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Abstract. Long-term PM2.5 exposure has been associated
with various adverse health outcomes. However, most ground
monitors are located in urban areas, leading to a potentially
biased representation of true regional PM2.5 levels. To facili-
tate epidemiological studies, accurate estimates of the spa-
tiotemporally continuous distribution of PM2.5 concentra-
tions are important. Satellite-retrieved aerosol optical depth
(AOD) has been increasingly used for PM2.5 concentration
estimation due to its comprehensive spatial coverage. Never-
theless, previous studies indicated that an inherent disadvan-
tage of many AOD products is their coarse spatial resolution.
For instance, the available spatial resolutions of the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) and the
Multiangle Imaging SpectroRadiometer (MISR) AOD prod-
ucts are 10 and 17.6 km, respectively. In this paper, a new
AOD product with 1 km spatial resolution retrieved by the
multi-angle implementation of atmospheric correction (MA-
IAC) algorithm based on MODIS measurements was used.
A two-stage model was developed to account for both spa-
tial and temporal variability in the PM2.5–AOD relationship
by incorporating the MAIAC AOD, meteorological fields,
and land use variables as predictors. Our study area is in the
southeastern US centered at the Atlanta metro area, and data
from 2001 to 2010 were collected from various sources. The
model was fitted annually, and we obtained model fittingR2

ranging from 0.71 to 0.85, mean prediction error (MPE) from
1.73 to 2.50 µg m−3, and root mean squared prediction error
(RMSPE) from 2.75 to 4.10 µg m−3. In addition, we found
cross-validationR2 ranging from 0.62 to 0.78, MPE from
2.00 to 3.01 µg m−3, and RMSPE from 3.12 to 5.00 µg m−3,

indicating a good agreement between the estimated and ob-
served values. Spatial trends showed that high PM2.5 levels
occurred in urban areas and along major highways, while low
concentrations appeared in rural or mountainous areas. Our
time-series analysis showed that, for the 10-year study pe-
riod, the PM2.5 levels in the southeastern US have decreased
by ∼ 20 %. The annual decrease has been relatively steady
from 2001 to 2007 and from 2008 to 2010 while a significant
drop occurred between 2007 and 2008. An observed increase
in PM2.5 levels in year 2005 is attributed to elevated sulfate
concentrations in the study area in warm months of 2005.

1 Introduction

Long-term exposure to PM2.5 (particle size less than 2.5 µm
in the aerodynamic diameter) is associated with various ad-
verse health outcomes including respiratory and cardiovas-
cular diseases (Crouse et al., 2012; Peng et al., 2009). Due
to the spatiotemporally continuous nature of the distribu-
tion of fine particles, obtaining long-term and spatially re-
solved distribution of PM2.5 concentrations is important to
reduce exposure misclassification and facilitate epidemiolog-
ical studies in the region. In addition, time-series analyses of
air pollution and human health have become a common study
design to compare day-to-day fluctuations of air pollution
and corresponding fluctuations in health outcomes (Ito et al.,
2007) and require long-term PM2.5 concentration estimates.
Previous research examined temporal trends in PM2.5 levels.
For instance, Weber et al. (2003) investigated the temporal
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variations in PM2.5 concentrations at the US Environmen-
tal Protection Agency (EPA) Atlanta Supersite Experiment in
August, 1999. So et al. (2007) examined long-term variation
in PM2.5 levels during two 12-month periods in Hong Kong.
The EPA (2011) evaluated temporal trends of annual and 24 h
mean PM2.5 concentrations at the national level from 2001 to
2010 and reported that annual and 24 h mean PM2.5 concen-
trations dropped 24 and 28 %, respectively, during these 10
years.

