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Abstract. A box model for estimating bidirectional air–
surface exchange of gaseous elemental mercury (Hg0) has
been updated based on the latest understanding of the re-
sistance scheme of atmosphere–biosphere interface transfer.
Simulations were performed for two seasonal months to eval-
uate diurnal and seasonal variation. The base-case results
show that water and soil surfaces are net sources, while veg-
etation is a net sink of Hg0. The estimated net exchange in a
domain covering the contiguous US and part of Canada and
Mexico is 38.4 and 56.0 Mg as evasion in the summer and
winter month, respectively. The smaller evasion in summer is
due to the stronger Hg0 uptake by vegetation. Modeling ex-
periments using a two-level factorial design were conducted
to examine the sensitivity of flux response to the changes
in physical and environmental parameters in the model. It is
shown that atmospheric shear flows (surface wind over wa-
ter and friction velocity over terrestrial surfaces), dissolved
gaseous mercury (DGM) concentration, soil organic and Hg
content, and air temperature are the most influential factors.
The positive effect of friction velocity and soil Hg content
on the evasion flux from soil and canopy can be effectively
offset by the negative effect of soil organic content. Signif-
icant synergistic effects are identified between surface wind
and DGM level for water surface, and between soil Hg con-
tent and friction velocity for soil surface, leading to∼ 50%
enhanced flux compared to the sum of their individual ef-
fects. The air–foliage exchange is mainly controlled by sur-
face resistance terms influenced by solar irradiation and air
temperature. Research in providing geospatial distribution of

Hg in water and soil will greatly improve the flux estimate.
Elucidation on the kinetics and mechanism of Hg(II) reduc-
tion in soil/water and quantification of the surface resistances
specific to Hg species will also help reduce the model uncer-
tainty.

1 Introduction

Mercury (Hg) is a persistent, bioaccumulative pollutant re-
leased into the atmosphere from a variety of anthropogenic
and natural sources. The anthropogenic release (2000–
2400 Mg yr−1) primarily comes from fossil fuel combustion,
waste incineration, metal smelting and cement production
(Pacyna et al., 2003, 2006; Streets et al., 2005, 2009; Pir-
rone et al., 2010). The natural sources include biomass burn-
ing, volcanic activities, geological weathering from Hg en-
riched substrates and so-called re-emission (i.e., the emission
of previously deposited Hg) at the atmosphere–biosphere in-
terface (Gustin et al., 2008; Mason and Sheu, 2002). While
the anthropogenic emissions have been estimated and contin-
uously updated with reasonable consistency since the 1990s,
the estimates for natural emissions have been highly uncer-
tain (1500–5207 Mg yr−1), primarily due to a lack of under-
standing in the air–surface exchange of Hg0. Since the nat-
ural release can account for up to two-thirds of global mer-
cury input to the atmosphere (Friedli et al., 2009; Pirrone et
al., 2010), better quantification of the mass input is critical
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in assessing the global biogeochemical cycling of mercury
(Lindberg et al., 2007).

Air–surface exchange is an important component in atmo-
spheric mercury modeling for estimating Hg0 evasion and
deposition over soil, water and vegetation. For terrestrial sur-
faces, the soil Hg evasion has been calculated using the sta-
tistical relationships obtained from the measured Hg0 flux
and observed environmental factors such as temperature, so-
lar irradiance, leaf area index and Hg content (Bash et al.,
2004; Gbor et al., 2006; Lin et al., 2005; Shetty et al., 2008;
Xu et al., 1999; Selin and Jacob, 2008; Smith-Downey et al.,
2010). Such an approach oversimplifies the role of environ-
mental factors in the exchange process because Hg0 flux was
measured in a limited number of locations where the environ-
mental parameters (e.g., soil properties and meteorology) are
specific to those sites. In addition, most of these models treat
vegetation as a net evasion source of Hg0, which is incon-
sistent with later assessments that suggest vegetation to be a
net sink (Gustin et al., 2008; Hartman et al., 2009). Recent
isotopic tracer studies have shown that plant roots serve as
a barrier that prevents translocation of inorganic Hg in soil
to other parts of plants (Cui et al., 2014). It has also been
suggested that Hg absorbed on foliage can be transported to
stems and roots (Yin et al., 2013).

To better represent the surface process, algorithms param-
eterizing the transport resistances at soil and foliage inter-
faces have been developed to calculate the multilayered, bidi-
rectional flux by the gradient between an ambient Hg level
and a “compensation point” inferred from the surface char-
acteristics (Bash, 2007, 2010; Scholtz et al., 2003; Zhang et
al., 2009a; Sutton et al., 2007). Such an approach is more
scientifically sound and mathematically robust. The model
results were also more consistent with those from isotopic
tracer studies (Bash, 2010). However, the complicated pa-
rameterization makes it difficult to understand the relative
importance of each parameter on the simulated flux. There
are also multiple model assumptions on the model variables
that lack field data for verification. Although the model re-
sults can be constrained by air concentration and wet deposi-
tion, the assumptions could increase the uncertainty of model
estimates and limit the improvement of model algorithms.

The objectives of this study are to present an updated Hg0

air–surface exchange model and to quantitatively examine
the relative importance of the physical and environmental
variables implemented in the model. Coupled with the latest
understanding in the partitioning and mass transfer at differ-
ent atmosphere–biosphere interfaces, we integrated the bidi-
rectional air–surface exchange model (Bash, 2007, 2010) and
the surface resistance schemes of Hg dry deposition and pho-
tochemical reaction (Zhang et al., 2003, 2009a; Lin et al.,
2006) for quantifying the air–surface exchange of Hg0. Two
monthly (summer and winter) simulations were performed to
investigate the seasonal and diurnal variability of the model-
estimated flux. A systematic set of sensitivity simulations
using a multi-step factorial design of experiments was per-

formed to investigate the effect of significant model param-
eters and their interconnections. Based on the sensitivity re-
sults, processes that control Hg0 air–surface exchange over
different natural surfaces are discussed and research needs
for future model improvement are proposed.

