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Abstract. We present a unique case study of the solar global
irradiance in a highly heterogeneous albedo environment at
the Arctic coast. Diodearray spectroradiometers were de-
ployed at three sites around Ny Ålesund, Svalbard, and spec-
tral irradiances were simultaneously measured under clear-
sky conditions during a 24 h period. The 3-D radiative trans-
fer model MYSTIC is applied to simulate the measurements
in various model scenarios. First, we model the effective
albedos of ocean and snow and consequently around each
measurement site. The effective albedos at 340 nm increase
from 0.57 to 0.75, from the coastal site in the west towards
the site 20 km east, away from the coast. The observed ratios
of the global irradiance indicate a 15 % higher average ir-
radiance, at 340 nm east relative to west, due to the higher
albedo. The comparison of our model scenarios suggest a
snow albedo of> 0.9 and confirm the observation that drift
ice has moved into the Fjord during the day. The local time
shift between the locations causes a hysteresis-like behavior
of these east–west ratios with solar zenith angle (SZA). The
observed hysteresis, however, is larger and, at 340 nm, can be
explained by the drift ice. At 500 nm, a plausible explanation
is a detector tilt of about 1◦. The ratios between afternoon and
morning irradiances at the same SZA are investigated, which
confirm the above conclusions. At the coastal site, the mea-
sured irradiance is significantly higher in the afternoon than
in the morning. Besides the effect of changing drift ice and
detector tilt, the small variations of the aerosol optical depth
have to be considered also at the other stations to reduce the

discrepancies between model and observations. Remaining
discrepancies are possibly due to distant high clouds.

1 Introduction

The reflectivity of the Earth’s surface, the albedo, is a sig-
nificant factor in the global radiation budget. Reflected solar
radiation increases the sky’s radiance due to multiple scat-
tering of air molecules (Kylling and Mayer, 2001). Snow is
amongst the most reflective surfaces, above which the so-
lar global irradiance can be enhanced by up to 50 % in the
UV under clear-sky conditions (Blumthaler, 2007; Bernhard
et al., 2007; Lenoble, 1998). With aerosol and in particular
with clouds, the enhancement can be even higher (McKenzie
et al., 1998).

While the clear-sky radiation field over a homogeneous
albedo environment is well understood and can be simulated
with one-dimensional (1-D) radiative transfer models, the sit-
uation of inhomogeneous spatial albedo is a much more chal-
lenging task requiring three dimensions (3-D) in the radiative
transfer model. In particular the Arctic coastal region is one
such situation of significant complexity due to high albedo
inhomogeneity: the dark sea and the highly reflecting snow
create an almost digital albedo pattern, which manifests itself
in the sky radiance.

Due to multiple scattering, the sky can be understood
as a diffusive mirror with a “diffusion constant” dependent
on atmospheric conditions. Under a stratus cloud deck, the
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diffusion constant is so small that open water or sea leads
(polynyas) surrounded by snow are clearly visible (with the
eye) as dark patches in the cloud deck (Overland et al.,
1995), an effect that has been used by seafarers for navigat-
ing sea ice in Arctic waters. Sky radiance measurements at
the Antarctic coast under clear-sky conditions, also showed
a brightening of the sky over the snow covered land with re-
spect to the sea (Ricchiazzi et al., 2002). Such an asymmetry
in the radiance has also been observed at the high-altitude
station of Jungfraujoch in Switzerland (Huber et al., 2004)
with the glacier on the one side and the snow free valley on
the other side.

More generally, up- and downwelling radiation in Arctic
coastal regions in the UV is relevant for assessing the radia-
tion impact on the coastal marine biology especially with re-
spect to photobiological processes in phytoplankton as a piv-
otal part of the marine ecosystem (Kirk, 1994). Also, satel-
lite remote sensing of the atmosphere near the coast needs to
include the albedo effects on the radiation field. Therefore,
solar radiation measurements in such complex albedo envi-
ronments are not only important for monitoring and satellite
validation purposes but also interesting with respect to 3-D
model comparisons in order to enhance our understanding of
the various factors impacting the radiation field. The latter is
the subject of this work.

