The original idea and
Bond et al., 2013). A major part of the uncertainty stemsan initial algorithm were developed in Ichoku and Kauf-
from the fact that their emission from fires are still very man (2005) in which FRP and AOT retrieved from the
poorly constrained mainly due to the rather sporadic andVioderate-resolution Imaging Spectro-radiometer (MODIS)
transient character of biomass burning, which makes it diffi-sensor aboard the NASA Terra and Aqua satellites were uti-
cult to characterize experimentally (e.g., Forster et al., 2007lized together with wind vectors from the National Cen-
Yokelson et al., 2011). This can be contrasted, for instanceter for Environmental Prediction/National Center for Atmo-
with emissions from industries and fossil-fuel burning, which spheric Research (NCEP/NCAR) meteorological reanalysis
can be quantified in a fairly straightforward manner, as thedata to generate smoke-aerosol emission coefficigrtsn(
sources are generally stable and relatively easy to charactekg MJ~1) for several biomass burning regions. Such top-
ize. For instance, the global total fossil-fuel €@missions  down emission coefficients are found to be useful, as simply
are accurate to within 10% at a 95% confidence intervalmultiplying Ce by the satellite-retrieved FRP of a fire gives
(e.g., Andres et al., 2012), whereas the uncertainty associthe corresponding instantaneous TPM emission rate for that
ated with biomass burning G@missions is still not quantifi-  fire. Likewise, in the case of consistent and frequent fire ob-
able because of lack of sufficient information (e.g., Andreaeservations such as from a geostationary platform, multiply-
and Merlet, 2001), although one could infer that it would be ing Ce by the time-integrated FRP (or fire radiative energy,
as much as 100 % considering the propagation of uncertainFRE) gives the TPM emission for that time interval. This
ties from the various parameters that influence the emission€e x FRP (orCe x FRE) emissions estimation approach and
estimates (van der Werf et al., 2010). Similar uncertainty ra-variants of it have been subsequently developed and imple-
tios exist for other types of particulate and gaseous emissionmented successfully in various regional studies (e.g., Jor-
from various source types (biogenic, industrial, volcanic) asdan et al., 2008; Henderson et al., 2008, 2010; Sofiev et al.,
compared to biomass burning (e.g., Diehl et al., 2012; Bond2009; Vermote et al., 2009). However, the original Ichoku
etal., 2013; Carslaw et al., 2013). and Kaufman (2005) algorithm has been substantially en-
Many of the currently available biomass burning emis- hanced and used to generate a gridded gl@kaproduct
sions inventories and other related products, including thoseising an updated algorithm and newer versions of FRP and
derived from satellite data, are based on bottom-up ap-AOT data from MODIS as well as wind vectors from the
proaches, whereby estimates of burned biomass are derivddodern Era Retrospective-Analysis for Research and Appli-
from satellite-retrieved fire pixel counts, burned areas, and/ocations (MERRA) data sets (Rienecker et al., 2011) provided
fire radiative power (FRP), and are then multiplied by emis-by the NASA Goddard Global Modeling and Assimilation
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Office (GMAQ). The newly generated griddéd data prod-  set up, and the retrieved FRP and AOT were used to derive
ucts are available at the NASA Fire Energetics and Emis-Ce for smoke aerosols (Ichoku et al., 2008b).

sions Research (FEER) web sitattp://feer.gsfc.nasa.ggv/ Equations (1) and (2) are functionally very similar, and re-
together with MODIS FRP data and links to other relevantlating the two would suggest that there is a linear relationship
satellite FRP data. betweenMpiomassand FRE. Indeed, a series of field experi-

Section 2 provides the background and theoretical basisnents showed that FRE is proportionaM@jomasdin a linear
of the approach. Section 3 describes the characteristics dashion, such thapiomass= 0.368(+0.015- FRE, in which
the various input data (FRP, AOT, winds) used to calculatethe numeric coefficient (0.368 kg M3) is designated as the
Ce. Section 4 gives the full details of the updated method-biomass consumption factoF{) (Wooster et al., 2005). The
ology for derivingCe and the associated uncertainty analy- Wooster et al. (2005) study indicated that the same relation-
ses. Section 5 presents the use of the griddgdroduct to  ship is expected to hold for satellite observations when total
estimate smoke particulate emissions over different regionbiomass consumetpiomassis substituted with the rate of
and comparisons with similar emission products, namely,biomass consumption and FRE wiltye. That relationship
the Global Fire Emissions Database version 3.1 (GFED.v3has also been verified in laboratory experiments (Freeborn
van der Werf et al., 2006, 2010), the Global Fire Assimila- et al., 2008; Ichoku et al., 2008b), and has been applied in
tion System version 1.0 (GFAS.v1: Kaiser et al., 2012), andthe estimation oMpjomassover Africa using FRE derived by
the Quick Fire Emission Dataset version 2.4 (QFED.v2: vanintegratingRsre measurements from the Spinning Enhanced
Donkelaar et aJ 2011; Darmenov and da Silva, 2013). Fi- Visible and Infrared Imager (SEVIRI) aboard the Meteosat
nally, Sect. 6 provides a summary and relevant concludingsecond generation (MSG) series of European geostationary
statements. meteorological satellites (Roberts et al. 2005, 2011). Sim-
ilarly, as derived in Ichoku et al. (2008b), the mass-based
emission factor, Ef; in Eq. (1) is related to the FRE-based
2 Background and theoretical considerations emission coefficien€? for any given fire-emitted specias

as
Traditionally, the amount of a given aerosol or trace-gas
spec_ies. emitted from open bilomass burning is derived_bya:X = Cé/Fc, 3)
multiplying that species’ emission factor (in grams of species _ . _ . .
per kilogram of dry matter burned) by the mass of biomasswhere F¢ is the biomass consumption factdrcj defined in
burned. The basic equation is of the form (e.g., Andreae andVooster et al. (2005).

Merlet, 2001): This ability to relate the satellite-measured fire radiant
heat release rat®se and the top-down derived emission
My = EF - Mpiomass Q) coefficientCe to physical quantities of combusted biomass

Mpiomassand its associated bottom-up smoke emission factor
whereMy is the mass of emitted smoke specie&F is the EF, respectively, is a major motivation buttressing the study
emission factor for the emitted specigsandMpiomassis the  described in this paper. Currently, only a few generalized val-

mass of the dry biomass burned. ues of Ek are available for certain ecosystem types, which
A similar relationship to Eg. (1) was established by Ichoku is highly limiting given that Ek is likely to vary by location
and Kaufman (2005) in which EFis replaced withCg, in the same manner as fuel characteristics, even within the

which is designated as the emission coefficient (for any giversame ecosystem type. Therefore, by using satellite-measured
species:), andMpjomassiS replaced with either FRE oritsre- Ry and smoke aerosols to deri& globally as a gridded

lease rateRe (i.e., FRP). Thus, product based on the developed top-down approach, it is not
only possible to compare these results with those based on
My =Cg -FRE bottom-up approaches, but it can even lead to the develop-
ment of a gridded Efproduct that would offer a much finer
or spatial coverage and resolution than do the current products.
Rx = Cg . Rfre, (2)
3 Data

where Ry is the rate of emission of specias(expressed

in kgs™1) since Rye is the FRE release rate expressed in The main data products used in generating the gridded
MJsL, or MW. C3 is therefore expressed in kg MY The  are satellite measurements of FRP and AOT, as well as as-
validity of the relationship in Eq. (2) has been verified in similated wind fields from MERRA. Both the FRP and AOT

a laboratory experiment, where satellite measurements oproducts used in this work are derived from the MODIS sen-
fire energetics and smoke were replicated by burning smalkors aboard the (1) Terra satellite launched in 1999 with local
biomass fuel samples in a burn chamber equipped with a giequator crossing times of 10:30a.m. and 10:30 p.m., and (2)
ant smoke stack upon which the relevant instruments weréqua satellite launched in 2002 with local equator crossing
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times of 1:30 p.m. and 1:30a.m. The analysis in this paper idand where fires normally occur, although this makes it dif-
based on data covering the period between 2003 and 201@icult to get a sufficient amount of retrievals for fires oc-
inclusive. The specific attributes of these products, such asurring very close to coastlines. Specifically, we use AOT
their spatial and temporal resolutions, versions, and uncermeasurements at 550 nm wavelength, as this falls within the
tainties are discussed in the following sub-sections. It shouldmid-visible or green region of the electromagnetic spectrum,
be noted that MODIS data versions are essentially referredvhich is the most commonly used wavelength region in
to as data “collections”, a terminology that will be used aerosol radiation studies. Unlike the FRP data, MODIS AOT

throughout this paper. data have been extensively characterized and validated using
) o ground-based sun-photometer measurements from the global
3.1 Fire radiative power Aerosol Robotic Network (AERONET, e.g., Holben et al.,

. i . 1998, 2001). However, as with the fire product, the collection
Active fire observation products from .MODIS on Tgrra 5 MODIS Level 2 Aerosol Produchftp://modis-atmos.gsfc.
(MOD14) and Aqua (MYD14) are provided at a nominal .5 40/c005_Changes/C005_Aerosol_5.2.pefs used
spatial resolution oflkm'at nadlr(Justlcg etal., 2002; G|g||oin this study instead of the collection 4 that was used in
etal., 2003). FRP (aRfre) is one of the main parameters pro- Ichoku and Kaufman (2005). Detailed analyses of the effects

vided within these products for every fire pixel detected. The ¢ yig change in AOT data version and other factors on the
original formulation for derivation ofkse Was developed in computedCe results are presented in Sect. 4.6

Kaufman et al. (1998, p. 32226, Eq. (1)) as

Rire = 4.34x 10719. (Tf _ be’) (@) 3.3 Wind vectors
The wind vectors used for this study were extracted from

where Ry is the pixel fire radiative power (in Wnf), T4 ) ; s
MERRA's inst3_3d_asm_Cp product provided at a spatial

is the fire pixel brightness temperature (in K) at the 4 um

channel (3.96 um for MODIS), arfy, is the 4 um brightness resolution of 1.25x 1:25° and a temporal .resolut.ion of
temperature of the background surrounding the fire pixel. S 1- The documentation for that product is available at

Equation (3) was used to derive FRP values from MOD'S_http://disc.sci.gsfc.nasa.gov/mdisc/data—holdings/merra/

up to the collection 4 data set released in 2004. Those collecd!'St3_3d_asm_Cp.shtmivind data at pressure levels of

tion 4 data were used for the Ichoku and Kaufman (2005)92°: 850, and 700mb, roughly corresponding to heights
study. Starting from collection 5, the right hand side of 2P0ve mean sea level (a.s.l) of 750m, 1.5km, and 3km,

Eq. (3) was multiplied by the area of each pixel to account forrespec'tively, were extracted and gse'd for spatial aerosol data
the variation of ground pixel size with MODIS scan angle, re- analysis to derive sr_noke TPM emission rates. However, after
sulting in units of MW forRge (Giglio, 2010). The collection ~ the analyses, the wind data at 850 mb (roughly 1.5km a.s.l.)