2 Methods

2.1 Model description

The total air–surface exchange is the sum of Hg0 fluxes from
water, soil (including bare lands and soil under the canopy)
and foliage surfaces. The direction (evasion or deposition) of
the flux is driven by the gradient between atmospheric Hg0

concentration and a compensation point that represents the
Hg0 concentration at the interface between the atmosphere
and the surface of interest. The magnitude of the flux is de-
termined by the ratio of concentration gradient to surface re-
sistance (for terrestrial surfaces) or by the product of overall
mass transfer coefficient and concentration gradient (for wa-
ter surfaces). The nomenclature and dimension of the entire
set of model variables are detailed in Table 1. The parameter-
ization of each model component is briefly described below.

2.2 Air–water exchange

The flux over fresh water and oceanic surfaces,Fw, is cal-
culated using a two-film mass transfer model with the trans-
fer rate limited by the diffusion in the water boundary layer
(Poissant et al., 2000):

Fw = Kw(Cw −
Catm

Hw
), (1)

whereKw is the overall mass transfer coefficient estimated
by the wind speed at 10 m above water surface and the
mass transfer ratio of CO2 / Hg across the air–water interface
(Shetty et al., 2008),Cw is the dissolved gaseous mercury
(DGM) concentration in surface water,Hw is the dimension-
less Henry’s law constant.Kw andHw are calculated using
formulation described earlier (Poissant et al., 2000; Lin and
Tao, 2003).

2.3 Air–terrestrial exchange

The terrestrial system is divided into two categories: the
canopy biomes (leaf area index, LAI > 0) and the bare lands
(LAI = 0, referring to sparsely vegetated land, bare tundra
and snow/ice surfaces). The total flux from the canopy is
made up of the air–soil exchange flux and the air–foliage ex-
change flux (air–stomata and air–cuticle). Over the canopy
system, a multi-layer canopy resistance scheme modified af-
ter Bash (2010) and Zhang et al. (2003) was applied (Fig. 1).
Compared to the earlier mechanistic schemes, this model
also (1) includes the foliage storage effect, (2) considers
photochemical reduction on foliage, and (3) updates the
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Table 1.Model variables and units in the base-case simulation.

Term Description Value or units

Fw Flux from water bodies ng m−2 h−1

Kw Mass transfer coefficient of mercury through water layer m h−1

Cw DGM concentration 40 ng m−3 watera

Hw Henry’s law constant under water conditions dimensionless
Fcnp The flux over canopy biomes ng m−2 h−1

1t Time duration s
Ra Aerodynamic resistance s m−1

Rb Quasi-laminar sub-layer resistance s m−1

Catm Atmospheric Hg concentration ng m−3

χcnp The total compensation point ng m−3

χc Cuticular interfaces compensation point ng m−3

χs Stomatal interfaces compensation point ng m−3

χg Soil interfaces compensation point ng m−3

Rc Cuticular resistance s m−1

Rs Stomatal resistance s m−1

Rg Soil diffusion resistance s m−1

Rac In-canopy aerodynamic resistance s m−1

Fbls The flux from bare land soil ng m−3[
Hg0

]
sl

Elemental mercury content bound to organic matter ng g−1 soil

H Henry’s law constant in soil condition dimensionless
foc Fraction of organic carbon in topsoil (0–5 cm) 2 % (dimensionless)b

Koc Soil organic carbon to water partitioning coefficient m3 water g−1 organic carbon[
Hg(II)

]
sl Hg(II) content in the soil 90 ng g−1 soilc

Rg(SO2) SO2 soil diffusion resistance s m−1

Rg(O3) O3 soil diffusion resistance s m−1

αHg0 Hg0 scaling factor basing on SO2 0 (dimensionless)d

βHg0 Hg0 scaling factor basing on O3 0.1 (dimensionless)e

LAP Leaf–air partitioning coefficient for Hg0 between leaves and air 30 000 (dimensionless)f

[Hg0
c] Hg0contentbound to foliar cuticular surface ng m−3 leaf[

HgII+
c

]
Newly dry deposited Hg(II) residing on cuticular surfaces ng m−2 leaf

[HgII+
c,DD] The total dry deposited Hg(II) loading on cuticular compartment ng m−2 leaf

[HgII+
w ] Hg(II) leaf wash concentration 0.04 ng m−2 leafg

frxn Fraction of Hg(II) potentially photoreduced to Hg0 dimensionless
ffixed Fraction of Hg(II) fixed into tissue dimensionless
Tl Leaf thickness 0.000152 mh

[Hg0
s] Dissolved elemental mercury in stomatal compartment ng m−3 leaf

[Hg0
s,DD] Deposited Hg0 concentration stored inside stomatal compartment 0.39 ng m−2 leaf h−1i

Rst Resistance associating stomata apertures s m−1

Rme Resistance associating mesophyll reservoir s m−1

Wst Fraction of stomatal blocking under wet condition dimensionless

a Value for base-case simulation, Xu et al. (1999);b for 0–20 cm topsoil, the bulk density is 1.1–1.3 g cm−3 and organic carbon content is
3.3 kg m−2 in the US (Calhoun et al., 2001; Guo et al., 2006), so assumingfoc is 2 % in the 0–5 cm topsoil;c value for base-case simulation,
Bash (2010);d based on the negligible solubility (Henry’s constant= 0.139 M atm−1) and chemical inertness (Zhang et al., 2009b, 2012);e Zhang
et al. (2012);f Rutter et al. (2011a);g value for base-case simulation, Frescholtz et al. (2003);h value for base-case simulation, Abrams and
Kubiske (1990);i value for base-case simulation, Poissant et al. (2008).

