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Abstract. A double moment warm rain scheme that includes
the effects of turbulence on droplet collision rates has been
implemented in a large-eddy model to investigate the im-
pact of turbulence effects on clouds and precipitation. Sim-
ulations of shallow cumulus and stratocumulus show that
different precipitation-dynamical feedbacks occur in these
regimes when the effects of turbulence are included in the
microphysical processes. In both cases inclusion of turbu-
lent microphysics increases precipitation due to a more rapid
conversion of cloud water to rain. In the shallow convection
case, the greater water loading in the upper cloud levels re-
duces the buoyancy production of turbulent kinetic energy
and the entrainment. The stratocumulus case on the other
hand shows a weak positive precipitation feedback, with en-
hanced rainwater producing greater evaporation, stronger cir-
culations and more turbulence. Sensitivity studies in which
the cloud droplet number was varied show that greater num-
ber concentrations suppress the stratocumulus precipitation
leading to larger liquid water paths. This positive second in-
direct aerosol effect shows no sensitivity to whether or not
the effects of turbulence on droplet collision rates are in-
cluded. While the sign of the second indirect effect is neg-
ative in the shallow convection case whether the effects of
turbulence are considered or not, the magnitude of the effect
is doubled when the turbulent microphysics are used. It is
found that for these two different cloud regimes turbulence
has a larger effect than cloud droplet number and the use of a
different bulk microphysics scheme on producing rainfall in
shallow cumuli. However, for the stratocumulus case exam-

ined here, the effects of turbulence on rainfall are not statis-
tically significant and instead it is the cloud droplet number
concentration or the choice of bulk microphysics scheme that
has the largest control on the rain water.

1 Introduction

Cloud microphysical parameterisations are required in atmo-
spheric models of all scales from large-eddy simulation mod-
els through to climate models. Correctly representing micro-
physical processes in models is challenging yet imperative
for quantitative precipitation forecasting and climate studies.
To enable greater confidence in climate projections one of
the processes that requires a quantitative analysis is the sec-
ond aerosol indirect effect, which is the effect from enhanced
aerosol concentrations in clouds suppressing drizzle and pro-
longing cloud lifetimes (Albrecht, 1989). To be able to quan-
tify this effect with any real certainty, the cloud microphys-
ical processes must be accurately represented in global cli-
mate models (GCMs), in particular the autoconversion pro-
cess, which describes the collision and coalescence of small
droplets to form larger rain drops.

In clouds where the temperature does not reach freezing, it
is the process of collision and coalescence that allows drops
to grow to a size large enough to fall out of a cloud as rain.
Observations of droplet growth tend to show a faster evolu-
tion and broader drop size distribution compared to the the-
oretically calculated drop spectra, where the equations are
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applied to a randomly distributed population of drops whose
motion is governed by gravitational forcing (see review by
Grabowski and Wang, 2013). Several physical effects have
been suggested to play an important role in the reduction of
the growth times, including entrainment and mixing of dry
air, turbulence and the role of giant cloud condensation nuclei
(e.g. Beard and Ochs, 1993). Turbulence increases the colli-
sion rate of droplets in at least three ways: by changing the
droplet velocities and the spatial distribution of the droplets
(e.g. Franklin et al., 2005), and by changing the collision
and coalescence efficiencies between droplets. Although the
effect of turbulence on cloud droplet collision–coalescence
rates is yet to be quantified by observations, modelling stud-
ies have shown that turbulence can increase the collision
rates of droplets by several times the purely gravitational rate
(Franklin et al., 2005, 2007; Wang et al., 2005; Pinsky et al.,
2006).

Franklin et al. (2007) performed direct numerical simu-
lations (DNSs) of droplets within turbulent flow fields and
developed empirically derived equations that describe the
turbulent collision kernel for droplet pairs, where the larger
droplet is within the radius range of 10–30 µm and the eddy
dissipation rate of turbulent kinetic energy (TKE) is between
100 and 1500 cm2 s−3. The collision kernels from Franklin
et al. (2007) were shown to be in good agreement with those
of Kunnen et al. (2013), who used a novel technique to sim-
ulate the turbulent flow field in their DNS. These turbulent
collision kernels were used in solutions of the stochastic col-
lection equation (SCE) by Franklin (2008) to develop em-
pirical double-moment parameterisations of the effect of au-
toconversion, accretion and self-collection on the rain and
cloud water mixing ratios and the rain and cloud drop num-
ber concentrations. Parameterisations using both turbulent
and non-turbulent collision kernels were developed. The
SCE was solved for liquid water contents in the range of
0.01–2 g kg−1, cloud droplet number concentrations up to
500 drops cm−3 and relative dispersion coefficients of the ini-
tial drop size distribution between 0.25 and 0.4. The initial
drop size distribution was a Gamma function and the separa-
tion radius that determined the point at which a cloud droplet
becomes a raindrop was 40 µm. Using the SCE results for
such a broad range of drop size distributions gives the result-
ing parameterisations greater statistical meaning and applica-
bility. The two suites of warm rain parameterisations, turbu-
lent and non-turbulent, allow the investigation of the effect of
turbulence on the microphysical processes and the resulting
feedbacks in atmospheric models. These effects are explored
in this work for stratocumulus and shallow cumulus convec-
tion cases. Section 2 describes the model and the two cases
to be examined. Section 3 presents the results for the simu-
lated cloud and dynamical structures and Sect. 4 shows the
sensitivity of the results to changes in cloud droplet number
concentrations. This is followed by a summary of the find-
ings in Sect. 5.