5 FRP data set, which is the latest data version available at th€T€ used to generate the final product as described in
time of this study, has been used for the calculations reportecEeCt' 4 and in Ichoku and Kaufman (2005), *?ecause most
here. The potential effects that this change in FRP values hal'®S observable from satellite at .~1 km.s.patlal resolution
on computed_e is analyzed in Sect. 4.6. However, it is note- " 'dlfferent parts of the world typically inject plumes t(.)
worthy that FRP retrievals from MODIS have not yet been N€ights of about 1.5+1.0 km above ground level (a.g.1.), with
validated, even though the uncertainty associated with thdN€ exception of very large fires (e.g., Lavoué et al., 2000;
detection of fire locations has been characterized using ﬁré:renas et al., 2006; Kahn et al., 2007; Val Martin et al.,
detections at 30 m nominal spatial resolution from the En-2012; Yang et al., 2013).

hanced Thematic Mapper Plus (ETM sensor aboard the

Landsat-7 satellite and the Advanced Spaceborne Therma-4 Other data

Emission and Reflection Radiometer (ASTER) aboard Terra
(e.g., Morisette et al., 2005a, b; Schroeder et al., 2008a, b). S€Veral other data types, products, and parameters were used
in this study. The global average aerosol mass extinction ef-

3.2 Aerosol optical thickness ficiency value of8e = 4.6 n g~ that was used in Ichoku and
Kaufman (2005), based on the work of Reid et al. (2005), has
The AOT () data used for this study were also re- also been used in the current work. Coincident digital eleva-
trieved from MODIS on Terra (MODO04_L2) and Aqua tion model (DEM) data and ecosystem data were obtained
(MYDO04_L2) at 10km spatial resolution at nadir. MODIS for each data point during processing for reference. DEM
measures AOT at 470, 550, 660, and 2100 nm wavelengthdata at 30 arcsec resolution (GTOPO3®ps://Ita.cr.usgs.
(») over land, and at 470, 550, 660, 870, 1200, 1600, andyov/GTOPO3Dare provided by the US Geological Surveys
2100 nm wavelengths over ocean (e.g., Remer et al., 200§USGS). We used the DEM data sets to determine the land-
2008; Ichoku et al., 2005; Levy et al., 2010). However, only surface elevation, land—sea mask, slope, and aspect. Ecosys-
the AOT data retrieved over land are used in this studytem data used in this work are from the 1 arcmin resolution
since smoke from biomass burning can only be emitted oveglobal ecosystem map of 2004 derived from MODIg:
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//modis-atmos.gsfc.nasa.gov/ECOSYSTEMSIng the In-

ternational Geosphere/Biosphere Program (IGBP) classifica- (pﬁ(%ﬁogga
tion scheme. Digitized smoke plume data from the Multi- AOT) ‘

angle Imaging Spetro-Radiometer (MISR) INteractive eX-
plorer (MINX) tool (Nelson et al., 2008, 2013) were used
to evaluate the relationship between the wind direction from

Yy

MERRA and the actual plume direction as observed on the %
MODIS imagery. v L4
o @ -7
4 Methodology @ Be
The basic methodology for deriving the smoke-aerosol emis- 8 <J
sion coefficientLe from satellite measurements Bfe and
74, Was developed in Ichoku and Kaufman (2005). However, > g
although the basic structure and processing sequence of th Fire
original algorithm have been maintained, several adjustments (jocation,~->/ 5 11 (_é
and updates were required, in terms of both the algorithm and = FRP) v v
input data, in order to generate the gridded products reportec Legend
in this paper. % * MODIS product
() MERRA product
4.1 Algorithm logic for Ce calculation 12 13 @ FEER product

External parameter
@ Derived parameter

The logic progression within the algorithm to calculéigis Equation number

generally similar to that described in Ichoku and Kaufman
(2005) in that the first stage of the algorithm is completed Variable Units  Description
on a 10 km resolution aerosol-pixel level, followed by a sec- WS m/s Wind speed

ond stage where these units are aggregated within larger ar ] deg Wind azimuth
eas (2 x 1° regular grid in the present case), and then ending L km Plume length to pixel edge
with the actual calculation afe. The core of the algorithm is T s Plume time to pixel edge
outlined in this section and visualized in Fig. 1. The specific T, - AQT of downwind pixels
details of the three analysis stages, including the main adjust: T, - AOT of background pixels
ments and updates applied in the current study, are describe: T - AQT of plume
in Sects. 4.2, 4.3, and 4.4. Be m?/g Mass extinction efficiency
The first stage of the algorithm is designed to generate val- My g/m?  Smoke-aerosol column mass density
ues of Rye and Rsa (the smoke-aerosol emission rate) for A km? Total area of the downwind pixels
each aerosol pixel with detected fire(s). Fitting the MODIS Mg, kg Mass of smoke aerosol

1 km resolution active fire data into the corresponding 10 km R, kg/s Rate of smoke aerosol emission
resolution aerosol-pixel data is very straightforward because  Rpe — MW Rate of radiative energy release

both data sets originate from the same instrument on the same

platform and from the same original data product. Therefore Figure 1. Flowchart of the core algorithm for deriving FEER.v1

the Ry for a given aerosol pixel is derived as emission coefficientd(e) of smoke total particulate matter (TPM),
as outlined in Sect. 4.1, showing only the relevant input and output

N variables/parameters and their associated equation numbers. This
Rire = Z FRP, (5) does not include the various sensitivity studies, data selection, re-
= finement, and filtration processes, as well as the post-processing

gap-filling and evaluation steps that are described in the rest of
where FRP is the fire radiative power measurement of indi-Sect. 4.
vidual active fire pixels, and/s is the total number of active
fire detections within a given aerosol pixel.

Derivation of Rg3 is less straightforward and involves cal- on the wind direction, and the four pixels therein are as-
culations utilizing AOT and wind vectors in ax33 aerosol  sumed to contain parts of the plume, whereas the remain-
matrix centered on the fire-affected aerosol pixel, as depictedhg five pixels are the background. The zongl &nd merid-
in Fig. 2. Since the plume can easily influence neighbor-ional (v) components of the wind vector at the 850 mb atmo-
ing pixels, the 3« 3 matrix is split into four quadrants, one spheric pressure level are used to calculate the wind speed
of which is deemed to be the “downwind quadrant” based(WS= vu2+v2) and azimuth { =cos™*[v/WS]). The
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whose r;550 appropriately exceeds§550 This fire-emitted
AOT (1;55& is converted to smoke-aerosol column mass den-
sity (Mg ingm~2) as

f
Mg = Tas50/ g, 8

wherege (expressed in fig1) is the smoke aerosol specific
extinction or mass extinction efficiency derived from Reid et
al. (2005). Using the total area of the four downwind pixels,
Ar, the mass of smoke-aerosol emission is then calculated

by
Msa= My - At. (9)

Determining the smoke-aerosol emission r&g requires
knowledge of how much timef}, it must have taken to emit
M,. For a given plumeT is assumed to be the time it would
Figure 2. Spatial configuration of a 8 3 aerosol-pixel matrix lay-  take for the wind to clear all smoke aerosol from the down-
out, whose central pixel contains fires, showing the four downwindwind quadrant within the % 3 aerosol-pixel matrix, and is
pixels (shaded red, quadrant IV) classified as having smoke, and thestimated as

five remaining upwind pixels (shaded blue) constituting the back-

ground. The downwind quadrant is determined by the wind direc-T = L/WSv (20)

tion. The pixel indices (0—8) shown in their bottom left-hand cor- o
ners are defined by their scanning configuration, signified here byvhereL represents the length of the plume within the 3

the directions of line and sample coordinates. The sample directior@€rosol-pixel matrix. In the case where there are multiple ac-
is along-scan and the line direction is along-track. (The backgroundive fire detections within one aerosol pixel, the plume dis-
image taken by Aqua/MODIS at 20:45UTC on 1 July 2012 showstances are averaged to yield one valuelfoFinally, the rate

the Fontenelle Fire in Wyoming, USA.) of smoke-aerosol emission is estimated as

Rsa= Msa/T, (11)
azimuth is compared with the MODIS along-track direction ] ] )
to determine the downwind quadrant in which the plume is WhereRsais expressed in kgs. Thus, paired values dtfe

located (see Fig. 2). The AOT that is attributable to the fire(s)2"d Rsaare calculated for each fire-containing aerosol pixel
within the central aerosol pixel can be determined as and collected into a “pixel-level” product, which is used in
the second stage to generate similar measurements at larger

(6) scales.

The second stage of the algorithm involves aggregating the
where the superscripts f, t, and b, respectively, designate thpixel-level calculations ofRfe and Rsa to determine corre-
fire-emitted, total, and background AOT at 550 nm wave-sponding values for larger areas or regions at each MODIS
length. The background AOT value\,ff550 is calculated as overpass event. Since it is the aim of this study to render the
the mean of the valid background AOT values (shown in blueFEER.v1Ce product in a 1 x 1° — grid configuration, corre-
in Fig. 2), weighted by aerosol-pixel area. The fire-emitted sponding pixel-leveRse and Rsa values within eachLx 1°
AOT, !, is found by subtracting this mearf.,value  grid cell are aggregated as

foo_t b
Ta550= Ta550 " Ta550

from 15550 of each aerosol pixel in the downwind quadrant Rew — Ri 12
(plume direction). Individuak{:, values that are negative "~ Zi fre (12)
are set to zero. Subsequently, an area-weighted aveEE%e and,
value is calculated from the downwind aerosol pixels to rep- )
resent the unit plume being analyzed. Thus, Rsa=) . Ri, (13)
Nas Details of the implementation of this stage, including its
3 (TetISSQi — 15550) A; unigue sensitivity analyses and data filtering processes, are
T;550= i=1 ’ @) described in Sect. 4.3. The output is the “grid-level” data set
Zj.vlej to be used for the third and final stage during whichis
actually derived.
whereA is the aerosol-pixel ared/; is the number of valid The procedure to deriv€e is to generate a scatter plot

aerosol retrievals in the downwind quadrant, awd is the for each 2 x 1° grid cell using theRse and Rsa data calcu-
number of valid aerosol retrievals in the downwind quadrantlated in the second stage for a specified time domain (in our
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Figure 3. Scatter plots of smoke emission rafs§) against fire radiative power (FRP &%) derived from both Terra and Aqua MODIS
observations during the period 2003—2010 for°ax11° grid cell centered afa) 1.5° S, 15.5 E, and(b) 22.5° N, 115.8 E. The latter
demonstrates the effect of removing outliers in such scatter plots. The outlier is identified in red and the blue line is the linear least-squares
regression fit through the remaining points, which in this case result€ &value of 0.0747 and ar? value of 0.82. Thisis a greatincrease

over the case without the outlier removal process, whose regression line is shown in gray and has much lower valués @.0#8) and

level of confidencer = 0.16).