resistance terms. The flux over canopy biomes,Fcnp, is es-
timated as

Fcnp =
1t

(Ra+ Rb)
(χcnp− Catm), (2)

where1t is the time duration,Ra is the aerodynamic resis-
tance,Rb is the quasi-laminar layer resistance andCatm is
the atmospheric Hg concentration.Ra andRb are calculated
according to Marsik et al. (2007).χcnp is the overall com-
pensation point parameterized as a weighted average at the
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Figure 1. Resistance scheme implemented in the air–surface
exchange model following Sutton et al. (2007) and Zhang et
al. (2009a).

air–cuticle, air–stomata and air–soil interfaces as illustrated
in Fig. 1 (Bash, 2010; Zhang et al., 2009a):

χcnp =

χc
Rc

+
χs
Rs

+
χg

Rg+Rac
+

Catm
Ra+Rb

1
Rc

+
1
Rs

+
1

Rg+Rac
+

1
Ra+Rb

, (3)

whereχc is the cuticular compensation point,χs is the stom-
atal compensation point,χg is the soil compensation point,
Rc is the cuticular resistance,Rs is the stomatal resistance,
Rg is the soil diffusion resistance, andRac is the in-canopy
aerodynamic resistance. The individual compensation points
are described by Eqs. (6), (9) and (15).

2.3.1 Air–soil exchange

In the absence of vegetation (when LAI= 0), the flux from
bare lands (Fbls) can be estimated as

Fbls =
1t

Ra+ Rb + Rg

(
χg − Catm

)
. (4)

In the presence of vegetation (when LAI > 0), the flux from
soil under canopy (Fg) is calculated as

Fg =
1t

Rg+Rac
(χg−χcnp), (5)

whereRac accounts for the resistance of gas diffusion from
ground to the lower canopy and is assumed to be common for
all gaseous species (Zhang et al., 2002b).The compensation
point at air–soil interface (χg) can be expressed as (Bash,
2010)

χg =

[
Hg0

]
slH

focKoc
, (6)

where
[
Hg0

]
sl is the concentration of Hg0 bound to soil, cal-

culated as a reduction product of Hg(II) using soil Hg content

and a pseudo-first-order rate constant related to solar irradi-
ance (Gustin et al., 2002).H is Henry’s constant parameter-
ized following Andersson et al. (2008).foc is the fraction of
organic carbon in surface soil (0–5 cm).Koc is the partition
coefficient of Hg0 between soil organic carbon and water.

Rg is the Hg0 diffusion resistance over a ground surface
(soil, ice/snow) (Zhang et al., 2002b):

1

Rg
=

αHg0

Rg(SO2)

+
βHg0

Rg(O3)

, (7)

whereRg(SO2) andRg(O3) are the diffusion resistances of SO2
and O3, αHg0 is the Hg0 scaling factor based on SO2, and

βHg0 is Hg0 scaling factor based on O3. The formulation of
Rg(SO2) andRg(O3) has been described previously (Zhang et
al., 2003).

2.3.2 Air–cuticle exchange

Air–cuticle exchange flux is calculated as (Bash, 2010)

Fc =
1t

Rc
(χc − χcnp), (8)

χc =
[Hg0

c]

LAP
, (9)

where LAP denotes the leaf–air partitioning coefficient for
Hg0 (Rutter et al., 2011) and[Hg0

c] is the concentration of
Hg0 bound to foliar cuticular surface, calculated as the pho-
toreduction product of a fraction of newly deposited Hg(II)
on foliar interfaces (Graydon et al., 2009):

[Hg0
c] = frxn[HgII+

c,DD], (10)[
HgII+

c

]
= (1− frxn − ffixed)[HgII+

c,DD], (11)[
HgII+

c

]
=

[HgII+
w ]

Tl
, (12)

where[HgII+
c,DD] is the concentration loading of total dry de-

posited Hg(II) on cuticle,
[
HgII+

c

]
is the concentration of

the deposited Hg(II) residing on cuticular surfaces,[HgII+
w ]

is the concentration of Hg(II) that can be washed off from
leaves,frxn is the fraction of Hg(II) that can be photoreduced,
ffixed is the fraction of Hg(II) fixed into tissue and not avail-
able for re-emission or wash-off, andTl is the leaf thickness.
frxn andffixed are parameterized following Smith-Downey et
al. (2010).Rc is the cuticular resistance calculated as (Zhang
et al., 2002b)

1

Rc
=

αHg0

Rc(SO2)

+
βHg0

Rc(O3)

. (13)

2.3.3 Air–stomata exchange

The air–stomata exchange flux is estimated as (Bash, 2010)

Fs =
1t

Rs
(χs− χcnp), (14)
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χs =
[Hg0

s]

LAP
. (15)

It is assumed that the uptake of Hg species through stomata
is predominantly Hg0 due to its abundance in the atmosphere
(Capiomont et al., 2000; Millhollen et al., 2006; Stamenkovic
and Gustin, 2009). As such, the dissolved Hg0 in the stomatal
compartment,[Hg0

s], can be formulated as

[Hg0
s] = (1− ffixed)[Hg0

s,DD] (16)

where[Hg0
s,DD] is the concentration of newly deposited Hg0

stored in the stomatal compartment. The overall stomatal re-
sistance is calculated as (Zhang et al., 2002b)

Rs =
Rst+ Rme

1− W st
, (17)

whereRst is the resistance associated with stomata,Rme is
resistance associated with mesophyll reservoir, andWst is
the fraction of stomatal blocking under wet condition. The
detailed formulation ofRst andRme andWst can be found
elsewhere (Zhang et al., 2002b, 2003, 2012).