An inhomogeneous albedo pattern is not only evident in
the sky radiance distribution measured at one location but
consequently also affects the spatial variation of global solar
irradiances measured simultaneously at different locations.
A benchmark setting for the investigation of the spatial scale
on which the albedo affects the irradiance is a pronounced
albedo step transition. The Arctic coasts offer such an ideal
feature; however, due to their remoteness and consequent in-
frastructural challenges and harsh environmental conditions,
only few observations have been reported in the past.

The erythemally weighted UV irradiance (UV-index) was
measured under clear-sky conditions on a line transecting the
Antarctic coast (Smolskaia et al., 1999) and quantified a 10 %
increase of the irradiance over a distance of 5 km. The mea-
surements were not conclusive, in particular because the tran-
sect lines were not long enough for the irradiances to reach
asymptotic values (Mayer and Degünther, 2000). Global ir-
radiances were measured also with three broadband UV ra-
diometers at the Antarctic coast line under variable overcast
conditions, which obscures conclusions about the coastal ef-
fect on the irradiance (Lubin et al., 2002). Another relevant
measurement campaign was conducted around the Salar de
Uyuni on the Bolivian Altiplano where a reflective dry salt
lake creates a high-albedo transition. Two locations inside
and outside the lake were compared and the erythemally
weighted UV irradiance was enhanced by around 20 % in
agreement with 1-D model calculations and spatially aver-
aged albedos (Reuder et al., 2007).

Several pure model studies dedicated to the global irradi-
ance in the inhomogeneous albedo environment have been

reported. In a detailed 3-D modeling study, Ricchiazzi and
Gautier (1998) have investigated the Antarctic coast and have
shown how the irradiances are affected by the albedo of dis-
tant regions and how this “region of interest” depends on at-
mospheric conditions. Another model study of the Antarctic
coastline under cloud cover shows in particular the sensitivity
to cloud properties (Podgorny and Lubin, 1998). Degünther
et al. (1998) and Degünther and Meerkötter (2000) investi-
gated the albedo influence for some more general situations
using simple example geometries.

So the detailed influence of the spatial distribution of the
global solar irradiance over an underlying inhomogeneous
albedo distribution is an on-going field of research. The mo-
tivation for a field campaign at the Arctic coast was to con-
tribute a new multidimensional data set: simultaneous spec-
tra at three locations over the course a cloudless day on
the peninsula around Ny Ålesund, Svalbard, to compare the
spectral, temporal and spatial variation of the global irradi-
ance with 3-D model simulations.

In the following, we set out by describing the campaign
and its setting and the 3-D model. The albedo environments
around the measurement locations are illustrated by modeled
effective albedos. We then present the measurement results
and discuss them in the context of various plausible model
scenarios, in particular regarding variable albedo and atmo-
spheric conditions.

2 The measurement campaign

Spectral measurements of the global irradiance were made
during a 3-week field campaign based in Ny Ålesund, Sval-
bard, in spring 2009. Three diode array (DA) spectrora-
diometer systems were used to record synchronous spectra
in the UV-visible (UV-VIS) spectral range 300–890 nm ev-
ery 5 min (starting at the full hour) with an integration time
of 100 s for each spectrum.

The spectroradiometers were deployed at three sites, spa-
tially distributed roughly along the direction of the albedo
gradient, with increasing distance from the coastline towards
the snow covered land with a horizontal distance of about
20 km. The first site (west) was set up 12 km to the north-
west of Ny Ålesund at the coast of the Kongsfjord and was
characterized by the lowest albedo surrounding. The next site
(center) was set up on the roof of the Norwegian Polar Insti-
tute (NPI) in Ny Ålesund. Located close by, a quality assured
scanning spectroradiometer was operated by the Alfred We-
gener Institute (AWI) (Gröbner et al., 2010). The third site
(east), 7 km further to the southeast towards the Kongsvegen
glacier, constituted the highest albedo surrounding. The to-
pography and albedo distribution around the three stations
are depicted in Fig. 1 and a panoramic webcam image is
shown in Fig. 2a.