Accurate depiction of spatial trends of PM2.5 levels is also
important for air pollution health effects research. Station-
ary ambient monitors leave large areas uncovered, which
makes the assessment of PM2.5 spatial variability difficult.
Using measurements from central monitors to estimate pop-
ulation exposure inevitably introduces measurement errors
that likely have substantial implications for interpreting epi-
demiological studies, especially time-series analyses (Zeger
et al., 2000). On the other hand, aerosol observations from
satellite remote sensing could substantially improve esti-
mates of population exposure to PM2.5 (van Donkelaar et al.,
2010). As a result, satellite-retrieved aerosol optical depth
(AOD), which measures light extinction by aerosols in the
atmospheric column, has been widely used to predict ground-
level PM2.5 concentrations, given its relatively low cost and
large spatiotemporal coverage. A number of AOD products
from sensors such as the Moderate Resolution Imaging Spec-
troradiometer (MODIS), the Multiangle Imaging Spectro-
Radiometer (MISR), and the Geostationary Operational En-
vironmental Satellite Aerosol/Smoke Product (GASP) have
been applied to PM2.5 concentration prediction in previous
studies (Liu et al., 2007, 2009; Paciorek et al., 2008; Hu et
al., 2013). A limitation of those AOD products is the rela-
tively coarse spatial resolutions. For instance, the spatial res-
olutions of AOD derived from MODIS and MISR are 10 and
17.6 km, respectively. Although GASP has a spatial resolu-
tion of 4 km, the AOD retrievals are less precise than those
from the polar-orbiting instruments due to limited informa-
tion content (one spectral band) and relatively low signal-to-
noise ratio of the GOES sensor (Prados et al., 2007). Mean-
while, epidemiological studies typically have access to health
data geo-coded to small geographical units (e.g., zip code
and census block groups), many of which are substantially
smaller than the spatial resolutions of MODIS and MISR. In
addition, satellite-estimated PM2.5 concentrations at coarse
resolutions omit detailed spatial variability of PM2.5 expo-
sure and therefore have limited value in the investigation
of spatial trends of PM2.5 levels at urban scale (Hu et al.,
2014). Hence, it is essential to use high-resolution AOD re-
trievals to generate high spatial resolution PM2.5 concentra-
tion estimates. Recently, a new AOD product retrieved by the
multi-angle implementation of atmospheric correction (MA-
IAC) algorithm based on MODIS measurements has been
reported (Lyapustin et al., 2011b). MAIAC AOD has a spa-
tial resolution of 1 km and thus has the ability to estimate
PM2.5 concentrations at that resolution. Moreover, MAIAC

AOD has been demonstrated to be correlated with monitored
PM2.5 levels in the New England region (Chudnovsky et al.,
2012). Hu et al. (2014) compared the performance of MA-
IAC with MODIS in PM2.5 concentration prediction in the
southeastern US in a case study and found that MAIAC pre-
dictions can reveal many more spatial details than MODIS.
In a single 12× 12 km2 Community Multiscale Air Quality
(CMAQ) grid cell, MODIS can only make one prediction,
while MAIAC can make∼ 144 predictions. As an example
of the benefit gained with increased resolution, MAIAC pre-
dictions can distinctly show high concentrations along major
highways, while MODIS predictions cannot.

Various statistical methods have been developed to estab-
lish the quantitative relationship between PM2.5 and satellite-
derived AOD, including linear regression (Schafer et al.,
2008; Wallace et al., 2007; Gupta and Christopher, 2009).
However, many of the methods do not consider day-to-day
variability in the association between PM2.5 and AOD. Lee
et al. (2011) and Kloog et al. (2011) argued that the PM2.5–
AOD relationship varies day to day, and this temporal vari-
ability needs to be accounted for in order to improve the per-
formance of the AOD-based prediction models. As a result,
both studies developed a linear mixed effects (LME) model
to incorporate daily calibration of the PM2.5–AOD relation-
ship and obtained predictions with high accuracy. To move
one step further, Hu et al. (2014) introduced a geographically
weighted regression (GWR) model as the second stage to ac-
count for possible spatial variability in the PM2.5–AOD rela-
tionship. This model used the MAIAC AOD as the primary
predictor and meteorological fields and land use variables as
secondary predictors. Hu et al. (2014) further pointed out that
AOD is essential in the two-stage model framework in terms
of prediction accuracy. The model can predict PM2.5 con-
centrations with high accuracy and thus was adopted in this
study.

The objectives of this paper were, first, to estimate spa-
tiotemporally resolved PM2.5 concentrations in the study do-
main during the period between 2001 and 2010 in the south-
eastern US using the two-stage model developed by Hu et
al. (2014). Second, maps of annual mean PM2.5 concentra-
tions as well as the changes between 2001 and 2010 were
generated from the daily estimates to visually illustrate the
spatial trends of annual PM2.5 levels between 2001 and 2010.
Third, time-series analyses were conducted for the study do-
main and the Atlanta metro area specifically using the sea-
sonal and annual mean PM2.5 estimates to examine the 10-
year temporal trends of PM2.5 levels, and the underlying
causes were discussed.
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2 Materials and methods

2.1 Study area

The study area is approximately 600× 600 km2 in the south-
eastern US, covering most of Georgia, Alabama, and Ten-
nessee, and parts of North and South Carolina (Fig. 1).
The domain includes several large urban centers, numerous
medium-to-small cities, as well as suburban and rural areas.

2.2 PM2.5 measurements

The 24 h average PM2.5 concentrations from 2001 to 2010
collected from the US EPA federal reference monitors
(FRMs) were downloaded from the EPA’s Air Quality
System Technology Transfer Network (http://www.epa.gov/
ttn/airs/airsaqs/). PM2.5 concentrations less than 2 µg m−3

(∼ 0.2–3 % of total data records) were discarded as they are
below the established limit of detection (EPA, 2008a).