2.4 Modeling experiments for sensitivity analysis

To explore the sensitivity of model response to the changes in
model parameters, the model results obtained by varying the
input values of model parameters were compared systemati-
cally. This was accomplished by a technique called two-level
factorial design of experiments, which estimates the change
of model response (i.e., the simulated air–surface exchange
flux of Hg0) caused by the changes in model parameters at
two levels (i.e., a high and a low typical value). Additional
discussion on the application of factorial design of exper-
iments is provided in the Supplement. In short, the values
of model parameters were varied individually (i.e., chang-
ing one input value of a model parameter at a time) and in
combinations (i.e., simultaneously changing the input values
of two or more model parameters) at the two selected lev-
els. Then the Hg0 exchange fluxes at the changed input val-
ues were calculated and compared to estimate the sensitiv-
ity. This method is statistically robust, and therefore the syn-
ergistic and antagonistic interactions among model parame-
ters can be estimated with indications of statistical signifi-
cance. The studied parameters include both physical and en-
vironmental factors. Their respective experimental levels are
shown in Tables 2–4. The principle of factor sparsity (Myers
et al., 2009) states that the main factor effects and lower-
order interactions dominate most system responses (i.e., it is
unlikely for three or more predominant factors influencing
the system response simultaneously). Therefore, the effect of
interaction terms higher than second order was not consid-
ered.

For the water surface, there are four parameters (factors)
driving the model simulation (Table 2). Therefore, there are

16 (24) possible combinations of input parameter values at
two levels. In this case, the model was run 16 times (so-called
“full factorial design” because all possible experimental runs
are analyzed), and the data were compared for identifying the
significant factors. For the bare lands, there are 2048 possible
combinations at two levels (211 for 11 parameters). In this
case, we first selected 32 runs (so-called 211−6 “fractional
design” because only a fraction of all possible experimental
runs is analyzed) that allowed for statistical analysis of all
single-factor effects and two-factor interactions in order to
screen out the significant factors. After this initial screening,
a two-level full factorial design was applied to the five most
significant factors based on a 95 % confidence level to as-
sess the sensitivity (the results of the 211−6 design are shown
in the Supplement). For the canopy ecosystem, there are 15
model factors (Table 4). In this case, a 215−9 fractional de-
sign (64 runs) was first utilized to identify 11 predominant
factors. Then a successive 211−6 design was applied to ob-
tain the five most significant factors, whose sensitivity was
assessed using a 25 full factorial design (the results of the
215−9 and 211−6 designs are shown in the Supplement). The
sensitivity results were obtained from the final full factorial
design for watersheds, bare lands and canopy ecosystems.
The data analysis of the factorial experiments was conducted
using Minitab®16 professional version.

2.5 Model configuration and data

The modeling domain is in Lambert conformal projection
covering mainly the contiguous United States (CONUS),
with 156× 118 grid cells at 36 km spatial resolution. Hourly
meteorological data were prepared using the Weather Re-
search and Forecasting (WRF) model version 3.4 with
the Noah land surface model. The model algorithms were
coded in FORTRAN 90 and Network Common Data Form
(NetCDF) version 4.1. The gridded model results were vi-
sualized by the Visualization Environmental for Rich Data
Interpretation (VERDI) version 1.4.

A base-case simulation was performed in a summer and
a winter month (August and December 2009) to evaluate
the seasonal and diurnal variability of the air–surface ex-
change. The base case refers to the modeling utilizing the
values listed in Table 1 with the meteorological parameters
extracted from WRF output. In the simulation, the atmo-
spheric Hg0 concentration retrieved from the output of the
Hg extension of Community Multi-scale Air Quality model-
ing system (CMAQ-Hg) version 4.6 for the same modeling
period was applied to represent the air concentration of Hg0.
The simulation does not directly incorporate the feedback of
the air–surface exchange to the air concentration. However,
for a regional model domain (CONUS), natural evasion and
deposition of Hg0 does not significantly modify the ambient
concentration (Lin et al., 2005; Gbor et al., 2006) since the
time required for air turnover is relatively short (typically 3–
4 days) and the air concentration of Hg is mainly controlled
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Table 2.Examined model variables and the experimental levels of factorial design for air–water exchange.

Term Description Low level High level

T Sea surface temperature (◦C) −2a 35a

GEM Air Hg0 concentration (ng m3) 1.0b 2.0b

DGM Dissolved Hg0 concentration in surface water(ng m−3) 15c 240c

W Wind speed at 10 m above water surface (m s−1) 0.001d 20d

a Kwun and You (2009),b according to global background of air Hg0 1.1–1.7 ng m3 (Lindberg et al., 2007),c Morel et
al. (1998),d Andersson et al. (2011).

by the boundary conditions (Pongprueksa et al., 2008). In the
model experiments, the concentration of Hg0 was tested as a
sensitivity parameter.

3 Results and discussion

3.1 Results of base-case simulations

The model estimates a net emission of 38.4 Mg in the sum-
mer month (16.6 Mg from water, 45.0 Mg from soil and
−23.2 Mg from foliage) and 56.0 Mg in the winter month
(33.9 Mg from water, 29.5 Mg from soil and−7.4 Mg from
foliage) for the entire domain. The evasion from water bod-
ies accounts for∼ 50 % of the total natural emission (the
cumulative net release of Hg0 caused by the air–surface ex-
change process) because of the large water areal coverage in
the domain (59 %). Vegetation represents a net sink, which is
different from earlier estimates using the evapotranspiration
approach (Bash et al., 2004; Shetty et al., 2008) but consis-
tent with recent observational studies (Gustin et al., 2008;
Stamenkovic and Gustin, 2009). For the terrestrial system,
the total emission is 43.9 Mg in 2 months. Assuming the an-
nual emission is 5–6 times of the 2-monthly sum and ex-
cluding the emission from Canada, Mexico and Caribbean
lands, the model-estimated annual emission in the contigu-
ous US is 118–141 Mg yr−1, comparable to the recent esti-
mates (95–150 Mg yr−1) using flux scaling methods (Erick-
sen et al., 2006; Hartman et al., 2009; Zehner and Gustin,
2002).