case 2003-2010), witlRsy on the dependent axis. A mini- responding MODIS AOT values were recorded along with
mum of six points is allowed for a scatter plot, as we con-wind directions from both MISR (observed) and MERRA
sider six to be a minimally reasonable number of data point§modeled). For each of the 240 surveyed plumes, visual clas-
for linear regression fitting. A zero-intercept regression line sifications were made with the help of the MISR fine (275 m)
(of the formy =mx, wherey = Rsaandx = Ryre) is fitted to spatial-resolution imagery to identify whichx33 matrices

the scatter plot for each grid cell (Fig. 3). The gradienis of MODIS aerosol pixels contained: plumes, clouds, haze, or
the coefficient of emissio@e and the goodness of fitis eval- fires. Of the cases analyzed, 64 % had detected fires in the
uated on the basis of the coefficient of determinatio?),(  surrounding pixels and 61 % had background smoke or haze.
as will be described in Sect. 4.4. Hence, for grid cells with These proportions can be quite different in other regions be-
good fits,Rse only needs to be multiplied b§c to derive the  cause fire density and smoke dispersion characteristics vary
smoke emission rat®s, even in near-real time, bearing in by region, biome, and season. In particular, regions that typi-
mind the possibility of large biases due to the inherent differ-cally have relatively smaller fire sizes, such as the African sa-
ences in individual fire characteristics even within the samevannas, are likely to be more impacted by this phenomenon.
fire regime (e.g., Schroeder et al., 2014). This significant percentage of extraneous aerosol contami-
nation can have an adverse impact on the determination of
1:;550 and 16?550 and consequently also on the accuracy of
r;550 (see Eq.7). For instance, in the Ichoku and Kaufman
The calculations ofRye and Rsa begin at the pixel-level. (2005) method: (i) if a larger plume exists in a neighboring

Several changes have been made in the current study reIQ—'XeI Its A|\OT can be "error:eously taken aslﬁligmll;or the i
tive to the original method described in Ichoku and Kaufman Current plume, and (ii) unless any external smoke entering

(2005). In that papet,gssowas defined as the maximum AOT iqto_ the 3x 3 m_a_trix affects every one of the aerosol pixels

. . b . similarly, the minimum AOT eventually used aa?S omay be
measured in the 3 3 matrix, whereas,sy,was defined as much lower than the average background AOT. 5Furthermore
the minimum AOT measured in the eight pixels immediately . Ly be likelv boosted 1o a hi h- I -
surrounding the center pixel, regardless of the actual direc" €@s€ (ii)zz550may be likely boosted to a higher value, po

tion of the plume. That methodology should produce goodt€ntially resulting n the overestimation ofss, when i,
s subtracted fronr_s-, To mitigate such situations in the

results when the plume is prominent and the background i AR o
uniform and clear. Otherwise, such as when the plume jcurrent study, the plume direction is first identified based on

thin or highly dispersed, or when plumes from a different the relative wind direction, as shown in Fig. 2, whereupon a
fire enter any of the aerosol pixels within the«3 matrix combination of the four downwind pixels are used to calcu-

the result can be unpredictable. To characterize such situe{‘—?e more"rea_lisftic values 0%50 Likewise, inste?dhoffgsing
tions, 240 digitized MISR plumes from fires that occurred the overall minimum AQT, the average AOT of the five up-

in Siberia in May 2003 were analyzed. The outlines of the Wind Pixels are used to more realistically determitje, It

3 x 3 matrix of MODIS aerosol pixels centered on each fire is assumed that where smaller smoke plumes from fires in the
were delineated over a MISR true-color imagery, and the Cor_neighboring or external pixels are present, the distribution of

4.2 First stage: pixel-level data analysis

www.atmos-chem-phys.net/14/6643/2014/ Atmos. Chem. Phys., 14, 66657, 2014



6650 C. Ichoku and L. Ellison: Global top-down smoke-aerosol emissions estimation

their effects among the four downwind and/or five upwind  0.020
aerosol pixels will tend to dilute the smoke contamination on
a550andr b.covalues, thereby minimizing its impact on the '3 0.015
resultlngra550value Cases that have more serious contami- @
nation also have a good chance of being eliminated both by Z
the threshold requirements outlined in Sect. 4.3 and the out-= =
lier removal process described in Sect. 4.4. However, anotheﬁ%
issue that can potentlally affect the result, though it is not di- o 0.005
rectly related to thisc! a550 algorithm, is the fact that near- a
source thick smoke plumes are occasionally misclassified 0.000
as clouds and therefore omitted in the collection 5 MODIS 0 30 60 90 120 150 180 210
aerosol product (e.g., Livingston et al., 2014; Schroeder et
al., 2014). For instance, if any of the four downwind pixels
in a 3x 3 matrix has no AOT value, this could lead to un- Figure 4. Probability density functions of plume time (EbQ) for
derestimation of/ 2550 and consequently also s and Rsa different filter configurations (Table 2) used in data screening and
for the specific plume unit being analyzed. Such situationsselection for generatinGe scatter plots.
are expected to improve with future enhancements in aerosol
retrieval algorithms particularly close to smoke sources, but
the filtering and outlier removal processes implemented inresolution aerosol pixel. The new algorithm takes into ac-
this study are helpful in the meantime. count the relative positions of these fire pixels within the cen-
One important condition in classifying downwind and up- tral aerosol pixel in estimating the distance traveled by each
wind sections is that the wind direction needs to be correctsmoke plume from its source (center of the fire pixel) to the
The level of accuracy, however, is variable since the actuagdge of the 3« 3 aerosol-pixel matrix (see Fig. 2). is ex-
requirement is that only the correct downwind quadrant istended to the edge of thex33 pixel matrix, instead of only
identified. The MINX data set for Siberia in May 2003 also to the edge of the central aerosol pixel, to prevent any ambi-
makes the evaluation of this condition possible, and showeduity in L from introducing large errors iRs, calculations
that the success rate of using MERRA to correctly identify (Egs.10 and11), particularly when the fire is very close to
the downwind quadrant was on the order of 80 %. This is anthe downwind edge of the central aerosol pixel. Therefore,
acceptable rate, especially considering the fact that most oprovided the smoke plume follows MERRASs wind direc-
the failed cases will likely be filtered out in the second stagetion at 850 mb, it is believed that the derived values for
of the Ce algorithm (Sect. 4.3) due to a probable decrease inand consequentlf’, Rs, andCe will be much more accu-
7:;550 and increase |mb5505uch thatfa55oW'” be too low. It rate. Although conceptually this algorithm change is an im-
should also be noted that there was no increase in accuradyortant improvement, however, for relatively small fires and
when data were matched to the closest plume injection levelow wind-speed situations, plumes may not reach the edge of
as recorded in the MINX database than when only the 850 miihe 3x 3 aerosol-pixel matrix, resulting in overestimation of
pressure level data were used. This reaffirms the validity ofL and consequentlf’ (Eq. 10). Figure 4 shows the proba-
the use of wind data at 850 mb for generating the FEER.v1bility density functions (PDF) of the plume timé, for the
Ce product, although since this is based only on data fromfour data-filter settings (00000, 10000, 11000, 11 300: low-
Siberia, it may not be ideal for other parts of the world whereest to highest quality) used in this study, as explained later
smoke plumes are typically injected either much lower orin Sect. 4.3. Overall, the maximum probability forlies in
much higher than the 850 mb pressure level. Examples inthe range of 45-55 min, with a gradual decrease beyond the
clude the African Sahel region where fires are typically smallpeak. For such large time periods B, estimation, the fire
in sizes and inject plumes lower than 1km (e.g., Yang et al. that emittedr/s;,may have changed significantly relative to
2013) and the Canadian boreal forest region where very |arg§he FRP value recorded at the time of observation. This is the
fires can inject plumes higher than 2km (e.g., Lavoué et al. weakness of using the instantaneous and simultaneous ob-
2000; Val Martin et al., 2012). servations of a fire and corresponding plume based on a rela-
Another measure taken to minimize uncertainty in thetively low spatial-resolution aerosol product. However, if the
pixel-level analysis relative to the original algorithm in spatial resolution of the input aerosol product improves (as is
Ichoku and Kaufman (2005) is the use of the wind vectors incurrently being developed by the MODIS aerosol team), this
the derivation of the distanc& ) the plume travels within the  issue will be alleviated.
analysis unit (the % 3 aerosol-pixel matrix). The original Lastly, in the original algorithm by Ichoku and Kaufman
method equates to the square root of the central aerosol- (2005), single values dtsaandRye Were calculated for large
pixel area without considering the actual relative positionsregions or areas (in this casé x 1° grid cells) involving
of the individual 1 km resolution fire pixels within the 10km multiple fire/plume units only after the upstream variables
had been aggregated into these regions. That approach has

snty

0.010

Plume Time [minutes]
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and expected goodness-of-fit of linear regression. Data con-
7 il . tained within these sample grid cells were used to perform
N £ ol ) a dynamic, detailed analysis of the calculations described in

Northern RUsSia China Sect. 4.1 (and illustrated in Fig. 1) to quickly generate differ-
Bermia “;!'f-{,‘,ém ol ent emission coefficients. For each site, these algorithmic cal-

a4 , culations to aggregate pixel-level valuesRy. and Rsa into
gg;;;}”[ nd " the grid cell and to calculat€. were applied inside an Excel

Angola R workbook, where provisions were made for a user to control
j gpagasca . the threshold parameters listed in Table 1. Each threshold pa-
glsialia rameter was varied and studied in different combinations as

their effects on the final results were visualized. The calcula-

tions were followed through all the way to the scatter plots of

Rsaand Rye, and a linear least-squares regression line pass-

Figure 5. Selected 1 x 1° grid cells for a sensitivity analysisae 1N through the origin was fitted, resulting in values(f In
scatter plots and values based on using different threshold paranthis way, the corresponding change in the look of the scatter
eters and settings are identified on this MODIS true-color image.plot and in the value foCe due to varying threshold settings
These sites were selected with the intention of maintaining diversitywas observed in real time. Thus, the results were dynamic in
in location, fire type, biome, number of data points, and expectednature and allowed for proficient sensitivity analysis at each
goodness-of-fit of linear regression. of the sites.
A five-digit code was developed to represent the different

combinations of the threshold settings, as designated in the
been modified in the current implementation to minimize its header row of Table 2. Each digit within the five-digit code
vulnerability to errors that may be inherent in the aggrega-represents one set of parameters that are changed, and the
tion processes preceding the calculations. In the current aldigit number represents different settings for those param-
gorithm, the pixel-level analysis is continued up until the cal- eters. Thus, the 00000 setting represents the case when no
culation of Rs3 and Rse for each fire/plume unit. This allows filtering is applied to the data set at all, except the standard
for flexibility in the use and aggregation of these products atrequirement that there be valid retrievals Ryfe (F_power)
different scales and corresponding uncertainty estimation. Irand Rsa. A basic set of parameters were selected as a com-
the current work, the values @&s; and Rye generated at the  mon improvement in all the selected sites, identified as a “1”
pixel-level are aggregated into the resolution grid cells for ~ for the first digit in the settings code (i.e., 10000 is a set-

Eastern G.”