2.3 Remote sensing data

MAIAC retrieves aerosol parameters over land at 1 km res-
olution, which was accomplished by using the time series
of MODIS measurements and simultaneous processing of a
group of pixels in fixed 25× 25 km2 blocks (Lyapustin et al.,
2011a, b, 2012). MAIAC uses a sliding window to collect up
to 16 days of MODIS radiance observations over the same
area and processes them to obtain surface parameters used
for aerosol retrievals. To facilitate the time-series analysis,
MODIS data are initially gridded to a 1 km resolution in a
selected projection. For this work, we used MODIS level 1B
(calibrated and geometrically corrected) data from Collec-
tion 6 re-processing, which removed major effects of tem-
poral calibration degradation of Terra and Aqua, a necessary
prerequisite for the trend analysis.

Validation based on the Aerosol Robotic Network
(AERONET) data showed that MAIAC and the operational
Collection 5 MODIS Dark Target AOD have a similar ac-
curacy over dark and vegetated surfaces, but also showed
that MAIAC generally improves accuracy over brighter sur-
faces, including most urban areas (Lyapustin et al., 2011b).
MAIAC AOD data from 2001 to 2010 were obtained from
the National Aeronautics and Space Administration (NASA)
Goddard Space Flight Center. Due to the lack of sufficient
data records from AERONET, a comparison between MA-
IAC AOD and AERONET measurements in our study do-
main was not possible.

Zhang et al. (2012) found that Terra and Aqua may pro-
vide a good estimate of the daily average of AOD. Thus, the
average of the Aqua and Terra measurements can be used
to predict daily PM2.5 concentrations. In this study, Aqua
(overpasses at∼ 1:30 p.m. local time) and Terra (overpasses
at ∼ 10:30 a.m. local time) MAIAC AOD values were first
combined to improve spatial coverage. In our study domain,
the increase in spatial coverage ranged from 30.2 to 72.4 %

for Aqua and from 17.2 to 26.3 % for Terra from 2001 to
2010. In a common MAIAC pixel, there might be only one
MAIAC product from either Aqua or Terra, or both may be
present. In the second case, when we combine them, the av-
eraged value, as pointed out by Lee et al. (2012), is likely to
better reflect daily aerosol loading, yet in the first case, AOD
as an indicator of PM2.5 abundance is biased towards the at-
mospheric condition either in the morning or early afternoon.
To estimate the missing AOD value, Lee et al. (2011) defined
a simple ratio between averaged Terra and Aqua AOD. In
this study, we fitted a linear regression to define the relation-
ship between daily mean Terra-MAIAC and Aqua-MAIAC
AOD values. We used this regression to predict the missing
AOD value (i.e., predict Terra-MAIAC AOD with the avail-
able Aqua-MAIAC AOD, and vice versa), and then averaged
the observed and the predicted AOD values together. Finally,
we set an upper bound of 2.0 for the combined AOD to re-
duce potential cloud contamination (∼ 0.05–0.1 % of total
data records were excluded).

2.4 Meteorological fields

The meteorological fields provided by the North American
Land Data Assimilation System (NLDAS) Phase 2 were
downloaded from the NLDAS website (http://ldas.gsfc.nasa.
gov/nldas/). The spatial resolution of NLDAS meteorolog-
ical data is 1/8th of a degree (∼ 13 km). Another meteoro-
logical data set used in this study is the North American
Regional Reanalysis (NARR). NARR is a long-term, con-
sistent, high-resolution climate data set for North America
(Mesinger et al., 2006), with a spatial resolution of∼ 32 km.
NLDAS provides most of the meteorological fields used
in this analysis, including relative humidity,U wind, and
V wind, while NARR provides another critical parameter:
boundary layer height. To generate daytime meteorologi-
cal fields corresponding to the MODIS overpass times, 3-
hourly NARR measurements and hourly NLDAS measure-
ments from 10 a.m. to 4 p.m. standard local time were aver-
aged.

2.5 Land use variables

Elevation data were downloaded from the national elevation
data set (NED) (http://ned.usgs.gov). NED is the seamless el-
evation data set covering the conterminous United States and
is distributed by the US Geological Survey (USGS). The ele-
vation data are downloaded at a spatial resolution of 1 arcsec
(∼ 30 m). The road data were obtained from ESRI StreetMap
USA (Environmental Systems Research Institute, Inc., Red-
land, CA). The road data at level A1 (limited access highway)
were extracted. Summed length of road segments was calcu-
lated for each 1× 1 km2 MAIAC grid cell, and grid cells with
no roads were assigned zero. The 2001 and 2006 Landsat-
derived land cover maps covering the study area with a spa-
tial resolution of 30 m were downloaded from the National
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Figure 1. Study area.

Land Cover Database (NLCD) (http://www.mrlc.gov). For-
est cover maps were generated by assigning one to forest
pixels and zero to others. Primary PM2.5 emissions (tons per
year) were obtained from the 2002, 2005, and 2008 EPA Na-
tional Emissions Inventory (NEI) facility emissions reports.
Grid cells with multiple emission sources were assigned the
summed value, and those with no emissions were assigned
zero.