2 Experiment design

The double-moment warm rain microphysics parameterisa-
tions of Franklin (2008) have been implemented in the Uni-
versity of California Los Angeles Large Eddy Simulation
(UCLA-LES) model. The anelastic LES code is described
in Stevens et al. (2005) and solves prognostic equations for
the three velocity components, the total water mixing ratio,
the liquid water potential temperature and the mass and num-
ber concentration of rain. Time integration of the momentum
equations uses a leapfrog scheme and scalars are advanced
using a forward-in-time method. Advection of the velocity
components is solved using fourth-order centred differences
and scalars are advected using a higher-order upwind scheme
with slope limiting using a monotonic centred method. Sub-
grid fluxes are modelled using the Smagorinsky–Lilly model.
The mass of cloud water is defined implicitly due to the de-
pendence of the liquid water potential temperature on the
total condensate, and the cloud droplet number concentra-
tion is a fixed parameter. The numerical solution of the cloud
processes, including droplet sedimentation, is described in
Savic-Jovcic and Stevens (2008), except that in this work the
separation threshold radius for cloud and rain is taken to be
the default values of 40 microns for the schemes of Seifert
and Beheng (2001) and Franklin (2008), and 25 microns for
Khairoutdinov and Kogan (2000).

In this work the cloud droplet number concentration
(CDNC) is constant. Observations of the shallow cumulus
case described in Sect. 2.1 show an approximately constant
droplet concentration with height (vanZanten et al., 2011).
Slawinska et al. (2012) demonstrated the reason behind the
observed constant CDNC being due to significant in-cloud
activation of cloud condensation nuclei. Using a bin micro-
physics LES, Wyszogrodzki et al. (2013) showed that while
CDNCs were constant with height for the majority of occur-
rences in their simulations, there is variability in the CDNC
fields. Therefore, while the use of a constant CDNC is a good
assumption, variations in CDNC will likely affect the devel-
opment of precipitation and this will not be captured in the
simulations presented in this work.

The default bulk microphysics scheme in the UCLA-
LES is that of Seifert and Beheng (2001). In this study the
autoconversion and accretion parameterisations of Franklin
(2008) are the main subject of investigation. However, results
from the default scheme and that of Khairoutdinov and Ko-
gan (2000) are also used to give some indication of the range
of results from different microphysics schemes. The turbu-
lent autoconversion equation of Franklin (2008) has been
modified to the following form, which gives a better repre-
sentation of the DNS data at higher cloud water contents:
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where qr and qc are the rain and cloud water contents
(kg m−3), Nc is the cloud droplet concentration (cm−3) and
Rλ is the Taylor microscale Reynolds number of the flow
field. This expression will underestimate the effects of turbu-
lence on droplet collision–coalescence due to the use of grav-
itational collision efficiencies. Limited data are available for
the effects of turbulence on collision efficiencies. Currently
the DNS data available only provide two data points, for dis-
sipation rates of 100 and 400 cm2 s−3 (Wang et al., 2008). To
include the turbulent collision efficiencies in this work would
require them to be extrapolated out to dissipation rates of
1500 cm2 s−3. The collision kernel results show that the ef-
fects of turbulence do not scale linearly with dissipation rate
(Franklin et al., 2007) and two data points do not provide
enough information to represent this process with any cer-
tainty for the high dissipation rates. Therefore, the decision
was made not to include the turbulent collision efficiencies
until more DNS data become available.

In the implementation of the parameterisations of Franklin
(2008) and (1), Eq. (4) of Franklin (2008) has been used to
eliminate the dependence onRλ and make the dependence
solely a function of the dissipation rate of TKE. The param-
eterisations of Franklin (2008) only consider the effects of
turbulence on small collector cloud droplets with radii be-
tween 10 and 30 microns. For these small droplets it is the
dissipation range turbulence that governs the droplet mo-
tion (e.g. Wang and Maxey, 1993) and, therefore, the dis-
sipation rate is the dominant flow property that determines
the collision rate, with the Reynolds number effect of signif-
icantly less importance. This is illustrated in Fig. 4 of Ayala
et al. (2008) who show thatRλ effects are only apparent for
droplets of radius 40 microns and larger, which are larger
than the size of droplets considered in Franklin (2008). This
result is also described in Wyszogrodzki et al. (2013) who
state that small drops with radius less than 30 microns are
not affected by the root mean square velocity, which is the
Rλ dependence. This is the reasoning behind the parameter-
isations of Franklin (2008) and (1) being a function of the
dissipation rate only. The DNS simulations used as the ba-
sis for this work covered a much wider range of dissipation
rates applicable for cloud conditions than other studies, rang-
ing from 100 up to 1500 cm2 s−3.

As in the approach of Seifert et al. (2010), in the LES
implementation of the microphysics schemeRλ is calcu-
lated from the grid box mean dissipation rate of TKE. Wys-
zogrodzki et al. (2013) showed that neglecting LES subgrid
scale effects on the turbulent enhancement of the gravita-
tional kernel is a reasonable approximation given the cur-
rent state of knowledge. The autoconversion parameterisa-
tion (1) and the implementation described was used by Wang
et al. (2013), where this equation and method was shown to
produce cloud droplet and rain drop number concentrations
and mixing ratios that were in better agreement with obser-
vations compared to other autoconversion schemes.