creating scatter plots. ting with only these basic settings turned on). These basic
parameters are (Tables 1 and 2) the scan angle of the aerosol
4.3 Second stage: gridded data analysis pixel, the wind speed, the number of available surrounding

aerosol retrievals, the lowest AOT quality assurance flags

The creation of a gridded product &tresolution arises from  specified for selecting the upwind and downwind aerosol pix-
the need for derivation of a gridded smoke emission coeffi-els, and the number of valid AOT retrievals of the upwind
cientCe that would be available for use in generating emis- and downwind pixels. The second digit of value “1” (i.e.,
sions wherever fires occur around the world for various typesl 1000) represents the elimination of cloud contamination by
of applications and modeling. Because the pixel-level smokesetting A_cloud_fraction_mean to 0. This setting produced
aerosol emission rates parametRgd simply reports values the largest single noticeable improvement across the board,
for all aerosol pixels containing fire regardless of the qual-not only in reduced point scatter, but also in improved re-
ity of the aerosol retrievals, the development of this grid- gression line fits. The third digit setting corresponds to the
ded product necessitates a methodology for removing invalichext set of thresholds used to impose restrictions on extreme
or erroneous data, which is accomplished through the useninima in the main parameters contributing to the calcula-
of thresholds applied to selected parameters. These are déen of Ce, namelyrg1550 (A_AOT550_fire) andRse. Over
scribed in Table 1, along with the purpose for using each onghe course of examining sufficient threshold values to use
of them. for these parameters, two values for each parameter were

To determine appropriate thresholds for these parameterselected for further testing with all the sites collectively,
several 2 x 1° grid cells were selected around the globe creating four possible combinations: 1r; 50> 0.01 and
from a variety of biomass burning regions to conduct sensi-Rge > 15 MW), “2” (12550> 0.01 andRfe > 20 MW), “3”
tivity anglyses using datg from the full time period qf '2003— (T;550> 0.02 andRjre > 15 MW), and “4” (1;550> 0.02 and
2010 (F_|g. 5). The selections were made by examining ran-geq. > 20 MW). This was motivated by the realization that
dom grid cells spread out throughout the entire globe andextremely I0er550andere values within a 10 knx 10 km

. . . . . . a.
manua“y ensuring that the final selection maintained dlver-aeroso| pixe| would be too close to the noise level to be good

sity in location, fire type, biome, number of data points,
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Table 1. List of parameters that are used for data filtering in the gridded product development step described in Sect. 4.3 (parameter-name
prefixes “A’, “F” and “M” indicate whether a parameter belongs to the MODIS Aerosol, MODIS Fire, or MERRA Meteorological data sets,
respectively.)

Parameter Description Purpose

A_scan_angle The scan angle of the aerosol pixel. Eliminate the effect of pixel overlap, which adds too
much complexity in determining total and upwind AOT
values.

M_wind_speed The wind speed from MERRA. Eliminate slow air mass that would estadaieg make

Rsavery small.
A_retrievals_nearby The number of available aerosol retrievals immediatBlysure the pixel is not along the edge of the MODIS

surrounding the center pixel. scene (granule), and that no nearby feature prevents
aerosol retrieval.
A_AOT550_fire Fire-emitted AOT at 550 nm (i.e., total — backgroun&liminate cases where the plume signal is weak relative
AOT at 550 nm). to the background.
A_QA_AOT_total The smallest QA used in selecting total AOT from théllow flexibility to specify desired range of AOT quality
downwind pixels. flags.
A_QA_AOT_bkgd The smallest QA used in selecting background AOReduce uncertainty in background (upwind) AOT mea-
from the upwind pixels. surements.
A_AOT550_retr_total  The number of valid downwind aerosol retrievals. Ensure that enough valid pixels are available for accu-
rate total AOT determination.
A_AOT550_retr_bkgd The number of valid upwind aerosol retrievals. Ensure that enough valid pixels are available for accu-
rate background AOT determination.
A_cloud_frac_mean Mean cloud fraction of thex3 aerosol-pixel matrix Reduce the chances of cloud being falsely identified as
for unit plume analysis. smoke and vice versa, or cloud obscuration of fire.
F_pcounts The number of MODIS fire pixels inside the centé&ptimize number of fire pixels within aerosol pixel for
aerosol pixel. accurate FRP total.
F_pcounts_nearby The number of MODIS fire pixels in surrounding Biminate uneven contamination of AOT by emissions
aerosol pixels. from nearby fires.
F_pcounts_DW3 The number of fire pixels in three downwind pixels (efliminate contamination of target plume by those from
cluding center). nearby fires.
F_power The cumulative FRP value of all fires within the centdrimit small fires and underestimated FRP values that
aerosol pixel. can cause large errors.
Rsa The rate of smoke emission. Limit invalid values or cases with insignificant amounts

of smoke production

for useful analysis. However, between the two values of thefires within the downwind pixels excluding the central one
r;550threshold tested, 0.02 was adopted as more realistic fo(F_pcounts_DW3). This last setting was studied as a pos-
further analysis because it is closer to the absolute compaosible method to ensure that there is ho background aerosol
nent (i.e., 0.05) of the expected AOT retrieval er#o(0.05 contamination from spurious plume sources that are not well
+ 15%) from MODIS over land (e.g., Levy et al., 2010). dispersed within the 3 3 aerosol-pixel matrix.

Also, by observing the effect of different choices Bfe Table 3 shows a summary of the overall sensitivity of each
thresholds on the sites collectively, it became visually apparparameter to the various threshold settings in Table 2. The
ent that usingRse > 15 MW was the better solution (com- analysis was based on global MODIS-Aqua retrievals for the
pared to 20 MW). The fourth digit setting is used for con- first day of each month in 2010, for which the total num-
trolling the number of MODIS fire pixels within the center ber of retrievals over this data set without any filtering was
aerosol pixel (F_pcounts), with “1” and “2" designating one 43211, whereas the number of valid retrievals (after apply-
and two-or-more fire pixels, respectively. It was noted thating the 00000 filter to ensure that valid values exist for both
setting F_pcounts 2 seems to produce similar effects on RsaandRse) was 28 494. Thus, roughly 34 % of the recorded
Ce scatter plots as setting the minimum FRP value becauseata is invalid. The values in the table are the percentages of
both tend to eliminate small fires that potentially have under-the data remaining after applying each of the thresholds. It is
estimated FRP values. The fifth digit corresponds to threshevident that the amount of available data severely decreases
olds imposed on fire pixel counts like the fourth digit ex- as more and more restrictions are applied. Therefore, a much
cept that it refers to surrounding aerosol pixels in the®3  more detailed analysis was required in order to determine the
aerosol-pixel matrix other than the central one. Two param-best choice in settings to use in the final product. After a care-
eters are used: setting “1” counts all the fire pixels within ful evaluation of the different filters, considering their effects
all eight aerosol pixels immediately surrounding the cen-on the point scatter on plots d&s; againstRse and the as-

tral one (F_pcounts_nearby), and setting “2” counts all thesociated correlations of the linear regression fitting vis-a-vis
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Table 2. Value ranges of the threshold parameters in Table 1 and the combinations of their threshold settings used to derive the different
five-digit filter configurations (00000, 10000, 11000, etc.) that were applied in screening out potentially erroneous or corrupted data during
the grid-level data analysis described in Sect. 4.3.

Parameter Range 00000 10000 11000 11100 11200 11300 11400 11310 11320 11321 11322
A_scan_angle [0,55] <30 <30 <30 <30 <30 <30 <30 <30 <30 <30
M_wind_speed [@x] >2 >2 >2 >2 >2 >2 >2 >2 >2 >2
A_retrievals_nearby [0,8] =8 =8 =8 =8 =8 =8 =8 =8 =8 =8
A_AOT550_fire [0,5.05] >0 >.01 >.02 >=.02 >.02 >.02 >.02 >.02
A_QA_AOT _total [0,3] >1 >1 >1 >1 >1 >1 >1 >1 >1 >1
A_QA_AOT_bkgd [0,3] >1 >1 >1 >1 >1 >1 >1 >1 >1 >1
A_AOT550_retr_total  [0,4] =4 =4 =4 =4 =4 =4 =4 =4 =4 =4
A_AOT550_retr_bkgd [0,5] =5 =5 =5 =5 =5 =5 =5 =5 =5 =5
A_cloud_frac_mean [0,100] =0 = =0 =0 =0 =0 =0 =0 =0
F_pcounts [1,200] =1 >2 >2 >2
F_pcounts_nearby [0,800] =0
F_pcounts_DW3 [0,300] =0
F_power [0~ 2050007 >0 >0 >0 >15 > 20 >15 > 20 >15 > 15 >15 >15
Rsa [0p0] >0 >0 >0 >0 >0 >0 >0 >0 >0 >0 >0

* Value estimated from computations based on sensor specifications and observation geometry.

the percentage of available valid data, 11300 was selecteting approach. Instead, going back to the derivatiorfaind

for generating the final’e product. Table 3 reports that only making the correct adjustments, the appropriate equation de-
about 10 % of the available valid data is used to gendfate scribed in Eisenhauer (2003) was used for our situation.

with the 11300 setting, but the confidence in the resulfiag Although the process of using thresholds to remove inac-
values is increased by a satisfactory amount while retainingcurate data as described in Sect. 4.3 has been successful at
enough data for product development. retaining the relatively higher qualit®ss and Rye data se-

This systematic data filtration process in conjunction with ries for derivation of reliabl€,, in some cases there remain
the algorithmic improvements 'rrgswcalculations described examples where a few erroneous data points that are not suc-
in Sect. 4.2 have resulted in about a 67 % drop globally incessfully detected and filtered out can constitute outliers and
r;550 (which directly affectsRsa and Ce), as will be seenin  cause large errors in this process (e.g., Fig. 3b). Such out-
Table 6. This is a significant improvement over the Ichoku liers potentially originate from undetected errors in the data
and Kaufman (2005) method, whoég values were found source, such as when the existence of clouds is undetected by
to be overestimated (Sofiev et al., 2009; Kaiser et al., 2012)the cloud detection algorithm. In the Fig. 3b example, when
as discussed in Sect. 4.6. However, these results are still susentrasted with Fig. 3a, only one outlier out of a total of 18
ceptible to uncertainty and bias, as fires located in the neighdata points cause? to be as low as 0.16, ar@ to be lower
boring aerosol pixels are not specifically accounted for. Al-than the expected value by a factor of six. Although the effect
though a provision was made to filter out such cases, thiof removing outliers is usually not as drastic as this example,
was not implemented because of high data reduction withouthe importance of applying a filter in order to remove out-

a significant improvement in the result. This step will be re- liers from these scatter plots before generating the fihal
evaluated for possible implementation in future versions ofproduct is evident.
the FEERC, algorithm. The process of identifying a robust outlier removal al-
gorithm proved to be non-trivial. Regression analysis as-
sumes linearity, independence, homoscedasticity, and nor-
mality. Residual plots produced from data similar to those of
Fig. 3 show violations of at least one of these requirements,
the most persistent being the non-normality R, versus
1" i cel, a stited n Fig. 3, using all avalabe ¥ 21T IO due (0 e persstent posive skewness of
MODIS data for the period of 2003-2010 after filtering as . ' . .