3.1.1 Air–water exchange

Over water surface, the mean simulated flux is 1.6 and
3.1 ng m−2 h−1 in the summer and winter month (Figs. 2a
and 3a), respectively. Water bodies in the domain are net
sources, producing fluxes typically in the range of 1–
4 ng m−2 h−1, similar to earlier measurements (Mason et al.,
2001a; Andersson et al., 2011). The spatial distribution is
primarily driven by the surface wind speed. Temperature,
air Hg0 and DGM concentration play a much less signifi-
cant role because a constant DGM was assumed (40 ng m−3)

and the Hg0 level over water was in a narrow range (1.4–
1.8 ng m−3). The Pearsons’s correlation coefficient (r) be-

tween flux and wind speed is much stronger than the value
between flux and temperature (0.56 vs. 0.18). The flux in
the winter month is greater because of stronger winds in the
northeastern corner of the domain. The emission flux does
not show clear diurnal variation in both months because wind
speed is the most dominant factor (Fig. 4a).

3.1.2 Air–soil exchange

Soil surfaces have been suggested to be a net source of Hg
(Gustin et al., 2008; Hartman et al., 2009), which is also
shown in the base-case model results (Figs. 2 and 3). The
mean flux from bare lands (0.7 and 0.6 ng m−2 h−1 in the
summer and winter month) is lower than the value from soil
under the canopy (4.3 and 2.7 ng m−2 h−1) because of the
land use classification. The bare lands in the domain include
sparsely vegetated land, bare ground tundra and snow/ice
lands. The flux contribution from such land use types is
largely from the southern portion of the domain. The sim-
ulated flux from soil under canopy is comparable to those re-
ported at background sites,−0.1–7 ng m−2 h−1 (Ericksen et
al., 2006; Kuiken et al., 2008a, b; Carpi and Lindberg, 1998).

The simulated Hg0 flux from soil under canopy is con-
trolled by the degree of vegetation coverage (LAI), air tem-
perature, friction velocity, air Hg concentration and solar ir-
radiation. In the summer month, the flux in eastern US is
lower due to heavy vegetation coverage that increases the in-
canopy aerodynamic resistance (Rac) (Zhang et al., 2002a).
Higher flux occurs in the central and western US because
of the smaller LAI and higher air temperature (Figs. 2c and
S8 in the Supplement). In the winter month, the higher air
temperature and longer sunlit hours cause the higher flux in
the south (Fig. 3c, S8 in the Supplement). Among the envi-
ronmental parameters, LAI has the greatest influence on the
estimated flux (r = 0.45). The spatially average soil flux for
the entire domain shows a typical diurnal variation caused
by air temperature and solar irradiance (Gabriel et al., 2006).
The detailed impact of the model variables is discussed in the
sensitivity analysis.

3.1.3 Air–foliage exchange

Vegetation represents a net sink of Hg0 in the base-case
simulations. The mean simulated air–foliage exchange is
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−2.2 and−0.7 ng m−2 h−1 in the summer and winter month
(Figs. 2d, 3d). The magnitude is similar to those measured
by Ericksen et al. (2003) (a mean flux of−3.3 ng m−2 h−1)
and Millhollen et al. (2006) (−4.1 to−0.3 ng m−2 h−1). In
summer, the greatest vegetative uptake of Hg0 occurs in the
northeastern US because of the dense vegetation coverage. In
winter, the uptake becomes much weaker due to the reduced

LAI, particularly in the north (Smith-Downey et al., 2010).
The simulated deposition flux is highly correlated with LAI
(r = 0.71 and 0.88 in winter and summer), while the corre-
lations with friction velocity, GEM, air temperature and so-
lar radiation are comparatively weaker. The diurnal variation
for foliar flux is shown in Fig. 4c. Higher deposition occurs
during daytime due to the higher air temperature and solar
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Figure 4. Diurnal variation of mean simulated Hg0 for the entire model domain (UTC-7): (a) flux from 727 
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Figure 4. Diurnal variation of mean simulated Hg0 for the entire model domain (07:00 local time):(a) flux from water bodies,(b) total flux
from soils (soil under the canopy and bare lands),(c) flux from foliage and(d) flux for the total domain.

irradiance (Rutter et al., 2011). The overall diurnal variation
in the model domain exhibits the feature of air–foliage ex-
change (Fig. 4d).

The simulated flux from soil under canopy and foliar sur-
faces is highly dependent on the resistance terms. Presently,
the values of cuticular (Rc), stomatal (Rg) and soil (Rs) resis-
tances of Hg are not well understood (Holmes et al., 2011)
and have been estimated by relating to the measured resis-
tance of O3, SO2 and H2O (Bash, 2010; Scholtz et al., 2003;
Zhang et al., 2003). There have been experimental efforts
to determineRc and Rs based on Fick’s law by introduc-
ing isotopic Hg tracer to plants grown in an environmen-
tally controlled chamber (Rutter et al., 2011). The resistances
were found to depend on temperature, solar irradiance and
Hg species, with reportedRc and Rs ranging from 150 to
50 000 m s−1 at 0–35◦C and 0–170 W m−2 (Millhollen et al.,
2006; Rutter et al., 2011). The simulated flux in the base
case applied similar resistance values in the model. However,
the lack of deterministic relationships between the resistance
terms and environmental parameters still represents an un-
certainty and there is a need to better quantify the resistance
for Hg0.