The DA spectroradiometer at station west (Ocean Optics,
USB4000) has a 16 bit dynamic range and 3648 pixels over
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Figure 1.Topography and albedo distribution around the three mea-
surement sites (green dots), west, center and east, named according
to their relative geographical position. The ocean is colored black,
and snow covered land is colored gray, while ice in the partly frozen
Fjord is colored with a darker shade of gray for illustration, but is as-
signed the same albedo as snow in our model scenarios. The color
bar refers to the elevation contour lines (in km). For all solar az-
imuth angles, the corresponding SZA and time are shown on the
compass dial.

the range 180–890 nm and an average slit width of 1.7 nm full
width at half maximum (FMHM) (Kreuter and Blumthaler,
2009). The DA spectroradiometer at station center (Zeiss,
MCS-CCD) has a 16 bit dynamic range and 1044 pixels over
the range 310–1000 nm and an average slit width of 2 nm
FWHM (Kouremeti et al., 2008). The DA spectroradiometer
at station east (Ocean Optics, S2000) has a 12 bit dynamic
range and 2048 pixels over the range 190–850 nm and an
average slit width of 1.2 nm FWHM. All instruments were
temperature-controlled in a weatherproof housing and fitted
with the same type of cosine-weighting diffusers as input op-
tics.

Our global irradiance measurements were complemented
by additional instruments: an all-sky imager, a digital camera
with a fish eye objective (Kreuter et al., 2009), was moved
between the measurement sites to capture photos of the sky
and record cloud conditions. A multi-filter radiometer was
used as an independent stability check of the DA spectro-
radiometers. The infrastructure of the international research
site at Ny Ålesund is well established and supplies an abun-
dance of atmospheric data. Particularly relevant here are the
sun photometer measurements of the aerosol optical depth
(AOD), which are publicly available within the global atmo-
spheric watch (GAW) network. Detailed ice charts showing
the ice condition of the Kongsfjord was available from the
Norwegian Met service. We also used the webcam images
from the Zeppelin mountain above Ny Ålesund showing the
Kongsfjord.

station center
(Ny Ålesund) station east

station west

a)

b)

Figure 2. (a)Webcam view towards the north from Zeppelin moun-
tain overlooking Ny Ålesund on 8 May 2009, 22:00 UTC. The lo-
cations of two stations are visible, station west is further to the
west. Due to low wind speed, a pronounced sun glint is visible over
the ocean.(b) With MYSTIC, the simulated radiances (RGB) with
a BRDF model for water reflection (Cox and Munk, 1954, with
2 m s−1 wind speed) show the same effect and indicate a realisti-
cally modeled scene.

All DA spectroradiometers were radiometrically cali-
brated with the same calibration lamp as the absolute ref-
erence standard. While co-located at Ny Ålesund, before and
after field deployment, all instruments were intercompared
for several days under various sky conditions. Regular cali-
brations were also performed for each instrument in the field,
to monitor their stability. The relative radiometric stability of
each instrument was better than 1 % over the entire day.

Data post processing of the DA measurements include
the following steps. After dark current subtraction, the spec-
tra are stray light corrected. The spectra from the DA at
station west were corrected with a matrix method (Kreuter
and Blumthaler, 2009). Spectra from stations east and cen-
ter were corrected with a simplified technique using mod-
eled spectra to estimate the stray light. We estimate an uncer-
tainty due to a residual stray light error at 340 nm of< 2 %
at 80◦ SZA.