all mainstream outlier algorithms unusable for the current

described in Sect. 4.3. Scatter plots with fewer than six data . : . .
points were discarded. A linear least-squares regression lin tUdY' W|snc_>wsk| (20(.)1) descr_lbes a few highly FeSpeaed
multiple outlier detection algorithms, some of which were

passing through the origin was fitted to each scatter plot, an :
the slope and coefficient of determinatiorf)(were calcu- ?ested and found to produce many false alarms with/aur

lated. The slope is th€e value for that grid cell. However, Zislfg?nsgjttltii: glloz)sr.it::n??n(/:c?l;? deh'g\%e; S:)lg;yesglzaf;;ﬂ:ﬁf
the general equation of for a regular linear least-squares 9 P P

regression analysis cannot be used for this zero-intercept fitl—Cally for these data sets. A detailed empirical study was

4.4 Third stage: generation of smoke emission
coefficients

Scatter plots ofRsy againstRye Were generated for each
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Table 3. Percentages of all available data that meet the threshold requirements in Table 2. These numbers were derived using the global
coverage of MODIS-Aqua retrievals for the first day of each month in 2010. The number of retrievals over this data set totaled 43211,
whereas the number of valid retrievals (where “F_power” and “Rsa” are both greater than zero, see setting 00000 in Table 2) totaled 28 494.
The last row (“ % of Valid”) shows the overall percentages based on the 00000 setting, which gives an estimate using only valid data. Values
are color-coded in different shades of red5 %, 15 %< orange< 50 %, 50 %< yellow < 70 %, green- 70 %.

s |lg/g|g|g|g|gs|s|gs|g|g |2 |8
Parameter S S S — I & F S S b & < <
= o — — — — — — — — — — —
o — — — — — — — — — — — —
A _scan_angle 604 | 604 | 604 | 604 | 60.4 | 60.4 | 604 | 60.4 | 60.4 | 60.4 | 60.4 | 60.4
M_wind_speed 84.7 | 84.7 | 84.7 | 84.7 | 84.7 | 84.7 | 84.7 | 84.7 | 84.7 | 84.7 | 84.7 | 84.7
A_retrievals_
nearby
A_AOT550_fire 47.6 | 47.6 | 34.7 | 34.7 34.7 | 34.7 | 34.7 | 34.7
A_QA_AOT _total 703 | 70.3 | 70.3 | 703 | 70.3 | 70.3 | 70.3 | 70.3 | 70.3 | 70.3 | 70.3 | 70.3
A QA_AOT bkgd 703 | 703 | 70.3 | 70.3 | 70.3 | 70.3 | 70.3 | 70.3 | 70.3 | 70.3 | 70.3 | 70.3

A_AOT550_retr_
62.6 | 62.6 | 62.6 | 62.6 | 62.6 | 62.6 | 62.6 | 62.6 | 62.6 | 62.6 | 62.6 | 62.6

total

A_AOT550_retr_
bkgd

578 | 578 | 57.8 | 57.8 | 57.8 | 57.8 | 57.8 | 57.8 | 57.8 | 57.8 | 57.8 | 57.8

A_cloud_fraction
521 | 52.1 | 52.1 | 52.1 | 52.1 | 52.1 | 52.1 | 52.1 | 52.1 | 52.1 | 52.1

_mean

F_pcounts 59.8 | 40.2 | 59.8 | 40.2

F_pcounts_
24.9

nearby

F_pcounts_DW3 47.5
F_power
Rsa

81.0 | 81.0 | 81.0 | 81.0
65.9 | 659 | 65.9 | 65.9
% of Total 65.9 | 23.2
% of Valid ! 352 | 266

65.9 65.9 | 659 | 65.9 | 65.9

undertaken to fully understand the variety of point distribu- a high failure rate. However, the fact that 75 % of available
tions that can occur in our data sets and their potential im{inear regression lines with outlier contamination can be rec-
pacts orCe andr? resulting from the linear regression fitting  tified using this algorithm is still a vast improvement over the
in order to develop a robust outlier removal algorithm that conventional outlier removal algorithms that were tested.
would be optimal for our data set. The central idea behind When this outlier algorithm is applied to the full data set
the resulting outlier algorithm is to compare the fraction of from both Terra and Aqua, the outlier detection rate is very
mean squared error (MSE) measurements between the scattewnsistent at around 30 %, regardless of the filter setting (as
plot with all points and without potential outliers against an described in Sect. 4.3) that is used. If these outliers are cor-
empirically developed function in order to properly identify rectly identified, then combined with the earlier conclusion
outliers. This outlier algorithm was then applied to 110 testthat 75 % of contaminated grid cells are identified by the al-
scatter plots, each of which was manually assigned to one ofjorithm, it is deduced that roughly 40 % of all grid cells con-
15 identified scatter-point distribution categories, in order totain outliers. Figure 6 offers an informative display of how
rate its performance. Overall, outliers were correctly identi-the application of this outlier algorithm impacts the fidal

fied and removed in 75 % of the 110 cases tested, althougproduct. After outlier removal, the distribution 6% values
three of the 15 types of scatter-point distributions showedshifts noticeably towards higher values. This would be the
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35% B w/ outliers pursued. However, this procedure could not be applied at first
0% 8 w/o outlers because the gaps are quite extensive in certain areas, with un-
reasonably great distances between the grid cells that need to
be filled and those containing valid data from which their
values can be interpolated. Thus, gaps were first filled in,

Percentage of C, within Bin

15% as much as possible, usiii values based on successively
10% lower filter settings starting from the 11300 setting (see Ta-
- W bles 2 and 3) such that those with higher quality but less data
. W Ol e m are utilized before moving to those with lower quality and
O TR T I JRC - S N B more data. To account for the differences in quality intro-

TSI duced by this procedure, a quality assurance (QA) product is
provided in conjunction with the filled's product, to serve

Figure 6. Percentages of binne@e values from all scatter plots AT . s . :
based on Aqua-MODIS data and the 11300 filter (see Tables 1, Zas. 'anllndlcatlon .Of |t.s rellabl'llty as well as to give users flex
ibility in the application of this product.

and 3) before and after outlier removék appears to have shifted e . . .
) 4k app The compilation process begins with the 11300-filter-

towards higher values overall. At . :
basedCe product, which is the highest confidence product,
and progressively fills in missing data with products of lesser
expected behavior for successful outlier detection since outconfidence: first 11000, then 10000 and finally 00000. The
liers below the regression line (and close to the independerutlier removal algorithm has been applied to all except the
axis) have a very significant influence on the linear least-00000 product. A QA flag of 0 is assigned to the lowest con-
squares fit as compared to outliers above the line and close tédence product (i.e., 00000) and steps up to 3 for the high-
the dependent axis. est confidence product (i.e., 1130@) values of the 11300
Initially, the scatter plots and associated linear regressiorProduct withr > 0.7 are assigned the highest QA value of 4.
fitting and calculations were done separately for Terra andn order to account for cases of low data availability during
Aqua data. Although a majority of the plots showed agree_this filling process, grid cells that are already filled may be
ment between Terra and Aqua, we decided to combine thenkeplaced with values from the lesser confidence product un-
for deriving the finalCe product. This combination offered der certain conditions. The decision to replace such existing
two advantages: (1) it increased the number of data pointgalues is determined based on the number of data points used
on scatter plots with an insufficient amount of data due tot0 determineCe for the previously filled value)s, and for the
the filtering performed above (Sect. 4.3) such tfatval-  new value,Ny, and based on their respectivévalues, such
ues could be determined, and (2) it avoided the necessity téhat the conditions,
develop methods of conducting weighted averaging between > 2
two independenCe values for each grid cell. The resulting Nt < Nimit; Nn > Nt;ry > 7§ (14)

Ce product is shown in Fig. 7 along with its corresponding o
2 map. must all be met, wherdjinit represents the minimum num-

ber of data points needed to confidently fit a linear regression
4.5 Gap filling and quality assurance line, set to 30, which is the conventional minimum sample

size for statistical significance. It is pertinent to recall that
This polishedCe product presented in Sect. 4.4 and Fig. 7 any scatter plot with less than the bare minimum of six data
offers the advantage of including only the highest confidencepoints is discarded. If Eq.14) is satisfied for a given grid
data, since itis based on the stringent 11300 filter and outliereell, then theCe value in the current grid cell of the new (less
removal processes. However, the tight constraints imposefiltered) product is substituted for the existing value in the
by these processes have the effect of limiting the data suitablélled product. Likewise, the QA of the filled data is replaced
for the final product generation, such that many parts of thewith that of the new data.
world that are known to be affected by fire do not h&e Finally, as many of the gaps remaining in the filled prod-
values generated, despite the efforts to increase coverage et as possible are filled using tlia values in nearby grid
combining Terra and Aqua data into one input stream. Thecells with identical land cover types. Land cover type may
concern of having incomplete coverage is that if a significantvary significantly within a grid cell at the spatial resolution
fire event were to occur in an important region, it may not of 1° x 1° used in this product, which can cause issues es-
be possible to make even a rough estimation of the smokgecially since the dominant land cover type within a given
emission rates. Therefore, it is evident that some sort of filledgrid cell may very well not be the one that burns most of-
product is needed. ten. Thus, the MODIS ecosystem classification map for 2004

The possibility of a gap-filled product whereby missifig ~ at 1 arcmin resolution was used to develop a custom land

values would be determined by interpolation using surround-cover product at?1x 1° resolution that reports the dominant
ing existing values for similar land cover types was initially fire-prone land cover type, which is used in the following
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Figure 7. (a) The coefficient of emissione) product based on MODIS 2003-2010 FRP and AOT observations from Terra and Aqua, after
applying the 11 300 filter setting (Table 2) and outlier removal processing steps described in Sects. 4.3 and 4.4., respedfelyeand
corresponding coefficient of determinatioﬁx map.

analysis. Grid cells that are potentially vegetated (not com-Table 4. The distribution of FEER.vCe product QA flags among
pletely classified as water, barren, or snow/ice) are identifiedlifferent coefficients of determination?) ranges. The “N/A’ cat-

as candidates for gap-filling, and carefully analyzed. First, a€gory is for the 1 x 1° grid cells that have been filled in using the
15x 15 grid cell box is drawn around each candidate grid gap-filling processzdue to lack o_f §ufficient data (gnd ther_efore lack
cell, and all grid cells with validCe within this box and famr value). Ther< range containing the most grid cells is shown
whose fire-prone land cover type is identical to that of the" boldface type for each QA flag.

center grid cell are selected. The QA values of these selected
grid cells are observed, and the highest minimum QA value

r2

(QAmin) is set such that there will be at least eight total qual- QA | 07-1 0507 03-05 0-03 NA | Towl
ified grid cells with QA> QAmin. If this condition cannot be 4 1S 0 0 0 - Us
met, then no gap-filling procedure is completed in that case. 2 528 1462406 ;Z 1: i iigi
This QA requirement is a method of balancing quantity with ) 278 205 "ol 119 1183
quality of data to get the most certainty in the results. Then, 0 213 470 o1 556 3756 M

starting with a 3x 3 box centered around the grid cell whose
Ce is being filled, the box is expanded only as necessary
(up to a maximum of 1% 15 window) until it contains at
least eight grid cells that have valit} values, the same fire- . L i o
prone land cover type, and QA values greater than or equal t&peuflp appllcgtlons. On the other hand, ifa major fire occurs
QAnmin. If there are a sufficient number of grid cells that meet in a grid cell with a QA value of zero, an emissions estimate

these criteria, thee values of these grid cells are averaged can still be deriyed, as Ion_g as the user recogr_ﬂzes_that itisin
and used to fill in the missing value. The gap-filled grid cell fact & low-confidence estimate. TtGs product is being re-

is assigned a QA value of zero, irrespective of those of theleased as the Fire Energetics and Emissions Research version
source grid cells. 1 (FEER.v1) product.