3.2 Sensitivities analysis

3.2.1 Sensitivity of exchanges over water bodies

Figure 5 shows the change of air–water flux due to the
change of model variables from the low to the high ex-
perimental level (Table 2). Individually, wind speed is the
most significant parameter (p = 0.003), followed by DGM
(p = 0.004) and surface temperature (p = 0.059). On aver-
age, increasing wind speed from 0.001 to 20 m s−1 enhanced
the flux by 7.6 ng m−2 h−1 (p = 0.003); increasing the DGM
from 15 to 240 ng m−3 increases the flux by 7.0 ng m−2 h−1

(p = 0.004). A higher air Hg0 concentration slightly de-
creases the evasion flux. There is a significant synergis-
tic effect caused by wind speed and DGM concentration
(p = 0.004). Increasing both variables simultaneously from
the low to high level (Table 2) causes an additional 48 % in-
crease in the evasion flux. The wind speed and surface tem-
perature also have a synergistic effect, although not as signif-
icant (p = 0.059), followed by the effect enhanced by DGM
concentration and surface temperature (p = 0.076). The ef-
fects of higher DGM concentration and air Hg0 concentra-
tion offset each other, leading to a nearly zero effect on flux
(p = 1.000).

In the base case, a uniform DGM concentration was
assumed. The spatially constant DGM level represents a
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Figure 5. Sensitivity analysis based on the 24 factorial design
shown in Table 2 (water bodies).T denotes air temperature at wa-
ter surface, GEM denotes air Hg concentration, DGM denotes dis-
solved gaseous Hg concentration in surface water,W denotes wind
speed, and “∗” denotes the interaction effects.

significant uncertainty since other environmental parameters
such as temperature, wind speed can be estimated reliably
through meteorological simulations at a high spatial resolu-
tion. The mechanism leading to the net DGM formation in
surface water is complex and not fully understood (Qureshi et
al., 2010). It has been suggested that dissolved organic mat-
ter (Amyot et al., 1994, 1997), hydroxyl radicals (Zhang and
Lindberg, 2001) and oxyhalide radicals (e.g., OCl−, OBr−)

(Lalonde et al., 2001) can participate in the sunlight-induced
processes that produce DGM. Data on measured net DGM
concentration over vast water bodies are not readily available
because of a limited number of cruise campaigns (Mason et
al., 1998, 2001b; Andersson et al., 2011). Strode et al. (2007)
and Soerensen et al. (2010) estimated the global distribution
of DGM in sea water and showed that accurate representation
of DGM concentration is key for calculating air–water ex-
change. More knowledge on the temporal and spatial distri-
bution of net DGM concentration in surface water can greatly
reduce the model uncertainty. Experimental investigation to
better understand the chemical pathways leading to net DGM
formation will also help constrain the model estimate.

3.2.2 Sensitivity of exchange over bare lands

Figure 6 illustrates the model response to the model vari-
ables over bare lands (Table 3). Soil Hg content, friction ve-
locity, air temperature and the scaling factorβHg0 (Eq. 7)
have a positive effect on the simulated Hg flux, while the
soil organic content has a negative effect. On average, in-
creasing soil Hg content from 50 to 1000 ng g−1 soil en-
hances the flux by 55.3 ng m−2 h−1 (p = 0.013); increasing
friction velocity from 0.0001 to 1 m s−1 increases the flux by
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Figure 6. Sensitivity analysis based on the 25 factorial design for bare lands after pre-screening model 735 

variables shown in Table 3 to isolate the significant factors. T denotes surface air temperature; foc 736 

denotes fraction of organic carbon in soil; UST denotes friction velocity; SM denotes soil mercury 737 

content; b denotes scaling factor for Hg reactivity (βHg0). "*" denotes interaction effects.  738 

Figure 6. Sensitivity analysis based on the 25 factorial design for
bare lands after prescreening model variables shown in Table 3 to
isolate the significant factors.T denotes surface air temperature,
foc denotes fraction of organic carbon in soil, UST denotes friction
velocity, SM denotes soil mercury content,b denotes scaling factor
for Hg reactivity (βHg0), and “∗” denotes interaction effects.

54.8 ng m−2 h−1 (p = 0.014). On the other hand, increasing
the soil organic content from 0.6 to 10 % reduces the flux by
54.2 ng m−2 h−1 (p = 0.015). There are several notable inter-
actions among the model variables. First, the positive effects
of soil Hg content and friction velocity can be completely
offset by soil organic content (Fig. 6). An increase in soil
organic content substantially decreases the soil Hg compen-
sation point (Eq. 6), suggesting the significant role of soil
organic matter in preventing Hg from evading (p = 0.025).
There is a strong synergistic effect between friction veloc-
ity and soil Hg content (p = 0.022), leading to an additional
46 % increase compared to the sum of the two individual ef-
fects (Fig. 6). Quasi-laminar layer resistance (Rb) and aero-
dynamic resistance (Ra) both decrease with increasing fric-
tion velocity. Coupled with the increased soil Hg compensa-
tion point at higher soil Hg content (Eq. 6), the flux is greatly
enhanced (Fig. 6). Overall, friction velocity, soil Hg and or-
ganic content are the most influential parameters for Hg ex-
changes over bare lands. Other parameters including temper-
ature, Hg scaling factor (βHg in Eq. 7) and other interaction
terms have less significant effects.

3.2.3 Sensitivity of exchange over canopy

Figure 7 illustrates the sensitivity of simulated Hg flux over
canopy to the model variables (Table 4). For comparison, the
sensitivity results for air–soil exchange under canopy are also
shown. The forcing of air–canopy exchange is dominated by
the air–soil exchange under canopy at the two experimen-
tal levels. This resembles the Hg0 emission characteristics
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Table 3. Examined model variables and the experimental levels of factorial design for air–soil exchange over sparsely vegetated land, bare
ground tundra and snow/ice surfaces.