2.1 Description of the shallow convection case – RICO

The initial and boundary conditions and large-scale forcings
are taken from the Global Energy and Water Experiment
(GEWEX) Cloud Systems Study (GCSS) Boundary Layer
Cloud Working Group (BLCWG) intercomparison case de-
scribed by vanZanten et al. (2011). This is a composite case
based on observations taken during an undisturbed period
of the Rain in Cumulus over the Ocean (RICO) field study
(Rauber et al., 2007), which sampled precipitating trade wind
cumulus. The domain size of these experiments is 13.2 km
square and 5 km deep, with grid spacing of 100 m in the hor-
izontal and 40 m in the vertical. The time step is variable and
is chosen so as to keep the Courant number between 0.65 and
0.85. The average observed cloud droplet number concentra-
tion during RICO was 70 cm−3, and that number has been
used for the control simulations. The length of the simula-
tions for this case are 24 h and the profile statistics are taken
as averages over the last 4 h. After the initial spin up, the
model produces numerous shallow precipitating convective
clouds as shown in Fig. 1a. The clouds typically extend up
to 2400 m, have cloud bases at around 600 m and tend to be
1–2 km in horizontal extent (Fig. 1b).

2.2 Description of the stratocumulus case – RF02 of DY-
COMS II

This case is based on the aircraft measurements taken dur-
ing the second research flight (RF02) of the second Dynam-
ics and Chemistry of Marine Stratocumulus (DYCOMS II)
field campaign (vanZanten and Stevens, 2005). The initial
conditions and large-scale forcings are taken from the GCSS
BLCWG intercomparison study documented by Ackerman
et al. (2009). RF02 penetrated nocturnal stratocumulus un-
der a dry inversion consisting of heavy drizzling open cellu-
lar convection, as well as lightly drizzling closed cells. The
initial conditions are an average over the two cloud popula-
tions sampled, except for the cloud droplet number concen-
tration which is the average over the open cells only and set
to 55 cm−3. The horizontal domain and grid spacing for this
case study are 6.6 km square and 50 m respectively, while the
vertical domain is 2 km and the grid spacing varies from 5 m
at the surface and the inversion to 80 m at the model top. The
model is run for 6 h and the profile statistics are calculated
over the final 4 h. Typical liquid and rain water cross sections
are shown in Fig. 2. Maximum liquid water contents occur at
cloud top and precipitation reaches the surface.

3 Simulated cloud and dynamical structure

3.1 Shallow cumulus convection – RICO

The turbulent microphysics parameterisations are applied
in the regions of the clouds where the dissipation rates of
TKE are between 100 and 1500 cm2 s−3, with the higher
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Figure 1. (a)Plan view of RICO liquid water mixing ratio (g kg−1)

at 840 m and(b) cross section through a typical cloud showing liq-
uid water mixing ratio (g kg−1) and contour lines of the dissipation
rate of turbulent kinetic energy (contour levels are 100, 500, 1000,
1500 cm2 s−3).

dissipation rates associated with faster conversion rates from
cloud to rain water (Franklin, 2008). In the RICO case the
range of dissipation rates for which the turbulent micro-
physics scheme is valid is encountered in extensive regions
of the clouds, with the highest dissipation rates occurring
near the cloud tops (see Fig. 1b). These increased autocon-
version, accretion and self-collection rates increase the rain
water mixing ratio of the clouds as compared to the simu-

Figure 2. Cross sections of the(a) liquid and (b) rain water mix-
ing ratios (g kg−1) for the DYCOMS II case. Contour lines of the
turbulent kinetic energy dissipation rate in(a) are 100 cm2 s−3.

lation where the non-turbulent parameterisation is used as
shown in Fig. 3. The results using the well-known Seifert and
Beheng (2001; SB) scheme are included as a measure of con-
fidence for the more recent schemes of Franklin (2008), and
to give some indication as to the uncertainties due to differ-
ent bulk scheme parameterisations. However, the main focus
is on the differences between the turbulent and non-turbulent
microphysics schemes that have been derived using the same
framework.

The rain water mixing ratios are significantly increased
when the turbulent microphysics effects are included, with
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Figure 3. RICO cloud properties for the simulations that use the turbulent (blue) and non-turbulent (red) microphysics parameterisations
of Franklin (2008) and the microphysics scheme of Seifert and Beheng (2001; green). The initial conditions are given by the black dashed
lines.(a) Liquid water potential temperature (K),(b) total water mixing ratio (g kg−1), (c) liquid water mixing ratio (g kg−1), (d) rain water
mixing ratio (g kg−1), (e)cloud fraction and(f) rain fraction. The coloured dashed lines in(d) and(f) represent the±standard deviation from
the temporal means, with these fields being the only ones that show significantly different means.