The final global 2 x 1° griddedCe product (Fig. 8a) has
much better spatial coverage than the original (Fig. 7). Th
land areas that are not covered seem to comprise only deseAtlthough there is no equivalent “ground truth” data to
and snowf/ice regions, except for the farthest reaches of eas{yjigate the new FEER.v1 griddeds product, the lat-
ern Russia where the last gap-filling procedure did not have ge; || requires a certain level of evaluation to determine
large enpugh ext_e_nt to fill that area. Nevertheless, this prodyhere it stands in the spectrum of existing comparable
uct provides sufficient coverage for nearly 100 % of all veg- nroqucts/parameters. This was done by comparing the new
etation fires that might occur around the globe. Furthermore,:EER_vlce data to regional values @, that were reported
the corresponding QA and? products (Fig. 8b, ) provide {4y 19 different regions in Table 11 of Ichoku and Kaufman
the user with parameters for determining how accurate the(2005) hereafter referred to as “IKO5”. Since the FEER
Celn 2:"‘ given area might be. Table 4 shows the relative QAproqyct s gridded atlx 1°, it became necessary to generate
andr distribution of all 13919 grid cells witiCe values. 5 comparative set of average values that fit the 19 regions
With the exception of the grid cells whose QA equals zero,for comparison against the IK05 values. Simply averaging
the majority of grid cells within each QA category are either {ne ¢, grid cells within each region is unrealistic due to the
inthe 0.7-1 o 0.5-0.7 range. Therefore, a user can apply fact that the spatial distribution of fires within each region is
the QA (andr) values as a filter to select only tl& val-  on_yniform and the certainty of the. varies. Therefore, a
ues that meet or exceed the minimum quality requirement fo'i/veighted average afe based on the number of fires within

Total 2914 2931 2306 2012 3756 | 13919

e4.6 Relative evaluation of the FEER.vIC, product

Atmos. Chem. Phys., 14, 6643667, 2014 www.atmos-chem-phys.net/14/6643/2014/



C. Ichoku and L. Ellison: Global top-down smoke-aerosol emissions estimation 6657

Figure 8. (a) The gap-filled, combined Terra and Aqua, globalkl1° coefficient of emissione) product along with(b) the corresponding
quality assurance (QA) map afg) the coefficient of determinatiom:() map. These products were based on MODIS 2003-2010 observations
of FRP and AOT from Terra and Aqua.

each grid cell and also on the QA was used to generate the Using the relationships defined in Sect. 4.1, it is evident
mean and standard deviation of tig values within each that
region. Rsa

Table 5 shows that the&. average values from the Cex ERP (15)
FEER.v1 product are distinctly Iowgr than those of IKO5 by Mea Msa- WS  Mg-A-WS  11-A-WS
a factor of 2—4.5, WI'Fh the exceptlo'n of East Kazakhstgn, x T FRP > 7 .FRP x . FRP x I FRP
where they are practically equal. It is pertinent to mention
that Ichoku and Kaufman (2005) estimated t@atvalues N other wordsCe is directly proportional to the fire-emitted
were probably overestimated by a factor of 2, and SofievAOT (t}ss0. aerosol-pixel area and wind speed, but inversely
et al. (2009) by applying a more rigorous plume dispersionProportional to the plume length and FRP. Three of the
modeling foundCe values that were lower than those of IK05  five variables on the right-hand side of E45) (r}s50 WS
by a factor of 2 to 3. Kaiser et al (2012) also found valuesand FRP) have updated data sources in FEER.v1, and three
that were lower than those of IK05. The fact that those sub-{(Tsso A @nd L) have updated derivations. However, both
sequent studies, including the current study, produced lowe/A @nd L, which are dependent on each other, can be ad-
values than those of IK05, confirms that IK05 values werejusted together here to emulate the IKO5 algorithm such that
indeed probably overestimated and suggests that those frort Would be equal to the area of only one aerosol pixel, and
the current study are more realistic. The change from IK05 toL. would be halved (using IK05 definitionikos / Lreer=
the current study can be categorized into two types, namely,/A /\/4A = 0.5). These adjustments are made for the fol-
algorithms and input data versions/sources. It is necessanying analysis. If the ratio of a variable in FEER.v1 to the
to characterize _these '_(wo types of cr_]ange mdeper.]dently IBame in IKOS is represented & then
order to determine their relative contributions (as will be re-
ported in Table 6). -A-WS

To account for the effects of using new input data ver- R¢, = CeFeER _ ( LARP )FEER _ Ru-Rws
sions/sources, an updated version of the IKO5 product (here- Ce.kos (%’) Ry - Rrrp
after referred to as IKu) was generated by ingesting the K0S
new data being used in the current study into an algorithmEquation {6) quantifies the change ifle due to both input
that matches that of IKO5 as closely as possible. Recall thagource and algorithmic alterations from 1K05 to FEER.v1.
the IKO5 Ce values were based on the MODIS collection 4 Changes in only data sources from IK05 to IKu are captured
FRP and AOT products, with wind data from the NCEP re- in the relationship:
analysis data set (GDAS1). By contrast, the I&g values
are based on the MODIS collection 5 FRP and AOT prod-Rce =
ucts, with wind data from the MERRA reanalysis data set.
Differences inCe from 1K05 to IKu should only be due to because the calculation éfdoes not involve the use of data
changes in data versions and sources, whereas the effects ¢m different sources. The relationship that quantifies the
the algorithmic alterations described in Sect. 4.2 can be iso2lgorithmic changes from IKu to FEER.v1 is given by
lated by comparing IKu to FEER.v1. Ry,

RCe = R_L

(16)

Rz - Rws

17
Rrrp an

(18)
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Table 5. Estimates of regional FRE-based smoke-aerosol emission coeffidig)tfsqm MODIS are shown here for different regions using
both the original method as reported in Ichoku and Kaufman (2005) and version 1 of the new(epERIuct (FEER.V1).

PM emission coefficients
Region Description (kgMJI~1y

IKO5 FEER.v1
calculated mean st.dev.

Savanna and grassland regions

Brazil-Cer Brazil Cerrado savanna region 0.048 0.016 0.009
S. America South America below 28 0.061 0.020 0.013
W. Africa West Africa 0.059 0.021 0.012
Zambia Zambia in southern Africa 0.076 0.018 0.005

Tropical forest regions

Borneo Borneo Island of Indonesia 0.079 0.032 0.019
Brazil-For Brazil tropical forest region 0.063 0.019 0.009
Celebes-Moluccas Celebes and Moluccas Islands, Indonesia 0.068 0.028 0.020
Congo Congo tropical forest, Africa 0.048 0.015 0.006

Boreal forest regions

Alaska Alaska 0.020 0.012 0.016
Canada Canada below %R (excluding Quebec) 0.020 0.012 0.013
Quebec Quebec and eastern Ontario 0.020 0.009 0.021
Siberia Siberia North of 60N 0.057 0.024 0.018

Cropland/natural vegetation regions

Moscow Moscow and environs 0.100 0.026 0.011
S. Russia Southern Russia 0.084 0.018 0.007
St. Petersburg St. Petersburg and environs 0.104 0.023 0.009
Unclassified
Europe Europe (excluding Russia) 0.056 0.024 0.017
E. Kazakhstan East Kazakhstan 0.018 0.019 0.011
Mongolia Mongolia 0.033 0.022 0.014
Philippines The Philippines 0.127 0.039 0.024

because the way in which FRP and wind speed are calculateBEEER.v1 were calculated for each data point for AOT, wind
remains the same between the two algorithms. speed, FRP, and plume length. Subsequently, the rati; of
The relationships shown in Eq4.6), (17) and (L8) can be  was calculated for each data point pair according to E@). (
utilized to test whether the differences between the IK05, IKufor the transition from IK05 to FEER.v1, EqlT) for the
and FEER.v1 product data sets can fully explain the changéransition from IKO5 to IKu, and Eq.1@) for the transi-
in Ce between IK05 and FEER.v1 shown in Table 5 as well tion from IKu to FEER.v1. To appropriately represent these
as to identify the main factor responsible for the change —matched data points and ratios in a uniform fashion within
change in algorithm or the input data version/source. Thethe spatial domains outlined in Table 5, they were binned
only available data from the original IKO5 data set cover rel- into a global grid at a spatial resolution of 6<8.5° and
atively short time periods (Terra: 25 June 2002 to 4 Octoberthen filtered according to the appropriate settings reported in
2002, and Aqua: 25 June 2002 to 31 December 2002). Th&@able 2 using the QA values from the FEER@{ product
fact that these ranges do not cover a full year means that aniy Fig. 8. Finally, the median of those ratios within each grid
seasonal differences that may exist will be lost and will there-cell was retrieved, and the mean of these values (weighted
fore cause the resulting data to be biased low or high. Nevidentically as was done in Table 5 f6g) within each region
ertheless, these 2002 data sets were used to esti®gate were reported, as displayed in Table 6.
by first pairing corresponding individual data points in the In Table 6, column 1 (highlighted yellow) shows ob-
IKO5, IKu and FEER.v1 data sets. The ratios between IKO5served changes ife from IKO5 to FEER.v1. The subse-
and IKu, between IKu and FEER.v1, and between IKO5 andquent columns outline the process of deriving the predicted
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Table 6. The observed changes G§ and intermediate parameters from the original Ichoku and Kaufman (2005) method (IK05) to FEER.v1

is shown here for the regions listed in Table 5. The values in the yellow highlighted column on the left-hand side are the observed changes
in Ce from IK05 to FEER.v1 from Table 5. The subsequent columns outline the sample size and mean parameter changes during the proces:
of deriving the predicted changesdi from IKO5 to FEER.v1 according to Eqsl), (17), and (L8), the results of which are highlighted in

orange and yellow. The “Iks FEER.v1" on the first header row indicates that both the IKu to FEER.v1 and IK05 to FEER.v1 transitions

are included in the columns beneath. Both Terra and Aqua data were used in these calculations.