Since the different instruments have slightly different slit
widths, all spectra are deconvolved and convolved with a tri-
angular slit function of a 1 nm width (Slaper et al., 1995). Fi-
nally, the spectra are corrected for deviations from the ideal
cosine response of the input optics. For each instrument, the
measured cosine response functions, measured carefully in
laboratory before and after the campaign, were applied. The
azimuth error of the global input optics cannot be corrected
in retrospect (since the optics were not oriented in a specific
direction) and is about 5 % at 500 nm for direct solar radia-
tion. By considering the direct contribution to the global irra-
diance (given below in section 3.2), the expected maximum
uncertainty for each instrument is 1.5 and 1 % for the global
irradiance at 70◦and 80◦ SZA, respectively, for 500 nm and
< 1 % for 340 nm.
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3 The radiative transfer model

3.1 General description

The radiative transfer (RT) simulations were performed with
the 3-D Monte Carlo model MYSTIC (Mayer, 2009; Mayer
et al., 2010). A 1-D version of MYSTIC is included in
the freely available libRadtran package (Mayer and Kylling,
2005). In backward mode, MYSTIC randomly traces pho-
tons originating from the detector through the atmosphere.
At each scatter or surface reflection event, a local estimate
is performed, that is, the probability that the photon is scat-
tered/reflected towards the sun and reaches the sun without
being extinct is calculated. The sum over all local estimates,
divided by the number of simulated photons, gives the trans-
mittance. The global irradiance is the transmittance multi-
plied with the extraterrestrial irradiance and weighted by the
cosine of the SZA.

The spectral irradiances are computed for the three mea-
surement locations for the relevant day, in accordance with
the exact measurement schedule. The median of each mea-
surement period of 100 seconds was taken as the time basis
for the model input. Each simulated irradiance is a result of
2× 107 sampled photons ensuring a statistical uncertainty of
< 0.1 % standard deviation.

The atmosphere is assumed cloud free (except for one
specific scenario) and stratified with a standard AFGL ver-
tical profile of subarctic summer (Anderson et al., 1986).
Aerosol properties are specified according to Shettle (1989),
rural type (with the extinction scaled to the measured AOD).
MYSTIC allows either calculations including topography or
spherical atmosphere but currently not in combination. So we
work with a plane-parallel (PP) atmosphere, which is well
justified here, even for SZA> 80◦, since we will consider
only ratios of irradiances. Without topography, the negligi-
ble effect of the PP-approximation on the ratios has been
checked.

The 2-D surface is specified by a 600 km× 600 km grid
with a 250 m resolution. The elevation at each grid point has
been taken from a digital elevation map based on the Shuttle
Radar Topography Mission (SRTM). The grid points are in-
terpolated bi-linearly so that each grid element is a tilted and
bent surface. Each grid element also has surface reflection
property given by the bidirectional reflectance distribution
function (BRDF). Here, we need to consider two BRDFs:
one for water (ocean) and one for snow (land).

Water reflection is commonly modeled by the parameter-
ized function of wind speed and direction by Cox and Munk
(1954). A striking feature of an ocean reflection is the specu-
lar reflection of the sun, especially at low solar elevations.
This so-called sun glint is an interesting effect to be in-
vestigated by a 3-D model. From a comparison of the sun
glint shape in webcam images and simulated photos (Fig. 2),
we can estimate the wind speed to be about 2 m s−1. This
is consistent with local wind measurements in Ny Ålesund,

which were always below 2.5 m s−1, from easterly directions
in morning and westerly directions in the afternoon.

However, the sharp forward peak of the sun glint scat-
tering causes a problem with the convergence of the MC
model. When photons scatter on the water surface with the
corresponding angle of incidence, the probability of scatter-
ing into the direction of the sun is very high, otherwise it
is close to zero. So very few photons will obtain very large
weights which results in rare but signal-dominating local es-
timate contributions (spikes) and slow down the convergence
considerably. Furthermore, the Cox and Munk (1954) model
BRDF is not suited for SZA> 80◦(C. Gatebe, private com-
munication, 2012).