the largest difference occurring at the surface where the tur-
bulent case produces 6 times more rain than the non-turbulent
case and 1.5 times more than the simulation with the SB mi-
crophysics scheme. While there is a large amount of tempo-
ral variability in the rain water profiles as shown by the stan-
dard deviations in Fig. 3d, the comparison between the sim-
ulations with the turbulent and non-turbulent microphysics
schemes show a statistically significant increase in the rain
water throughout all levels except the uppermost 500 m. The
surface area experiencing rainfall increases by a factor of 3,
and the rain fraction is also larger throughout the cloud layer
in the turbulent microphysics case as compared to the non-
turbulent microphysics simulation. The SB simulation pro-
duces 1.5 times less raining surface area than the turbulent
microphysics simulation and the profile of the rain area frac-
tion in the SB simulation shows a different structure to the
other simulations. The two Franklin scheme simulations pro-
duce larger increases in the rain fractions with height and
demonstrate that the inclusion of turbulence effects on the
droplet collision rates has less effect on the rain fraction pro-
file than the parameterisation uncertainties associated with
bulk schemes. The profiles of liquid water potential tempera-
ture and total water mixing ratio show that the largest differ-
ence between the cases occurs near the height of the inver-
sion, with the turbulent microphysics simulation being 0.2 K

warmer than the case with the non-turbulent microphysics
(Fig. 3). The largest difference in cloud fraction occurs in
the levels above 1000 m, where more cloud water in the tur-
bulent case generates greater cloud fractions. The simulation
using the turbulent microphysics parameterisation has on av-
erage greater cloud water throughout the cloud. However, the
percentage increase in the amount of rain water produced in
this simulation compared to the case using the non-turbulent
microphysics is far more than the increase in the cloud liquid
water contents, and the variability is such that the mean cloud
water contents of all the simulations lie within one standard
deviation of the mean for the turbulent case.

Quantitatively these results are in agreement with the
RICO LES simulations of Seifert et al. (2010) who used a
different turbulent collision kernel based on the results of
Ayala et al. (2008) and Wang et al. (2008). Wyszogrodzki
et al. (2013) used the Ayala et al. (2008) kernel in a bin
microphysics scheme to simulate a shallow convection case
from the Barbados Oceanographic and Meteorological Ex-
periment (BOMEX). Their LES results show increases of ac-
cumulated surface precipitation of between 4 and 12 times
depending on the cloud condensation nuclei concentration.
Together with the results of this study, all these cases have
demonstrated that including the effects of turbulence on the
droplet collision rates makes a significant difference to the
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Figure 4. Time series of RICO(a) liquid (cloud and rain) water path (g m−2), (b) rain water path (g m−2) and(c) cloud fraction for the
simulations that use the turbulent (blue) and non-turbulent (red) microphysics parameterisations of Franklin (2008) and the microphysics
scheme of Seifert and Beheng (2001; green).

amount of rain that shallow convective clouds produce. As
discussed in both of the aforementioned publications, the
resolution of these simulations is not fine enough to resolve
the structure of these clouds. Seifert et al. (2010) tested the
sensitivity of their results to a doubling in horizontal reso-
lution and found a substantial reduction in the surface rain
rate; however, the turbulence case still produced significantly
greater rain.

Time series of the evolution of the liquid water path, rain
water path and cloud fractions are shown in Fig. 4. There is a
spike during the first hour as the initial cloud field develops,
and after about 2 h the cloud cover reaches 12 %. The sim-
ulation with the turbulent microphysics shows a greater rain
water path than the simulation with the non-turbulent micro-
physics at almost all times of the 24 h simulations, with a
few significant peaks occurring during the last 4 h. The pre-
cipitation intermittency is due to the limited domain size that
will only allow for one large rain event at a time (Seifert and
Heus, 2013). All simulations show similar variability in the
cloud fraction,. However the average liquid water path vari-
ance over the last 4 h is almost double in the turbulent micro-
physics simulation.

Figure 5 shows that the evaporation of rain water is greatly
enhanced in the turbulent microphysics simulation and this
is due to an increase in both rain water and rain drop num-
ber concentration. The average TKE from the simulation us-
ing the turbulent microphysics is less than that of the non-

turbulent case in the cloud levels above 2 km. However, in
the lower levels including below cloud base, the TKE from
the turbulent case is greater than the non-turbulent case. The
increased TKE in the subcloud layer of the simulation that in-
cludes the turbulence effects on droplet collisions reflects the
greater horizontal variability associated with the enhanced
evaporation of precipitation destabilising the levels below the
cloud (Fig. 5d). In the turbulent microphysics simulation the
reduced TKE in the upper regions of the cloud is caused by
a reduction in the buoyancy production of TKE (Fig. 5c). In
this case there is an increase in water loading associated with
the increased cloud and rain water, particularly in these upper
levels. This increase in water loading reduces the buoyancy
production of TKE (Fig. 5c) and reduces the amount of TKE
that is transported to the inversion layer that is required for
entrainment (Jiang and Cotton, 2000).

The reduced buoyancy production of TKE in the upper
levels of the cloud in the turbulent case is associated with a
reduction in the variance of the vertical motion (Fig. 5e). The
updrafts within the clouds in the turbulent case are stronger in
the upper levels due to the increased latent heating associated
with the larger generation of cloud liquid water. This is also
reflected in the more positive values of the third moment of
vertical velocity in the turbulent microphysics case, indicat-
ing smaller, more intense updrafts and larger weaker down-
drafts (not shown). These stronger in-cloud vertical veloci-
ties occur above the height of the maximum theta gradient
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Figure 5. As in Fig. 3 except for(a) rain water evaporation (g kg−1 s−1), (b) turbulent kinetic energy (m2 s−2), (c) buoyancy production of
turbulent kinetic energy (10−4 m2 s−3), (d) variance ofu component of horizontal wind (m2 s−2), (e)variance of vertical velocity (m2 s−2)

and(f) conditional average of vertical velocity inside clouds (m s−1). The coloured dashed lines in(a) represent the±standard deviation
from the temporal means, with the rain water evaporation being the only field that shows significantly different means.