2.6 Data integration

All the data were first re-projected to the USA Contigu-
ous Albers Equal Area Conic USGS coordinate system. For
model fitting, a 1× 1 km2 square buffer was generated for
each PM2.5 monitoring site. Meteorological fields and AOD
values were assigned to each PM2.5 monitoring site using
the nearest neighbor approach. Forest cover and elevation
were averaged, while road length and point emissions were
summed over the 1× 1 km2 square buffer by calculating the
total length of road segments and total point emissions within
the buffer. For PM2.5 prediction, the same procedure was per-
formed for each 1× 1 km2 MAIAC grid cell.

2.7 Model structure

We adopted the two-stage spatiotemporal model developed
by Hu et al. (2014). For the model to be valid, we assumed
that particles within the boundary layer were well mixed,
and the vertical distribution of particles above boundary layer
was relatively smooth. The first stage is a LME model with
day-specific random intercepts and slopes for AOD and me-

teorological fields to account for the temporally varying re-
lationship between observed PM2.5 and AOD (Eq. 1). The
model structure can be expressed as

PM2.5,st = (b0 + b0,t ) + (b1 + b1,t )AODst + (b2 + b2,t )

MeteorologicalFieldsst + b3Elevations+ b4MajorRoadss
+ b5ForestCovers+ b6PointEmissionss
+ εst (b0,tb1,tb2,t ) ∼ N [(0,0,0) ,9] , (1)

wherebi andbi,t (day-specific) are the fixed and random in-
tercept and slopes, respectively. Fixed intercepts and slopes
are the same for all days and generated via conventional lin-
ear regression, while random intercepts and slopes vary in-
dependently for each individual day and are estimated via
likelihood methods from the full set of observations. In this
study, we generated fixed slopes for each predictor variable,
but random slopes were only generated for AOD and meteo-
rological fields, since they represent time-varying variables.
The fixed slopes (e.g.,b1, b2, . . . ,b6) denote the overall rela-
tionship for all days, and the random slopes (e.g.,b1,tb2,t ) in-
dicate the daily relationship among PM2.5, AOD, and meteo-
rological fields. PM2.5,st is the measured ground level PM2.5
concentration (µg m−3) at sites on dayt ; AODst is the MA-
IAC AOD value (unitless) at sites on day t ; Meteorolog-
ical Fieldsst is the meteorological parameters at sites on
dayt and may include Relative Humidityst , Boundary Layer
Heightst , Wind Speedst , U Windst , andV Windst ; Relative
Humidityst is the relative humidity (%) at sites on day t ;
Boundary Layer Heightst is the boundary layer height (m) at
sites on dayt ; Wind Speedst is the 2 m wind speed (m s−1) at
sites on dayt ; U Windst is the east–west component of wind
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Figure 2. Model validation.(a) model fitting;(b) cross-validation.

(m s−1) at sites on dayt ; V Windst is the north–south com-
ponent of wind (m s−1) at sites on dayt ; Elevations is eleva-
tion values (m) at sites; Major Roadss is road length values
(m) at sites; Forest Covers is forest cover values at sites;
Point Emissionss is point emissions (tons per year) at sites;
and9 is an unstructured variance–covariance matrix for the
random effects. The fixed effects affect the population mean
and represent the average effects on PM2.5 concentration es-
timates for the entire period, while the random effects con-
tribute to the covariance structure and account for the daily
variability in associations between dependent and indepen-
dent variables. Although the PM2.5–AOD relationship might
vary by season, our first-stage LME model was able to incor-
porate daily variability in the relationship by generating day-
specific random slopes for AOD and meteorological fields
and thus should be able to capture the seasonal variability. In

addition, by comparing the performances of models fitted for
each season, each year, and all 10 years, we found that the
models fitted for each year generally yielded higher predic-
tion accuracy. Hence, in this study, we fitted the model for
each year individually allowing the predictors used in each
model to vary from year to year. Each final annual model was
selected to achieve the highest prediction accuracy, and only
statistically significant variables were retained. The detailed
model structures can be found in the Supplement.

The second stage is a geographically weighted regres-
sion (GWR) model that can generate a continuous surface
of estimates for each parameter at each location instead of
a universal value for all observations. We fitted a monthly
GWR model to calibrate the spatial variability within the
PM2.5–AOD relationship, and the model can be expressed

www.atmos-chem-phys.net/14/6301/2014/ Atmos. Chem. Phys., 14, 6301–6314, 2014
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Figure 3. Annual mean PM2.5 concentration predictions in the study area.

as

PM2.5_resist = β0,s+ β1,sAODst + εst , (2)

where PM2.5_resist denotes the residuals from the stage one
model at sites in montht , AODst is the MAIAC AOD value
(unitless) at sites in month t , andβ0,s andβ1,s denote the
location-specific intercept and slope, respectively.