IK05 => [Ku IK => FEER.vl
Ce Ce AOT AOT Ce Ce
(FEER/ (IKw/ (FEER (FEER (FEER (FEER

Region |1K05)| N FRP WS AOT|IKO05)] N FRP WS L /IKu) /IK05) /IKu) /IK05)
Savanna and grassland regions
Brazil-Cer | 0.33 | 851 1.61 0.88 0.99 | 0.56 | 295 1.48 0.97 0.85 0.35 0.38 | 0.41 | 0.26
S. America | 0.32 | 897 1.57 0.86 0.99 | 0.55| 385 1.44 091 0.79 0.32 0.31 | 041 | 0.23
W. Africa 0.35 | 766 1.60 1.02 0.96 | 0.62 | 565 1.50 1.03 0.82 035 0.32 | 0.43 | 0.25

Zambia 0.23 | 518 1.59 0.79 0.99 | 0.50 | 470 1.46 0.90 0.85 0.35 0.32 | 041 | 0.19
Tropical forest regions
Borneo 0.40 | 193 134 1.03 1.02 082 | 98 1.26 1.03 0.83 0.29 035 | 0.35 | 0.37

Brazil-For | 0.29 | 832 1.50 0.72 1.04 | 0.51 | 391 1.50 0.83 0.83 0.31 0.36 | 0.38 | 0.21

Celobes- 041 | 116 1.28 0.66 0.99 |0.52| 81 125 0.86 0.81 030 030 | 0.38 | 0.25
Moluccas

Congo 0.31 | 913 1.65 0.91 1.00 | 0.56 | 621 1.50 1.04 0.84 033 032 | 0.40 | 0.21
Boreal forest regions

Alaska 0.62 | 26 232 1.14 1.00[055] 12 201 1.14 0.81 029 025 | 0.36 | 0.21
Canada 058 | 65 239 099 0.97 046 | 31 236 093 0.82 033 035 | 041 | 020
Quebec 046 | 54 2.10 0.82 0.98 |0.43| 35 1.83 0.850.82 028 023 | 0.34 | 0.14
Siberia 0.42 | 290 1.65 0.86 0.98 | 0.53 | 174 1.63 0.87 0.82 032 027 | 0.39 | 0.18

Cropland/natural vegetation regions
Moscow 0.26 | 123 1.38 1.01 1.00|0.76 | 60 1.32 1.09 0.85 029 0.29 | 0.34 | 0.26
S. Russia 0.21 | 101 1.59 0.94 097 |0.60 | 62 1.42 1.03 0.85 0.34 0.29 | 0.40 | 0.23
St. Petersburg | 0.23 | 58 1.33 1.02 1.01|0.78 | 35 1.27 1.20 0.84 0.30 0.30 | 0.35 | 0.29
Unclassified
Europe 0.43 | 544 1.49 094 096 |0.64| 172 1.40 0.97 0.84 0.29 0.29 | 0.35 | 0.24
E. Kazakhstan| 1.06 | 431 1.72 1.01 0.86 | 0.55| 152 1.50 1.09 0.84 0.30 0.27 | 0.37 | 0.21
Mongolia 0.67 | 149 1.59 091 0.88|0.54| 46 1.62 0.96 0.85 0.31 031 | 0.36 | 0.24
Philippines | 0.30 | 20 1.17 0.86 0.89 |0.68| 6 1.06 0.87 0.79 023 0.19 | 0.29 | 0.22

Global avg. ‘ ‘13312 1.62 0.90 0.98 ‘ 0.56 ‘6452 1.48 1.00 0.83 033 032 | 040 0.22

changes inCe from IKO5 to FEER.v1 according to Egs. overall decrease ife of about 80 % globally (column 14).
(16), (17), and (8), the results of which are shown in Even though these combined effects of data-source and al-
the last column (highlighted yellow). Both Terra and Aqua gorithm changes are slightly overcompensating compared to
data were used in these calculations. The two main prothe observed differences listed in column 1, it can be stated
cess changes have been separated out: columns 2—6 (labeldédt the observed reduction @ values between the IKO5
“IKO5 = IKu") clearly showing the effect of altering only the and FEER.v1 is indeed realistic. The changes in wind speed,
data inputs, and columns 7-14 (labeled 4KFEER.v1") plume distance and FRP due to algorithmic changes are small
showing both the effect of altering only the algorithm relative to the large change in AOT. Therefore, most of the
(IKu = FEER.v1) and the combination of algorithm alter- change inCe is attributable to the change in fire-emitted
ation and data updates (IK85 FEER.v1). From the result- AOT (15553. Figure 9 shows the global distribution Ojsso

ing maps showing the global variation in ratiosrégso WS, changes due to data version/source change (i.e., from IK05
FRP, andL, it was apparent that the change in each variableto IKu, Fig. 9a) and due to algorithm change (i.e., from IKu
is uniform throughout the globe. On average, the change irto FEER.v1, Fig. 9b). Interestingly, when the new collection
Ce due to differing data sources is about a 40% decreas® AOT data are used in lieu of coIIectionﬁg%oactually in-
(column 6), mostly from the change in FRP from collec- creases in most cases around the globe, confirming that the
tion 4 to 5 (i.e., without and with multiplication by fire-pixel lower Ce values from IKO5 to FEER.v1 due to AOT is very
area, respectively), whereas the algorithm alterations causstrongly attributable to the change in thgso algorithm. In
about a 60% decrease @ (column 13), resulting in an  fact, the ratios of.,in the data-source part are very near
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Figure 9. The ratio of fire-emitted AOT values at 550 nm Wavelengligsg() between the new (FEER.v1) and old (IK0O5) products mapped

on a 0.5x 0.5° global grid. The changes i’fé550 are due only tola) upgrading the data source from collection 4 to collection 5, and
(b) algorithmic changes.

unity (column 5, Fig. 9a), whereas in the algorithm alterationaboard the Terra and Aqua satellites as part of the GFAS.v1
part it is around 0.3 (columns 11 and 12, Fig. 9b). It is per- product pttp://gmes-atmosphere.eu/fikaiser et al., 2012).
tinent to recall that the;550algorithmic changes mainly in- The GFAS.v1 values of monthly average FRP in Wan
volve (1) using wind direction to determine which AOT val- were simply multiplied by the number of days in each calen-
ues to classify as plume or background, and (2) taking thedar month to get FRE in Jn¥, as was done in the GFAS.v1
average of the upwind AOT values (instead of just the min-algorithm (Kaiser et al., 2012). Such derivation of monthly
imum value) as the background in an effort to account foraverage FRE based on only four or less MODIS fire obser-
contamination from external aerosols. Although these modi-vations a day (from Terra and Aqua satellites) result in high
fications have resulted in a severe change in the dergggg uncertainty, as it cannot capture the fire diurnal cycle. How-
this change translates to increased confidencgin ever, that is currently the only feasible way to obtain FRE
globally. Higher-frequency (sub-hourly) observations from
o ) a few available geostationary satellite sensors that measure
5 Emissions calculation results FRP have different characteristics and produce an average of
17-38 % underestimation relative to MODIS coincident FRP

down derivation of emission rates and totals from satelliteObservaItlons (Roberts et al., 2005; Xu et al,, 2010). More-

; - oyer, a combination of these geostationary FRP data still
measurements of FRP. The resulting emissions are compare . .
. o . . oes not provide global coverage, as some large biomass-
against other emission inventories to gain a general unde

standing for how model simulations will chanae when usin rBurning regions, including Siberia, Central Asia, and India,
anding wm imufati wi gew USING 4re left uncovered (Zhang et al., 2012). Since the GFAS.v1-
this new FEER.v1 inventory.

based FRE data are global, publicly available, and being used
in the European Union’s Monitoring Atmospheric Composi-
tion and Climate (MACC) projecthttp://gmes-atmosphere.

The FEER.v1Ce product is used to derive smoke-aerosol €U/firg, they were considered appropriate for use in de-
emissions by simple multiplication, as represented in Eq. (2)vVing emissions using the FEER.\de product to enable
and the associated discussion. Wi@n(kg MJ~1) is mul- comparison with existing emissions inventories, as described
tiplied directly by FRP (inMW or MJs?), instantaneous Delow. Therefore, these GFAS.vl monthly FRE values at
emission rates (in kg$) are derived, whereas when mul- 0.5 x 0.5 resolution were multiplied by the FEER.\de
tiplied by FRE (in MJ) representing a finite (e.g., daily, product at 2 x 1° resolution to obtain the monthly emissions
monthly, or yearly) time period, the result is emission totals Of Smoke aerosols around the globe at6«3.5” resolution.

(in kg) for that time period. Generating a global FRE prod- Then, the monthly emissions for all months of a calendar
uct for use in this analysis is not straightforward due to theyear were summed up to get yearly emissions estimates, such
fact that semi-continuous measurements of unsaturated FR# the 2010 example shown in Fig. 10.

around the entire globe is not currently available, though it

is expected that this situation will improve within the next 5.2 Comparison with other emissions inventories

decade or so, given the anticipated launches of different geo-

stationary and polar-orbiting satellite missions by some ofThe FEER.v1 monthly emissions were compared with some
the major space agencies. However, to closely compare emi®f the existing emissions products — GFED.v3, GFAS.v1, and
sions based on the new FEER®&d product with other emis- QFED.v2 — as a way of evaluating the FEER.v1 emissions
sions products, this study uses FRP data from thex0®.5 within the context of these existing global emission invento-
gridded monthly data set derived from MODIS observationsries that are currently used by the research and operational

The new FEER.vZe product is used to demonstrate the top-

5.1 Emissions estimates (rates and totals)
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(NAme)

Central America
{C

Total emissions: 72.8 Tg Figure 11. Regional partitions as defined in Kaiser et al. (2012)
HEET @ 2 22 0T that are used in this paper to compare FEER.v1 emissions with
00 04 08 12 Mifs of ezrfissioi‘?/mzz]'s 3236 40 GFED.v3, GFAS.v1, and QFED.v2 emission inventories. The back-
’ ground MODIS true-color image shows fire locations (red dots) de-
Figure 10. FEER.v1 emissions estimates of total particulate mat- tected by MODIS from both Terra and Aqua for all of 2010, to il-
ter (TPM) for all of 2010 on a 05x 0.5° resolution global grid.  lustrate the global spatial distribution of annual fire occurrence.
These values are generated from Eq. (2), using the FEERev1
product in conjunction with FRE data derived by multiplying the
GFAS.v1 monthly average FRP data by the total number of days in
each month.