(2321 m in the non-turbulent case and 2328 m in the turbu-
lent microphysics case) and reflect the stronger overshooting
convection in the turbulent case. Wyszogrodzki et al. (2013)
argued that the use of turbulent collision kernels produces a
dynamical enhancement to the amount of precipitation gen-
erated due to the off-loading of condensed water, which in
turn increases buoyancy and cloud top heights. In our case
the water loading reduces the buoyancy in the upper levels
of the cloud but increases the buoyancy below about 1800 m.
Jiang and Cotton (2000) examined the differences between
drizzling and non-drizzling shallow convective clouds and
also found a reduction in buoyancy and turbulence in their
case with larger precipitation.

To further examine the buoyancy characteristics of the
clouds and estimate the entrainment rates, the conditional
averages of vertical velocity, total and liquid water contents
within cloud cores are analysed. Cloud cores are defined as
the cloudy regions that have positive buoyancy as compared
to the slab average. Figure 6a shows that the simulation with
the turbulent microphysics has a larger area of cloud cores
throughout the mid and upper cloud levels as compared to
the simulation with the non-turbulent microphysics. How-
ever, comparing these profiles to Fig. 3e, we see that the tur-
bulent microphysics case has a smaller proportion of posi-
tively buoyant cloud regions in the levels above 1300 m. The
average vertical velocities in the cloud core are very similar

in the simulations with the non-turbulent and turbulent mi-
crophysics schemes, with the turbulent case having slightly
weaker updrafts in the upper cloud core levels. This result to-
gether with the vertical velocities averaged over all cloudy re-
gions shown in Fig. 5f, shows that the turbulent microphysics
simulation has increased vertical velocities in the cloudy re-
gions that are not positively buoyant. This demonstrates that
in this simulation it is not the reduced water loading associ-
ated with greater precipitation that acts to increase the buoy-
ancy and hence the vertical velocities. Figure 6c shows that
the turbulent microphysics simulation has larger average to-
tal water contents in the cloud core upper levels and this ap-
plies to the cloud liquid water as well (Fig. 6d). Diagnosing
the mass flux and fractional entrainment rates using Eqs. (11)
and (16) of Stevens et al. (2001) and the total moisture mix-
ing ratio, shows that the mass flux in the upper levels is larger
for the turbulent microphysics simulation (Fig. 6e) and this
is due to the greater area of the cloud cores in this case. The
turbulent microphysics simulation has a smaller entrainment
rate throughout the vertical compared to the simulation with
the non-turbulent microphysics parameterisations, in agree-
ment with the larger water contents in the simulation that in-
cludes the effects of turbulence on the droplet collision rates.
Note that the application of the mass flux approach with a
simple entraining plume model breaks down in the inversion
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Figure 6.As in Fig. 3 except for(a) cloud core fraction,(b) conditional average of vertical velocity inside cloud cores (m s−1), (c) conditional
average of total water inside cloud cores (g kg−1), (d) conditional average of cloud liquid water in cloud cores (g kg−1), (e)mass flux (m s−1),
and(f) entrainment rate (m−1).

at about 2 km (Siebesma et al., 2003) and explains the sharp
gradient in Fig. 6f.

The effect of the dynamical feedback in the RICO case
presented here is a negative feedback on the turbulent en-
hancement of rain water generation. The reduced buoyancy
production of TKE in the upper cloud levels where most of
the liquid water is located (Figs. 1 and 3), reduces the TKE
and dissipation rate of TKE compared to the simulation with
the non-turbulent microphysics. Given that the turbulent en-
hancement is a function of the dissipation rate of TKE, the
use of the turbulent microphysics parameterisations acts to
reduce the dissipation rate in the cloud levels where the liq-
uid water contents are largest and hence produces a nega-
tive feedback. It should be recognised that there is still a
significant enhancement of rain water compared to the non-
turbulent case and the increased cloud depths discussed by
Wyszogrodzki et al. (2013) are present in our simulations.
Maximum cloud top heights are larger in the turbulent mi-
crophysics simulation compared to the non-turbulent; on av-
erage the highest cloud top is 2656 m compared to 2620 m.
However, in this case the impact of the enhanced cloud and
rain water acts to reduce the TKE rather than promote larger
buoyancy production of TKE.

The effect of this negative feedback can be seen in Fig. 7
where the dissipation rates of TKE are shown for the con-
trol simulations and sensitivity tests where the cloud droplet
number concentration was reduced from 70 to 40 cm−3. In

Figure 7. Dissipation rate of resolved TKE (m2 s−3) for the non-
turbulent and turbulent microphysics simulations for the control (Nc
= 70) and a reduced cloud droplet number concentration ofNc =

40 cm−3.

the simulations with the reduced number concentration the
amount of rain water is increased from the control, with the
average rain water path in the non-turbulent microphysics
simulations increasing from 1.9 to 4.3 g m−2, and 7.9 to
10.6 g m−2 for the turbulent microphysics simulations. Fig-
ure 6 shows the reason why the percentage increase in rain
water path is larger for the non-turbulent microphysics case,
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Figure 8. DYCOMS II cloud and dynamical properties for the simulations that use the turbulent (blue) and non-turbulent (red) microphysics
parameterisations of Franklin (2008) and the microphysics scheme of Khairoutdinov and Kogan (2000; green). The initial conditions are
represented by the black dashed line.(a) Liquid water potential temperature (K),(b) total water mixing ratio (g kg−1), (c) liquid water
mixing ratio (g kg−1), (d) precipitation flux (W m−2), (e)cloud fraction and(f) rain drop number concentration (m−3).

and this is due to a reduction in the dissipation rate of TKE
in the turbulent microphysics simulations due to the negative
feedback from the buoyancy generation of TKE, which lim-
its the enhancement from the turbulent microphysics as the
rain and cloud water increase.