To assess the goodness of fit of the model, various statis-
tical indicators such as the coefficient of determination (R2),
mean prediction error (MPE), and square root of the mean
squared prediction errors (RMSPE) were calculated between
the fitted PM2.5 concentrations from the model and the ob-
servations. In addition, a 10-fold cross-validation (CV) tech-
nique was adopted to assess potential model over-fitting. A
model that has been over-fit could perform better on the data
used to fit the model than unobserved data and thus gen-
erally has poor predictive performance. The entire model-
fitting data set was randomly split into 10 subsets with ap-
proximately 10 % of the total data records in each subset. In

each round of cross-validation, we selected one subset (10 %
of the data) as the testing samples and used the remaining
nine subsets (90 % of the data) to fit the model. Predictions
of the held-out subset (10 % of the data) were made from the
fitted model. The process was repeated 10 times until every
subset was tested. Statistical indicators such asR2, MPE, and
RMSPE were calculated between the CV predicted concen-
trations and the observations. The model over-fitting assess-
ment was conducted by comparing the CV and model-fitting
statistics. Cross-validation also can provide a means to quan-
titatively assess prediction accuracy for areas where there are
no ground observations. A relative accuracy value was also
calculated for each year to make validation results compara-
ble among different years.

The daily PM2.5 concentrations were estimated using the
final annual models for 2001 through 2010. The maps of
annual mean PM2.5 concentrations as well as the percent
changes between 2001 and 2010 for the study domain and the
Atlanta metro area were generated using the daily estimates
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Figure 4. Annual mean PM2.5 concentration measured from ground FRM monitors.

to visually examine spatial trends of PM2.5 levels between
2001 and 2010. The percent changes were calculated as fol-
lows

PM2.5,percentchange=

((PM2.5,endyear− PM2.5,startyear)/PM2.5,startyear) × 100%, (3)

where PM2.5,percentchangedenoted the percent changes of
PM2.5 during a study period. PM2.5,endyear was the PM2.5
concentrations in the end year of the study period, and
PM2.5,startyearwas the PM2.5 concentrations in the start year
of the study period. Moreover, time-series analyses were con-
ducted by year and season, respectively to quantitatively in-
vestigate the 10-year temporal trends of fine particle levels in
the study domain and the Atlanta metro area.

3 Results

3.1 Descriptive statistics

The descriptive statistics of variables used in fitting the mod-
els are listed in Table 1. The annual mean PM2.5 concentra-
tions ranged from 11.03 to 15.63 µg m−3 between 2001 and
2010, the highest occurring in 2005 and the lowest in 2009.
The annual mean AOD values ranged from 0.20 to 0.28 dur-
ing the same period of time. Table 1 also shows that land use
variables and meteorological fields vary from year to year
within the data.

3.2 Results of model-fitting and validation

The model-fitting and CV statistics (e.g.,R2, MPE, and RM-
SPE) are listed in Table 2. The results show thatR2 ranges
from 0.71 to 0.85, MPE is from 1.73 to 2.50 µg m−3, RM-
SPE ranges from 2.75 to 4.10 µg m−3, and relative accuracy

www.atmos-chem-phys.net/14/6301/2014/ Atmos. Chem. Phys., 14, 6301–6314, 2014
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Table 1.Descriptive statistics (2001–2010).

Var. Min SD Max Mean

PM2.5 (µg m−3) 2.0–2.6 5.31–8.64 50.1–145.0 11.03–15.63
Boundary layer height (m) 215–464 347–493 2605–3405 1146–1464
Relative humidity (%) 13.9–26.2 8.7–11.3 86.8–93.1 46.8–59.9
U wind (m s−1) −9.44 to−6.30 2.62–3.20 10.22–16.85 0.82–1.47
V wind (m s−1) −12.60 to−9.34 2.62–3.00 8.45–11.84 −0.74 to−0.09
Wind speed (m s−1) 0.03–0.12 1.81–2.13 12.76–18.06 3.48–3.99
Forest cover 2001 0 0.16–0.18 0.83 0.14–0.17
Forest cover 2006 0 0.15–0.17 0.79 0.14–0.16
Road length (m) 0 187.29–230.81 1012.97–1078.09 58.05–82.92
Elevation (m) 46.78 126.82–141.65 811.63–822.82 227.74–249.10
Point emissions 2002 (tons year−1) 0 56.64–70.39 364.42 11.13–16.46
Point emissions 2005 (tons year−1) 0 150.89–188.63 985.48 26.90–40.84
Point emissions 2008 (tons year−1) 0 15.89–19.72 101.74 3.14–4.54
AOD 0–0.01 0.16–0.26 1.42–1.96 0.20–0.28

ranges from 72.9 to 80.7 %, which indicates a good fit be-
tween the predicted values from the fitted models and the
observations. In addition, CV statistics results suggest that
some model over-fitting is present; that is,R2 decreases,
while MPE and RMSPE increase from model fitting to cross-
validation, yet the differences are relatively small for all the
years. For instance,R2 and relative accuracy have an average
decrease of 0.08 and 4.21 %, respectively, while MPE and
RMSPE have an average increase of 0.39 and 0.60 µg m−3,
respectively, through all the years. Moreover, a regression of
predicted values against the observations with an intercept at
zero (Fig. 2) shows that, at high concentration levels, both
model fitting and cross-validation under-predicted the PM2.5
concentrations by 3–7 % (e.g., fitted/CV PM2.5 = 97 % to
93 % observed PM2.5).