Term Description Low level High level

T Air temperature at 2 m (◦C) −2 40
Q2 Water vapor mixing ratio (Kg Kg−1) 0.0005a 0.05a

foc Fraction of organic carbon in surface soil 0.006b 0.1c

UST Friction velocity (m s−1) 0.0001d 1.0d

SM Soil Hg content (ng g−1 soil) 50e 1000e

GEM Air Hg0 concentration (ng m−3) 1.0 2.0
SNOWH Snow depth (m) 0f 0.4999f

βHg0 Scaling factor of reactivity Hg 0.1g 0.2h

DC Dew condition Noi Yesi

RC Rain condition Noj Yesj

MC Moist soil condition Nok Yesk

a Kwun and You (2009);b suggested default value for modeling of volatilized contaminant to air by
USEPA (2004);c upper limit of the forest soils (Jones et al., 2004);d Akkarappuram and Raman (1988)
e Carpi and Lindberg (1998);f has effect on ground and cuticular resistance, Zhang et al. (2003);g Zhang
et al. (2012) ;h Zhang et al. (2009a) ;i air temperature below dew point represents low level and higher
than dew point represents high level (Zhang et al., 2003);j presence of precipitation events has effects on
ground and cuticular resistance terms (Zhang et al., 2003);k soil moisture≤ 20 % represents low level, and
> 20 % represents high level (Zotarelli et al., 2010).

Table 4.Examined model variables and the experimental levels of factorial design for air–canopy exchange.

Term Description Low level High level

T Air temperature at 2 m (◦C) −2 40
foc Fraction of organic carbon in surface soil 0.006 0.1
UST Friction velocity (m s−1) 0.0001 1.0
SM Soil total Hg content (ng m−3) 50 1000
βHg0 Scaling factor of reactivity Hg 0.1 0.2
SNOWH Snow depth (m) 0 0.4999
LAI Leaf area index (m2 m−2) 1.0a 5.0a

SR Solar irradiation (W m−2) 0 1000
Leaf_Hg Hg concentration in leaf rinse (ng m−2 leaf) 0.02b 2.10c

Stomata_Hg Hg previously deposited to leaf stomata (ng m−2 leaf) 0.13d 0.59d

GEM Air Hg0 concentration (ng m−3) 1.0 2.0
LAP Leaf–air partitioning coefficient (m3 air m−3 leaf) 30 000e 6 000 000e

DC Dew condition No Yes
RC Rain condition No Yes
MC Moist soil condition No Yes

a Gower et al. (1999);b Frescholtz et al. (2003);c Fay and Gustin (2007);d Poissant et al. (2008);e Rutter et al. (2011).

observed in a gas exchange system, which suggested that the
evasion from soils is much greater than the emission from
the plants grown in the chamber (Frescholtz and Gustin,
2004; Frescholtz et al., 2003). After the factor prescreen-
ing step (Figs. S2–S7 in the Supplement), the simulated
flux is particularly sensitive to five parameters. Friction ve-
locity (positive effect,p = 0.020), soil Hg content (posi-
tive effect,p = 0.028) and soil organic content (negative ef-
fect, p = 0.030) are the most significant model parameters
(Fig. 7). These effects are similar to the sensitivity results of
air–soil exchange over bare lands (Figs. 6 and 7) but slightly

weaker based on thep values because of the “shielding” of
vegetation coverage that modifies the values of the resistance
terms (Rb andRac) (Zhang et al., 2002a). Highly moist soil
(soil moisture content > 20 %, Table 4) has a negative effect
because it effectively increases soil diffusion resistance (Rg)

(Zhang et al., 2003), although the effect is less significant
(p = 0.289). Air temperature also has a positive effect, as an-
ticipated (p = 0.180). The synergistic effect caused by fric-
tion velocity and soil Hg content is significant for the air–
canopy exchange (p = 0.028, Fig. 7), enhancing the evasion
flux by 47 % (77.8 ng m−2 h−1). Both soil organic content
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Figure 7. Sensitivity analysis based on the 25 factorial design at canopy level after pre-screening model 740 

variables shown in Table 4 to isolate the significant factors. The overall flux at canopy level is dominated 741 
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Figure 7. Sensitivity analysis based on the 25 factorial design at
canopy level after prescreening model variables shown in Table 4
to isolate the significant factors. The overall flux at canopy level is
dominated by the soil flux under the canopy (the sensitivity of foliar
exchange is shown in Fig. 8).T denotes surface air temperature,
foc denotes fraction of organic carbon in soil, UST denotes friction
velocity, SM denotes soil Hg content, MC denotes soil moisture,
and “∗” denotes interaction effects.

and highly moist soil condition can offset the positive effects
caused by higher friction velocity, soil Hg content and air
temperature at different degrees (Fig. 7), with the soil organic
content being more influential. Higher soil organic content
at high soil moisture (> 20 %) yields a weak positive effect
(p = 0.340), which is interpreted as the combined negative
effect of the two parameters is smaller than the sum of the
two individual effects. Overall, these characteristics resem-
ble the air–soil exchange because the air–canopy exchange is
dominated by the air–soil exchange under canopy.