3.2 Stratocumulus – RF02 of DYCOMS II

Similar to the shallow convection case, the dissipation rates
of TKE that affect the microphysics are maximum in the up-
per levels of the stratocumulus cloud layer; however, for this
case the dissipation rates are much weaker (Fig. 2). There
are only small regions at the top of the cloud where the dis-
sipation rate reaches 100 cm2 s−3 and, therefore, where the
conversion rates between cloud and rain water will be accel-
erated by turbulence effects in the simulation that uses the
turbulent microphysics. These small regions though do make
a difference to the precipitation flux and the rain drop num-
ber concentration in the cloud and subcloud layers, while the
cloud fractions remain relatively unchanged (Fig. 8). The av-
erage rainwater path increases by 17 % when the turbulent
microphysics parameterisations are used; however, the vari-
ability is such that this is not a statistically significant result.
For this case the microphysics scheme of Khairoutdinov and
Kogan (2000; KK) has been used as a comparison for the
new schemes, since this scheme was developed specifically
for stratocumulus clouds.

For this lightly drizzling case the precipitation flux is max-
imum at cloud top (Fig. 8). The increased rain water in
the turbulent microphysics simulation is associated with a
greater number of rain drops and larger evaporation rates of
rain water, particularly just below cloud base (Fig. 9a). The
precipitation from the KK scheme does not reach the surface
in this case and has a reduced precipitation flux at all lev-
els compared to the schemes of Franklin. Figures 8f and 9a
show that the rain number concentration is larger in the KK
simulations throughout the cloud layer, and that these more
numerous rain drops produce larger evaporation rates at both
cloud top and cloud base. Examining the cloud and rainfall
properties for the three simulations shows that for this stra-
tocumulus case the parameterisation uncertainties for a bulk
scheme are larger than the effects of turbulence.

Comparing the simulations that use the turbulent and non-
turbulent microphysics schemes of Franklin, shows that the
effects of turbulence on the droplet collision rates increases
the evaporation of rain water and leads to greater variability
and higher TKE throughout both the cloud and subcloud lay-
ers. The enhanced rain water in the turbulent microphysics
simulation has a weak positive feedback, with more rain
producing more evaporation of drizzle drops at cloud base,
which destabilises the subcloud layer and leads to stronger
circulations and TKE (Feingold et al., 1996). The obser-
vations for this case showed that the vertical winds were
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Figure 9. As in Fig. 6 expect for(a) rain water evaporation (g kg−1 s−1), (b) turbulent kinetic energy (m2 s−2), (c) variance of liquid water
(g2 kg−2), (d) variance of horizontal velocity (m2 s−2), (e) variance of vertical velocity (m s−1) and(f) third moment of vertical velocity
(m s−1).

negatively skewed just above cloud base (Ackerman et al.,
2009) and the simulation with the turbulent microphysics
produces a closer match with nearly equal strength between
updrafts and downdrafts at this height (Fig. 9f).

4 Sensitivity to cloud droplet number concentrations

Four simulations of the stratocumulus and shallow convec-
tion cases were performed with each of the non-turbulent
and turbulent microphysics parameterisations. The simula-
tions differ in the prescribed CDNC and reveal how the cloud
properties change with changes in aerosol loading as man-
ifested in changes of cloud droplet number. These simula-
tions are not designed to reflect the complete aerosol–cloud
interactions but rather to provide some insights into whether
the effects of turbulence on cloud droplet interactions negate
some of the reduction in precipitation that tends to occur with
increasing cloud droplet number concentrations and the asso-
ciated decrease in precipitation efficiency.

Figure 10 shows the average cloud properties over the
last 4 h of the RF02 simulations of DYCOMS II, with the
standard deviations shown by the bars. The cloud fraction
increases monotonically for both the non-turbulent and tur-
bulent cases as the CDNC increases from 25 to 220 cm−3.
There is a strong relationship between increasing cloud
fraction and decreasing rain water path as the CDNC is
increased. This result for a drizzling stratocumulus cloud