3.3 Spatial trends of PM2.5 concentrations

Figure 3 illustrates the PM2.5 concentration estimates at 1 km
spatial resolution in the study area. The annual mean esti-
mated concentrations are 13.97, 13.90, 13.35, 13.31, 15.19,
13.73, 13.22, 11.34, 10.58, and 11.22 µg m−3 for year 2001
though 2010, respectively. The spatial patterns of PM2.5 are
very similar for all the years. High concentrations appear in
large urban centers and along major highways, while low
concentrations occur in rural and mountainous areas. In ad-
dition, high PM2.5 levels are also seen in the southeastern
part of the study domain. Hu et al. (2014) reported elevated
PM2.5 concentrations measured from monitoring sites lo-
cated in this region. This area is primarily occupied by agri-
culture land, and high agricultural emissions may lead to el-
evated PM2.5 levels. As reported by previous studies, am-
monia (NH3) and nitrogen oxides (NOx) generated by agri-
cultural activities, such as farm vehicles, domestic and farm
animals, and fertilizer applications, can significantly increase
the number of suspended particles (Kurvits and Marta, 1998).

However, specific agricultural emissions data are needed for
further validation. In addition, biomass burning also con-
tributes to emissions of fine particles in the region, follow-
ing typical seasonal variations (Zhang et al., 2010). Figure 4
shows that the pattern of ground PM2.5 measurements from
FRM monitors corresponds well with that of our estimated
concentrations, and the differences between observed and es-
timated PM2.5 were within±3 µg m−3 for, on average, 92 %
of the monitoring sites for the 10 years, indicating a good
agreement between them (Fig. 5).

To take advantage of the high spatial resolution of the MA-
IAC data, we generated a map of PM2.5 estimates in the At-
lanta metro area for each year (Fig. 6). The annual mean es-
timates from 2001 to 2010 are 15.10, 14.64, 14.00, 14.54,
15.63, 14.39, 14.14, 11.78, 10.98, and 11.65 µg m−3, respec-
tively. Compared to the last plot of Fig. 6, which illustrates
the percentage of impervious surfaces and indicates the level
of urban development, the PM2.5 maps distinctly show that
high PM2.5 levels occur in areas with high urban land use and
along major highways, while low concentrations appear in
forest and recreational areas, suggesting an underlying pos-
itive relationship between air pollution levels and urban de-
velopment.

As shown in Fig. 7, PM2.5 concentrations have decreased
on average∼ 20 % for the entire domain and∼ 23 % for the
Atlanta metro area between 2001 and 2010. Figure 7a illus-
trates the spatial trend of changes in PM2.5 levels in the study
region. The results show that PM2.5 levels in most of the ar-
eas decreased from 0 to 25 %, and large parts of the areas
had decreases exceeding 25 % and as high as 50 %. Larger
decreases occurred in more polluted areas such as the At-
lanta metro area and along major highways, which might be
due to recently enacted emission reduction programs (EPA,
2011) such as the EPA’s Clean Air Interstate Rule (CAIR) is-
sued in 2005 (http://www.epa.gov/cair/index.html), since the
majority of emissions sources are located in or near urban
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Table 2.Model validation.

Year Model fitting Cross-validation
R2 MPE (µg m−3) RMSPE (µg m−3) Relative accuracy (%)∗ R2 MPE (µg m−3) RMSPE (µg m−3) Relative accuracy (%)∗

2001 0.78 2.50 4.10 72.9 0.67 3.01 5.00 67.0
2002 0.84 2.10 2.98 80.7 0.75 2.62 3.75 75.7
2003 0.85 1.95 2.77 80.4 0.76 2.42 3.47 75.4
2004 0.85 1.97 2.77 80.3 0.77 2.40 3.37 76.1
2005 0.84 2.23 3.17 79.7 0.78 2.64 3.76 75.9
2006 0.85 2.02 2.90 80.6 0.78 2.43 3.49 76.6
2007 0.79 2.26 3.75 74.0 0.71 2.64 4.39 69.6
2008 0.74 1.93 3.13 75.4 0.67 2.21 3.53 72.3
2009 0.71 1.73 2.88 73.9 0.62 2.00 3.28 70.3
2010 0.73 1.90 2.75 77.6 0.66 2.15 3.12 74.5

∗ Relative accuracy is defined as 100 % – RMSPE/the mean PM2.5 concentration.