constitutes only about 55% of the FEER.v1 annual TPM

emissions. Since the GFAS.v1 FRE data set was also used for

FEER.v1, it follows that the large difference between their
communities. It should be noted that there are a few dis-emission products stem from the relative magnitudes of the
similarities between these products. First, like FEER.v1,Ce used to generate them. Furthermore, given that it was al-
QFED.v2 is based on the top-down approach using satelready established that the TPM emissions in GFAS.v1 (and
lite measurements of both aerosols and FRP, whereas botby inference also in GFED.v3) need to be boosted by a fac-
GFED.v3 and GFAS.v1 are based on the bottom-up approactor of 2—4 to match realistic global distributions of aerosols, it
using literature-extracted emission factors (EF) to multiply follows that FEER.vXCe results are probably closer to realis-
burned biomass estimates from satellite observations of FREc values. However, although the QFED.v2 emissions repre-
(GFAS.v1) or fire pixel counts and burned areas (GFED.v3).sent only PM s, which should be lower than TPM, paradox-
Secondly, the emissions values used for comparison froncally, it is slightly higher than FEER.v1 global TPM emis-
both GFED.v3 and GFAS.v1 represent the smoke TPM emissions.
sions, whereas for QFED.v2, whose product exists as the The relationship between the FEER.v1l emissions and
component species of smoke aerosols, the closest equivaletitose of GFED.v3, GFAS.v1, and QFED.v2 portrays signif-
product is particulate matter 2.5 um aerodynamic diameter icant regional differences, as indicated by the regional plots
(PM25). The ratio of PM s to TPM (by ratioing their cor-  in Fig. 12. In North America (NAme), incidentally, FEER.v1
responding emission factors) is estimated to range betweeamissions seem to agree closely with those of GFED.v3
65 % and~ 100 % depending on ecosystem type (e.g., An-and GFAS.v1, whereas QFED.v2 (though only Ryishows
dreae and Merlet, 2001; Akagi et al., 2011). Thus, ideally,double the values of the former three TPM emissions in-
smoke PMs emissions (from QFED.v2) for a given area ventories. Not surprisingly, out of all the regions, NAme
and time period should be expected to be lower than the corhas the largest distribution of the lowest QA arfdvalues
responding TPM emissions (from FEER.v1, GFED.v3, andfor the FEER.vIC values, as shown in Fig. 8. We suspect
GFAS.v1). These different data sets were aggregated regiorthat FEER.v1C, values are severely underestimated in this
ally according to the regional biomass burning partitions pro-NAme region probably because, among other possible rea-
vided in Kaiser et al. (2012) as delineated in Fig. 11, andsons, the gap-filled areas are quite extensive with very low
plotted as time series annual total smoke TPM emission$A values that may have tended toward underestimation. On
(Fig. 12). the other hand, QFED.v2 appears to have been overestimated

All the emissions products portray similar temporal pat- in northern and southern Asia (NAsi and SAsi), perhaps due

terns, with lows and highs occurring in the same years, forto contamination from the persistent regional pollution, since
both the global and regional plots (Fig. 12). This may be QFED.v2 is based on regional aerosol observations in con-
due at least in part to the fact that all products are influ-trast to FEER.v1, which is based on near-source AOT mea-
enced by MODIS fire-pixel counts, either directly or indi- surements. Similarly, GFED.v3 is probably overestimated in
rectly. GFAS.v1l emissions are generally equal to those otropical Asia (TAsi) only in 2002 and 2006, although the
GFED.v3, because the former was scaled to match the lattanvestigation of possible reasons for these two anomalous
(Kaiser et al., 2012). Globally, GFED.v3 and GFAS.v1 eachyears is beyond the scope of this paper.

www.atmos-chem-phys.net/14/6643/2014/ Atmos. Chem. Phys., 14, 66657, 2014



6662 C. Ichoku and L. Ellison: Global top-down smoke-aerosol emissions estimation

8888888883838 8888888888323 8888388883338
— NANANANANANANANANANANNN NN ANANANANANANANNNNN NN ANANANANNANNANNANN
215 6 — 30
'z [NAme Euro| NAsi|
[Euro |
810 P e a ”4‘ o® | 4 - 20 " \\ P
é é “ N P‘:}H'V\_e d \ /A\ {
& 5 2 . 10 P A
z ‘*\,_g::‘:ﬁ*ﬁ:&\n
o
F o 0 0
8 —— 20 —— 15—
. CAme 15 NHAf [sasi
[ 10 A A 2
o, a - Mﬁ-\\/’ P
L 3 aw .o ¢ N N R
¢ Wiyt 0 S SRIETET L ety
I = s > M
0 0 0
30 25 1 10 ‘ 5
20 s 20 SHAf »Wa g [TAsi
&
. SR A 15 e 6
10 Pl Al - 10 H\/—m—‘ 4
2
5 2 - - °
0 0 0
= SEEEEEERE885E »
E lclobal laust
2 90 e - » 15 L
9 W{ -=-FEERV1 (GFASV1 FRP) 10 Q °
)
£ 60 ~-GFEDV3 5 ‘o n Ls
;30 w -0-QFEDV2 (PM2.5) 0
a
= ANMNMETNONVDNO N -+GFASv1 ANMNTNONRVDNO N
§588883588353 g8gg8s8888888z8¢8
NANANANANANANANANNNNN NANANANANANANANANNANNN

Figure 12. Time series of yearly total global and regional emissions of total particulate matter (TPM) in Tg from 2000-2012 for FEER.v1,
GFED.v3, QFED.v2 and GFAS.v1, depending on data availability for this study. QFED.v2 values (dotted line) are fprTiPk! regions
represented are delimited on the map in Fig. 11.

6 Summary and conclusions Although the FEER.v1 global gridded. product was
based on the original approach proposed by Ichoku and
This study has presented a first attempt at providiRg-  Kaufman (2005), this study implemented significant im-
an index that is similar to EF — for every % 1° cell con-  provements in all stages of the product development. The lat-
taining burnable vegetation globally. Whereas EF is used taest available versions (collection 5) of both the aerosol and
multiply burned biomass estimates to calculate emissiGgs,  fire products from MODIS were used, along with MERRA
is the equivalent parameter used to multiply time-integratedmeteorological data from the GEOS-5 global assimilation
satellite measurements of FRP to estimate emissions. Thugodel. The identification of near-source plume and back-
the FEER.v1 global gridded’s product developed in this ground pixels from the MODIS AOT data set was based
study for TPM emissions estimation has several importanion actual wind directions from MERRA. Rigorous methods
attributes, of which the most significant are that it (1) is were used to determine the valid ranges of all parameters uti-
the first global gridded product in the family of “emission |ized in the algorithm, in order to limit the effects of spuri-
factors”, whereas existing products specify one value perpys errors and uncertainties from measurements and assump-
ecosystem type; (2) requires only direct satellite measuretions. These updates in data versions and algorithm resulted
ments of FRP or its time-integrated FRE to generate emiS-in an overall decrease in regiona] aVGI'ﬁQB/a'UES by afac-
sion rates or totals, respectively, whereas regular EF valuegor of 2—4.5 relative to those of Ichoku and Kaufman (2005).
still require estimation of burned biomass through an intri- This decrease seems reasonable, as observed by recent stud-
cate process fraught with high uncertainty; and (3) is thejes that evaluated thos@. values based on model analyses
only variable in the family of “emission factors” that does (e.g., Sofiev et al., 2009; Kaiser et al., 2012). Nevertheless,
not require pre-determination of the ecosystem type of anhe FEER.v1 global gridde@l product may still contain sev-
actively burning fire to evaluate its emission rate in near-realera| limitations and uncertainties, which may be due to vari-
time, which is essential for operational activities, such as thepus factors, such as (1) uncertainties in the satellite retrievals
monitoring and forecasting of smoke emission impacts on aifof AOT and FRP, (2) omission of smaller fires or even larger
quality. fires that are mostly smoldering with significant smoke emis-
sion but limited radiant energy signal below the MODIS de-
tection limit, (3) possibility of erroneously including external
aerosols to specific plumes being analyzed or having large
variations in the aerosol background surrounding the plume,
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(4) smoke underestimation due to the erroneous maskinghat have a closer resemblance to satellite observations of
out of near-source thick smoke plumes as cloud during theaerosols. Therefore, it is recommended that increased ef-
aerosol retrieval process, (5) lack of knowledge of plume in-fort be made toward further enhancement of top-down ap-
jection heights, (6) use of wind vectors at 850 mb globally, proaches, not only for aerosol emissions, but also for gaseous
(7) uncertainty in the MERRA wind vectors used in the cal- emissions. It is hoped that this approach will become more
culations of smoke emission rate and trajectory, (8) assumpand more accurate and beneficial with continued improve-
tion of a single value of smoke-aerosol mass extinction ef-ment in the satellite retrievals of these aerosols and gases.
ficiency globally, and (9) uncertainties due to the gap-filing The FEER.v1Ce product, which is currently based on
process of the FEER.v1 global griddéd product. There- 2003-2010 MODIS observations, will certainly require fu-
fore, there is need to find ways of validating this product. ture updates as new, improved, and more representative data
Fortunately, the fact that this globék product is anchored inputs become available from other relevant sources. Further-
on a geographically fixed grid system makes validation muchmore, even in places where the currégtvalues are reason-
more feasible than is the case for existing EF values whosably accurate, over time, changing land-cover conditions and
geographical attributes may have been lost, thereby makindire regimes will invariably necessitate the revision of these
them difficult to replicate or to trace to a specific geographic Ce values, which may indicate diurnal, seasonal, annual or
domain. Thus, for the FEER.v1 global griddéd product,  longer-term temporal variability. Future studies will reveal
deliberate effort could be made to conduct field experimentghe approaches required to ensure optimal accuracy in time
within any 2 x 1° grid cell for use in validating it€e value.  and space.

Pending the validation of this FEER.v1 global gridded The current study has been focused on the development
Ce product in a representative sample of locations, perhap®f a global gridded”e product for smoke TPM because it is
through the use of observations in conjunction with regionalbased on the total columnar AOT parameter as retrieved from
modeling, QA flags (ranging from 0 to 4 in increasing order satellite observations. Although it is recognized that mod-
of quality) have been provided with the product to guide theeling activities often require smoke-aerosol speciation into
user in using this product for different applications. Theseits various components such as organic carbon (OC), BC,
QA flags were based on several qualitative and quantitativeor PMp 5, it was beyond the scope of this study to derive
considerations including the? from the zero-intercept lin-  emission coefficients for these smoke constituent species,
ear least-squares regression fitting of smoke-aerosol emisas it would have involved several assumptions (with asso-
sion rates against FRP. A corresponding gridded magf of ciated compounding uncertainties) to estimate any one of
is also provided for reference. Thus, a user desiring to dethem from satellite AOT retrievals. However, the user of the
rive only high-quality emissions can use the QA as a filter FEER.v1 TPMC, product may optionally estimate corre-
to select only th&e values with the highest quality required, spondingCe values for any of the other smoke-aerosol con-
while the corresponding value can give a general idea as to stituents by multiplying with their emission ratios relative to
whether this QA is based on quantitative or qualitative con-TPM. Such emission ratios can be obtained from the litera-
siderations. On the other hand, if a fire occurs in a grid cellture or derived from the constituent emission factors, which
for which emissions estimates are needed to determine thare also available in the literature depending on ecosystem
general smoke trajectory without the need for precise quantype (e.g., Andreae and Merlet, 2001; Akagi et al., 2011).
titative estimates of concentrations, ev@énvalues havinga Indeed, the FEER.v1 global gridded TRS4 product devel-

QA value of zero can be used to accomplish the desired taskoped in this paper represents a versatile foundational product

The FEER.v1 global gridde@. product was used to gen- that can lead to several important advances in fire emissions
erate global and regional total emissions of TPM, whichresearch and applications.
were compared against existing emissions inventories, in-
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