agrees with the conceptual model that greater aerosol load-
ing and associated CDNC suppresses precipitation formation
and leads to larger cloud fractions (Albrecht, 1989). For the
CDNC values explored here, the non-turbulent microphysics
simulations demonstrate that stratocumulus clouds typical of
this case study increase the amount of cloud water and re-
duce the rain water content when there is an increase in
cloud droplet number. Therefore, they show a positive sec-
ond aerosol indirect effect (Fig. 10b; Stevens et al., 1998).
While this is also true for the lowest three CDNC used in
this study for the turbulent microphysics simulations, for the
highest concentration of 220 droplets cm−3 the turbulent mi-
crophysics simulation shows a reduction in both the rain and
liquid water paths. The reduced rain water leading to a re-
duced liquid water path in the turbulent microphysics simula-
tion with highest CDNC shows a negative second aerosol in-
direct effect. Other studies have also shown a non-monotonic
increase in liquid water path (LWP) with increasing aerosol
concentrations and suggest that there is a limit to the degree
of liquid water that can build up, with increasing efficiency
of evaporation due to larger concentrations of smaller drops
likely playing a role (Xue et al., 2008). However, in this case
the variability of the liquid water paths is significantly larger
than the small reduction in liquid water path for the highest
CDNC and, therefore, this is unlikely to be a robust physical
result for this simulation.
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Figure 10. Average DYCOMS II cloud and dynamical properties
for specified CDNC. Rain water path (g m−2) and (a) cloud frac-
tion and(c) cloud base height (m). Liquid water path (g m−2) and
(b) rain water path (g m−2) and(d) vertically integrated turbulent
kinetic energy (kg s−2). The length of the bars denote the±standard
deviations about the mean.

Figure 10c shows that there is an increase in the cloud base
heights as cloud droplet numbers are increased and precipi-
tation is decreased. This has been found before, for example
by Savic-Jovcic and Stevens (2008), who showed that cloud
base lowers in regions of precipitation due to the precipita-
tion changes affecting the thermodynamic state of the sub-
cloud layer. This can be seen through the tendency of the
TKE to increase with CDNC in all simulations except for the
turbulent case with highest CDNC (Fig. 10d). An important
aspect for this work is that the TKE is greater for the turbu-
lent microphysics simulations compared to the correspond-
ing non-turbulent simulation for each CDNC, except for the
case with the largest CDNC where the behaviour changes
due to a reduction in liquid water path. These results reflect
the positive feedback that the turbulent microphysics param-
eterisations have on increasing the TKE, which will then pro-
duce greater precipitation. However, these results need to be
interpreted with caution due to the large variability shown
in the liquid water path and TKE fields. Xue and Feingold
(2006) studied the impact of increasing aerosol concentra-
tions on shallow cumuli cloud properties and found that the
influence from aerosols was less than the dynamical variabil-
ity of the system in all fields examined except for the cloud
optical depths. This result is seen in Fig. 10 where it can be
seen that the variability in all of the fields is large compared
to the changes due to either the inclusion of turbulence ef-
fects or the CDNC. The rain water path is the only field that
shows a significant change in rain water with changes in the
CDNC. For this stratocumulus case the effects of turbulence

Figure 11. Average RICO cloud and dynamical properties for
specified CDNC. Liquid water path (g m−2) and (a) rain water
path (g m−2), and(b) vertically integrated turbulent kinetic energy
(kg s−2). The length of the bars denote the±standard deviations
about the mean.

on rainfall are not statistically significant and instead it is the
CDNC that has the largest control on the rain water.

Figure 11 shows the effects of increasing the CDNC in
the RICO simulations. In this shallow cumulus convection
case the liquid water path increases as the rain water path
increases, which is the opposite of the stratocumulus case.
Increased CDNC results in reduced rainwater in both cases,
but in the RICO cases this also results in reduced liquid water
paths. The increased CDNC will tend to slow the collision–
coalescence process, enhance evaporation and reduce the
drop fall speeds (Xue and Feingold, 2006). The result of
this and the subsequent feedbacks in these small clouds is
to reduce the liquid water path as well as the amount of pre-
cipitation. Therefore, for this case all simulations produce a
negative second aerosol indirect effect, except for the highest
CDNC using the non-turbulent microphysics scheme, which
shows a small increase in liquid water path. The change in
average cloud fraction for all simulations is small and gen-
erally less than 1 %. As shown in Xue et al. (2008) this may
be due to the cancellation of changes in cloud size and cloud
frequency.

The TKE response to increased CDNC in the shallow cu-
mulus convection case is shown in Fig. 11b. Both sets of sim-
ulations tend to show an increase in vertically averaged TKE
as CDNC increases, with the largest changes occurring for
the smallest CDNC in the turbulent microphysics set and the
highest CDNC in the non-turbulent set. The simulation that
produces the largest TKE is the non-turbulent microphysics
scheme case with the highest CDNC. This is due to a signif-
icant increase in the vertical velocity variance and buoyancy
production of TKE, which is responsible for the liquid water
path being larger in this case than the simulation with CDNC
of 100 cm−3. Examining the profiles of buoyancy produc-
tion of TKE for the non-turbulent microphysics cases shows
that the reduction in vertically integrated TKE as CDNC re-
duces and rain water increases is due to the negative feedback
that the enhanced precipitation has on the buoyancy produc-
tion of TKE, as discussed previously. Figure 11 shows that
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the liquid water paths almost converge for the turbulent and
non-turbulent simulations with the largest CDNC due to the
similar smaller rain water paths and the reduced effect of the
turbulence-enhanced autoconversion and accretion rates.

5 Summary

Use of the bulk warm rain microphysics parameterisations of
Franklin (2008) in the UCLA-LES has allowed an investiga-
tion into the effects of turbulence on cloud droplet collision–
coalescence in stratocumulus and shallow convective clouds.
The microphysics parameterisations that include the effects
of turbulence on droplet collision rates had a greater impact
on the simulated precipitation rates in the shallow convec-
tion case, where the larger dissipation rates of TKE pro-
duced a more rapid conversion of cloud water to rain wa-
ter. The amount of rain water reaching the surface was six
times larger in the simulation with the turbulent microphysics
scheme. The much weaker dissipation rates in the stratocu-
mulus case, however, also showed a change in the simulated
precipitation when the effects of turbulence on microphysical
processes were included in the model, with rain water paths
increasing by 17 %. However, unlike the shallow convection
case, this is not a statistically significant result.