areas and along major highways. Mitigation of fine particles
has been effected by controlling direct PM2.5 emissions from
both stationary and mobile sources (e.g., through installation
of scrubbers and filters and the use of alternative fuels and
electric vehicles) (EPA, 2007). The mountainous area in the
northeastern part of our domain with generally low PM2.5
levels has also seen substantial decreases of PM2.5 concen-
trations. PM2.5 levels decreased from 25 to 50 % in most of
the region, and some areas had decreases exceeding 50 %. By
checking 2002 and 2008 point emissions data from the EPA
NEI facility emissions reports (due to the lack of 2001 and
2010 data), the decreases are probably due to the dramati-
cally reduced number of emission sources as well as the total
emissions in the region during the period. Figure 7b illus-
trates the percent changes in PM2.5 levels within the Atlanta
metro area. Once again, the spatial trend shows that larger
decreases (25 to 50 %) primarily occurred in urban built-up
areas and along major highways, while smaller decreases (0
to 25 %) appeared in forest or recreational areas with gen-
erally lower pollution levels. This result is expected because
the changes of emissions mostly took place in urban built-up
areas and along major highways. Two pixels with unusually
large changes were identified (in blue and red circles). The
large decrease (> 50 %) of PM2.5 concentration in the blue
pixel was due to large emissions reduction from power plants
located within that pixel during the period between 2001 and
2010. Likewise, the large increase (> 25 %) of PM2.5 con-
centration in the red pixel was due to the addition of a new
emission source that did not exist in 2001.

We also illustrated the percent changes between 2001 and
2007, between 2007 and 2008, and between 2008 and 2010
in Fig. 7c–h, since the decreasing trend between 2001 and
2010 was nonlinear with small decreases between 2001 and
2007 (on average∼ 5 % for the entire domain and∼ 6 % for
the Atlanta metro area) and between 2008 and 2010 (∼ 1 %
for both the entire domain and the Atlanta metro area) and a
sharp decrease between 2007 and 2008 (∼ 14 % for the en-
tire domain and∼ 17 % for the Atlanta metro area). Figure 7c
and d show that large decreases (> 10 %) between 2001 and
2007 mainly occurred in the northern part of the domain and

the mountainous region as well as in urban built-up areas
and along major highways in the Atlanta metro area, while
increases (> 5 %) appeared in the southern and southeastern
parts of our domain as well as in some residential and sub-
urban regions in the Atlanta metro area. By comparing the
2002 with 2008 NEI point emissions data, this might be due
to the addition of extra emissions sources in the region, de-
spite the fact that total emissions dropped significantly dur-
ing this period. Figure 7e and f show that large decreases
(> 10 %) occurred in most of our domain between 2007 and
2008. We could not confirm whether this was related to emis-
sions reductions in the absence of 2007 emissions data. Fig-
ure 7g and h illustrate the percent changes between 2008 and
2010. It revealed < 5 % increases in many areas in the eastern
part of the domain with increases in some areas exceeding
5 %. On the other hand, many areas in the western part of the
domain had < 5 % decreases with decreases in some parts of
the mountainous region exceeding 15 %, In the Atlanta metro
area, our results show decreases (< 10 %) in urban built-up
areas and along major highways with some residential and
suburban areas showing < 5 % increases. Similarly, in the ab-
sence of 2010 emissions data, we could not examine whether
these changes were associated with changes in emissions.

3.4 Temporal trends of PM2.5 concentrations

A time-series analysis was conducted to quantitatively exam-
ine temporal trends of PM2.5 levels in the study area as well
as the Atlanta metro area during the period between 2001 and
2010 (Fig. 8). The results show our model underestimated
PM2.5 concentrations by 0.99 µg m−3 for the study domain
and 1.82 µg m−3 for the Atlanta metro area. This is because
satellite-estimated PM2.5 concentrations included both urban
and rural regions, while the ground measurements mostly
represented urban conditions. On the other hand, our esti-
mates over monitoring sites matched well with the ground
measurements. The mean difference was 0.4 µg m−3 for the
Atlanta metro area and 0.41 µg m−3 for the study domain.
The PM2.5 levels in the study region as well as the Atlanta
metro area had relatively small fluctuations from 2001 to
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Figure 5. The differences between PM2.5 estimates and ground measurements at FRM monitors.

2007 and from 2008 to 2010, while there was a significant
drop in 2008, which was probably due to significant emis-
sions reduction in 2008. The results also reveal seasonal vari-
ations of PM2.5 levels with the highest concentrations oc-
curring in summer and the lowest appearing in winter. Be-
tween 2001 and 2010, our time-series analysis showed that
the annual mean PM2.5 concentration decreased∼ 20 % in
the study area and∼ 23 % in the Atlanta metro area, which
is in line with the findings documented in the US EPA report
on particle pollution (EPA, 2011). Both the EPA’s findings
and our results illustrate a peak in PM2.5 levels in year 2005,
and this phenomenon might be attributed to the increase of
sulfate concentrations emitted from electric utilities and in-

dustrial boilers during the warm months (e.g, from May to
September) of 2005 (EPA, 2008b). In addition, the decrease
of PM2.5 levels after year 2005 likely is due to the emissions
reduction programs that have been enacted recently (EPA,
2007, 2011) such as the EPA’s CAIR issued in 2005. Figure 8
distinctly shows this sharp decrease of emissions from 2005
to 2008. In addition, the sharp decrease from 2007 to 2008
also may be partially attributed to the national financial crisis
starting in late 2007. The economic slowdown had clear im-
pacts on manufacturing productivity (e.g., the real gross do-
mestic product (GDP) of metro Atlanta in the manufacturing
sector dropped 10.2 % from 2007 to 2008 (www.bea.gov)),
and may also have led to decreases in PM2.5 emissions.
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Figure 6. Annual mean PM2.5 concentration predictions in the Atlanta metro area.