Atmospheric mercury can deposit on the surface of cu-
ticle or be accumulated in leaves through stomatal uptake
(Fig. 1). For cuticular exchange, air temperature has a sig-
nificant positive effect (Fig. 8). Since air–cuticle exchange is
mainly deposition (negative flux), this means that a higher
air temperature leads to smaller deposition or greater eva-
sion (p < 0.001). Friction velocity has a strong negative
effect (i.e., higher deposition at higher friction velocity,
p < 0.001) on the simulated flux. Higher soil organic con-
tent (p = 0.009) and highly moist (> 20 %) soil (p = 0.194)
increase the simulated flux (i.e., weaken the deposition) by
decreasing the canopy compensation point (χc in Eq. 8). Un-
der this circumstance, Hg deposits preferentially to soil and
therefore there is a reduced deposition on cuticle. Higher
soil Hg content decreases the flux (p = 0.008) by increasing
the overall compensation point (χcnp in Eq. 8), suggesting
greater deposition on cuticle at higher soil Hg content. For
stomatal exchange, the trend of the single-factor effect is the
same as that of cuticular exchange.
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model variables shown in Table 4 to isolate the significant factors. T denotes surface air temperature; foc 747 
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Figure 8. Sensitivity analysis based on the 25 factorial design for
foliar exchange after prescreening model variables shown in Table 4
to isolate the significant factors.T denotes surface air temperature,
foc denotes fraction of organic carbon in soil, UST denotes friction
velocity, SM denotes soil Hg content, MC denotes soil moisture,
and “∗” denotes interaction effects.

Several notable interaction effects are observed for foliar
exchanges. For cuticular exchange, the deposition is reversed
from deposition to evasion at the high air temperature level,
leading to the overall positive interaction effect for air tem-
perature and friction velocity (Fig. 8,p < 0.001). The positive
effect of soil organic content significantly offsets the negative
effect of friction velocity (p = 0.010) and soil Hg content
(p = 0.016). For stomatal exchange, the only significant in-
teraction effect is between soil organic and Hg content, which
is more strongly dominated by soil organic content. Overall,
the foliar exchange is primarily controlled by air tempera-
ture and friction velocity because the resistance terms can
be affected by the two variables. This is in contrast to the
evapotranspiration approach where soil Hg content plays a
predominant role in simulated Hg0 evasion flux (Bash et al.,
2004; Gbor et al., 2006).

In this analysis, the effect of solar irradiance is not as
significant as the selected parameters under the resistance
model scheme and has been ruled out during the prescreen-
ing for the model variables (Sect. 2.4 and Figs. S2–S6). In
the model, solar irradiation can influence the flux in three
ways: (1) through modifying the rate constant of Hg(II) re-
duction in soils and foliage (Eqs. 6, 10 and 16), (2) through
forcing the change of aerodynamic resistance (Ra andRac)

and (3) through forcing the change of cuticular and stomatal
resistance terms (Rc andRst). For air–soil exchange, the ef-
fect of solar irradiance on the reduction rate constant is the
most sensitive process (Eqs. 6 and 10). The photoreduction of
Hg(II) in soils has been suggested to be responsible for the
increased soil flux observed under sunlit condition (Gustin
et al., 2002). There have been kinetic studies showing that

www.atmos-chem-phys.net/14/6273/2014/ Atmos. Chem. Phys., 14, 6273–6287, 2014



6284 X. Wang et al.: Sensitivity analysis of an updated bidirectional air–surface exchange model

increasing UV-A intensity by 75 % approximately doubles
the photoreduction rate in the aqueous phase (Qureshi et al.,
2010). However, the effect of lights on the kinetics of Hg(II)
reduction in soils is poorly understood. In this modeling, the
photoreduction rate constant was set to a mean value (Eq. 6).
This limits a full examination of the true impact of solar irra-
diation on the simulated Hg flux. Results from experimental
studies on Hg(II) photoreduction rates will help reduce this
model uncertainty. For foliar exchange, solar irradiation has a
weak positive effect on the flux (i.e., slightly weakens deposi-
tion, Supplement Fig. S4) but has a significant positive effect
on the stomatal exchange (p = 0.004, Supplement Fig. S5).

4 Conclusions

An updated model for estimating the bidirectional air–
surface exchange of Hg is presented based on the current
understanding of surface resistance schemes. From the base-
case results, water and soil surfaces are net sources and vege-
tation is a net sink of Hg0. Each natural surface exhibits a dif-
ferent diurnal and seasonal variation. Sensitivity analysis of
model variables using a two-level factorial design of experi-
ments shows that atmospheric shear flows (surface wind over
water and friction velocity of terrestrial surfaces), dissolved
gaseous mercury (DGM) concentration, soil organic and Hg
content, and air temperature are the most influential factors
controlling the magnitude of the atmosphere–biosphere ex-
change of Hg0. However, the positive effect of friction ve-
locity and soil Hg content on the evasion flux from soil and
canopy can be greatly offset by the negative effect of soil
organic content. Significant synergistic effects are identified
between surface wind and DGM level for water surface, and
between soil Hg content and friction velocity for soil sur-
face, leading to∼ 50 % enhanced flux in the combined ef-
fect compared to the sum of their individual effects. The air–
foliage exchange is mainly controlled by surface resistance
terms controlled by environmental parameters such as solar
irradiation and air temperature.

The uncertainty in this modeling assessment is primarily
from the lack of knowledge in (1) the spatial distribution of
organic and Hg content in soil and DGM concentration in
water, (2) the reduction mechanism and kinetics of Hg(II) in
soil and water and (3) the values of resistance terms over dif-
ferent natural surfaces. More research in providing geospatial
distribution of Hg in water and soil will greatly improve the
model estimate. Further elucidation on the interaction of Hg
and organic carbon in top soil and surface water, as well as
quantification of the surface resistance terms specific to Hg
species, will also help improve the model scheme. Recent
field and experimental investigations have suggested that or-
ganic carbon in soil potentially shapes the distribution of Hg
in forest at continental scales (Obrist et al., 2011) and that
the long-term Hg evasion from soil is highly related to the Hg
and organic carbon interactions (Smith-Downey et al., 2010).

Given the predominance of soil organic content in reducing
soil Hg evasion flux using the mechanistic approach in this
study, soil organic content is likely the controlling factor de-
termining the intensity of air–soil Hg0 exchange.

The Supplement related to this article is available online
at doi:10.5194/acp-14-6273-2014-supplement.
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