Both cases using the turbulent microphysics scheme pro-
duced greater evaporation rates of rain water, which caused
a change in the thermodynamics of the subcloud layer,
destabilising the lower levels and enhancing the horizon-
tal variability and TKE in this region. The difference in
the precipitation-dynamical feedbacks between the two cases
was in the upper levels of the clouds where the liquid wa-
ter contents are largest. In the shallow convection case the
greater rain and cloud water loading and enhanced latent
heating associated with the larger liquid water in the tur-
bulent microphysics simulation, reduced the buoyancy pro-
duction of TKE and the entrainment. Therefore, in this
case a negative precipitation-dynamical feedback to the en-
hanced precipitation formation associated with turbulent mi-
crophysics effects was produced. In contrast, the stratocu-
mulus case showed a weak positive feedback, with en-
hanced rainwater and rain water evaporation in the simula-
tion with the turbulent microphysical parameterisations pro-
ducing greater TKE in both the subcloud layer and in the up-
per cloud region. Including the results from the other bulk
microphysics schemes (Seifert and Beheng for the RICO
case and Khairoutdinov and Kogan for the DYCOMSII case)
demonstrated that including the effects of turbulence on
droplet collision rates had a larger impact than the differ-
ent microphysics scheme for the shallow convection case, but
that the opposite is true for the stratocumulus case. These re-
sults highlight the significant parameterisation uncertainties
associated with bulk schemes in their simulations of stratocu-
mulus clouds.

Sensitivity studies where the CDNC was varied showed
agreement with the conceptual model for lightly drizzling
stratocumulus clouds, that greater CDNC suppresses precip-
itation formation leading to larger cloud fraction and liquid
water paths (Albrecht, 1989). This can be interpreted as a
positive second indirect aerosol effect, and was produced in
all of the DYCOMS II simulations except for the case us-
ing the turbulent microphysics with the highest CDNC which
showed a small reduction in liquid water path. The RICO
shallow convection case produced a negative second indirect
aerosol effect in all but one simulation. The increased CDNC
in the small convective clouds reduced the production of rain-
water, enhanced the evaporation and led to a reduction in the
liquid water path. While the sign of the second indirect effect
is negative in the shallow convection case whether the effects
of turbulence on cloud droplet collisions are considered or
not, the magnitude of the effect is doubled when the turbu-
lent microphysics are used. Liquid water paths reduce from
19.1 to 16.1 g m−2 for the non-turbulent microphysics simu-
lations as CDNC increases from 40 to 200 cm−3, whereas for
the turbulent microphysics simulations the liquid water paths
change from 24.2 to 16.7 g m−2.

The results presented in this work are by no means a
definitive or quantitative statement as to how the effects of
turbulence on cloud collision and coalescence impacts pre-
cipitation and cloud properties. Larger domains and higher
resolution simulations need to be conducted in the future to
test how robust the features are that have been described in
this study. Seifert et al. (2010) performed a set of simula-
tions at double the horizontal resolution of their control case
and found a reduction in the rainfall increase due to turbu-
lent enhancement. How this may change with further refine-
ment of the computational grid remains to be seen. Math-
eou et al. (2011) found that the negative buoyancy zones
that occur at the cloud–environment interface are unresolved
for typical LES resolutions and discussed the impact that
this may have on modelling the entrainment process. Higher
resolution simulations that better resolve entrainment could
show a change in the buoyancy and entrainment results found
in this study. In addition, other case studies and thermo-
dynamic profiles should be tested to investigate the sensi-
tivity of the effects to changes in the large-scale environ-
ment. Refinements and further developments to the turbulent
collision kernels and collision efficiencies are also required
to advance the knowledge regarding the effects of turbu-
lence on cloud microphysics, the formation of precipitation
and the precipitation-dynamical feedbacks. Wyszogrodzki et
al. (2013) describe their aims of developing an integrated
multiscale computational approach that combines LES and
DNS approaches. This would provide a unique way to simu-
late the wide range of scales involved with precipitation for-
mation from kilometres to millimetres.

As discussed by Savic-Jovcic and Stevens (2008), often
LES require lower CDNC than observed to initiate precipi-
tation, and this includes both bulk and bin models. Including
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the effects of turbulence in the microphysics parameterisa-
tions minimises this need to artificially reduce CDNC in or-
der to simulate observed precipitation rates. How much of
this effect may be due to a better physical representation of
the collision process or to numerical limitations is an open
question. Use of observations to try to answer this would
be a worthwhile endeavour; however, as noted by Xue and
Feingold (2006), the variability of the cloud fields in shallow
convection simulations where the impact of the turbulence
enhancement is largest might make this somewhat challeng-
ing. For example, the changes to liquid water paths due to
the effects of turbulent microphysics are much smaller than
the standard deviations of the liquid water path of any given
simulation by about an order of magnitude. In this study the
analysis of the turbulent enhancement and the precipitation-
dynamical feedbacks has been on a scale larger than that of
an individual cloud. Future work will investigate individual
cloud properties and life cycles to examine the effects that
the microphysics parameterisations that include the effects
of turbulence may have on the cloud scale.
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