4 Discussion

A major strength of this study is that we used high-resolution
PM2.5 estimates derived from MAIAC AOD to investigate
spatiotemporal trends of PM2.5 concentrations in the study
area. PM2.5 estimates at finer resolutions are more suitable
for investigation of spatial trends than those at coarser res-
olutions derived from other AOD products (e.g., MODIS
and MISR), because estimates at coarser scales inevitably
omit local spatial details, as pointed out by Hu et al. (2014).
Our results are capable of showing PM2.5 concentrations and
changes at 1 km resolution, which are very useful for air pol-
lution studies at local scales. For instance, spatial trends of
changes in PM2.5 concentrations in the Atlanta metro area
show greater PM2.5 reduction in more polluted areas (e.g.,
urban built-up areas and along major highways). Some of
the changes may be directly associated with the addition or
removal of one or more emission sources as well as the in-
crease or decrease of emissions from those sources. Although

high-resolution PM2.5 estimates can provide more details to
examine spatial trends, difficulties lie in their validation to
ground monitoring. More ground measurements at specific
locations are needed to further validate the results.

Our results of temporal trends of PM2.5 concentrations
correspond well with the EPA’s results (EPA, 2011). How-
ever, our results show that both ground measurements and
satellite-estimated PM2.5 concentrations over the monitor-
ing sites were generally higher than PM2.5 estimates over
the entire study domain. This is because most of the EPA
FRM monitors are located in or near urban areas with
generally higher PM2.5 levels, and therefore observed and
satellite-estimated PM2.5 levels over the monitoring sites re-
flect mostly urban conditions. Conversely, PM2.5 estimates
over the entire study area account for both urban and rural
areas, and therefore the temporal trends of satellite-estimated
PM2.5 concentrations over the entire study domain might be
more representative of the true fluctuations of regional PM2.5
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Figure 7.The percent changes of PM2.5 concentrations in the study
area(a) and the Atlanta metro area(b) between 2001 and 2010, in
the study area(c) and the Atlanta metro area(d) between 2001 and
2007, in the study area(e) and the Atlanta metro area(f) between
2007 and 2008, and in the study area(g) and the Atlanta metro area
(h) between 2008 and 2010.

levels. Our future research will continue to explore these as-
sociations.

A limitation of our study was that only 3 years of emis-
sions data (2002, 2005, and 2008) were available. The NEI is
prepared every 3 years by the EPA primarily based on emis-
sions estimates, emissions model inputs, and supplementary
data. As a result, a more quantitative comparison between
estimated PM2.5 and emissions could not be conducted.

We realize that both meteorological fields and land use
variables can be potentially incorporated in the second stage
GWR model. The primary objective of this study was to in-
vestigate the spatial and temporal trends of PM2.5 levels in
the southeastern US. Hence, it was not pursued in this study
and will be addressed in future research.

Figure 8. Time-series analyses of annual and seasonal mean PM2.5
concentrations and the point emissions from 2001 to 2010 for the
study area and the Atlanta metro area.

5 Conclusions

In this paper, we used a two-stage spatiotemporal model in-
corporating MAIAC AOD data, meteorological fields, and
land use variables to estimate PM2.5 concentrations at 1 km
spatial resolution and investigated the 10-year spatial and
temporal trends of PM2.5 levels in the southeastern US. As
expected, the satellite model predicted high concentrations
in large urban centers and along major highways and low
concentrations in rural and mountainous area with relatively
high accuracy. Our time-series analysis results indicate that
the PM2.5 levels decreased∼ 20 % in the study region and
∼ 23 % in the Atlanta metro area during the period between
2001 and 2010, and the largest drop occurred between 2007
and 2008. More polluted areas (e.g., in urban areas and along
major highways) have also seen greater reduction in PM2.5
levels, while forests and recreational areas had lower and
moderate reduction. PM2.5 estimates at high spatial resolu-
tions can provide more details in small geographic regions
and may reduce exposure misclassification in air pollution
and epidemiological studies. High-resolution PM2.5 data are
also useful for air pollution monitoring in large geographic
areas because they can not only greatly expand the spatial
coverage of costly ground monitoring networks, but they also
provide more accurate estimates of population exposure to
PM2.5. In addition, regional transport of PM2.5 can be bet-
ter examined via comparing the spatial distributions of daily
high-resolution PM2.5 estimates, raising new questions for
future research.
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