In order to solve both these problems and ensuring a phys-
ically correct model, we approximate the ocean as a com-
pletely flat water surface and apply Fresnel’s equations (e.g.,
Hecht, 2002). The complex index of refraction for water is
taken from Hale and Querry (1973). The BRDF is now a
delta function and the spikes can be eliminated by imple-
menting the variance reduction method called double local
estimate (DoLE) (Marchuk, 1980). Whenever a photon scat-
ters, we calculate the probability that the photon scatters to-
wards the direction of the sun reflection in the ocean, reaches
the ocean without being extinct, specularly reflects towards
the sun, and reaches the sun without being extinct. If the re-
flection takes place over the ocean only the DoLE contribu-
tion is taken into account and no local estimate, to prevent
double counting of photons. We compared the modeled irra-
diances with a Cox and Munk (1954) water surface at 2 m s−1

wind speed and a flat water surface and found an agreement
within 1 %, which justifies our Fresnel approximation.

For the snow BRDF, we use the parameterization by Rah-
man, Pinty and Verstraete (RPV) (Rahman et al., 1993) with
the slight modifications and additional parameters imple-
mented by Degünter et al. (2000). The RPV BRDF is slightly
anisotropic to accommodate for the forward scattering of
snow and weak “hot spot” in the backward scattering direc-
tion. It was noted by Degünter et al. (2000), and was con-
firmed in this study, that the anisotropy of the snow BRDF
has a negligible effect on the global irradiance. The only dis-
cernible trait of the BRDF is that the albedo is dependent on
the SZA which is not the case for a Lambertian surface. This
dependency vanishes for the mainly diffuse sky radiance at
short wavelengths.

In addition to the land, parts of the coastal waters and es-
pecially the Fjords on Svalbard are partly frozen and covered
with snow. Detailed ice charts are issued daily by the Nor-
wegian Meteorological Institute. The charts are daily means
centered at 12:00 UTC and classify areas into five categories
associated with an ice coverage range given in tenth: open
waters (0–1/10), very open drift ice (1/10–4/10), open drift
ice (4/10–7/10), etc. Each pixel of our ocean is assigned ei-
ther snow BRDF (ice classified areas are modeled as snow
albedo) or water BRDF with the mean probability of the
given category.
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3.2 Model scenarios

Since some of the input parameters are associated with some
uncertainty, we model multiple scenarios considering the
range of plausible values for these parameters. This also
helps with understanding the individual effects of each pa-
rameter. As a starting point for our model simulations, we
consider the albedo distribution from the ice map and the
measured mean AOD. For the snow BRDF we use the param-
eters of Degünther et al. (2000). The parameterρ0 = 0.728
controls the albedo and corresponds to an equivalent Lam-
bertian albedo of 0.81. We will call this the “standard” sce-
nario.

The local albedo of snow is expected in the range 0.7–
0.99 for the shortwave spectral range (e.g., Blumthaler and
Ambach, 1988) depending on snow type and condition. The
highest values close to one are typically reported for pure and
fresh Antarctic snow (Wiscombe and Warren, 1980; Wuttke
et al., 2006). Arctic albedos are generally a little lower, and
average daily mean albedos as low as 0.8 have been reported
for spring time in Ny Ålesund (Wang and Zender, 2011). We
model all land-classified pixels in our model as snow, and
the spatial average of the albedo over a large area tends to
be a little lower than local measurements, considering that a
few dark rocks may protrude from the snow. The clean snow
conditions during our campaign justify a model scenario with
a higher albedo (ρ0 = 0.801), corresponding to an equivalent
Lambertian albedo of 0.86 (“high albedo” scenario). This is
well within the range of a reasonable average albedo.

Then, we consider a variability in ice distribution. In fact,
the hourly webcam images from Zeppelin mountain south of
Ny Ålesund indicate changing drift ice conditions (Fig. 3),
with ice moving into the Fjord over the course of the day,
which also corresponds to the change in wind direction
around 12:00 UTC. The exact ice distribution is too complex
to model from the images alone without additional more de-
tailed, quantitative observations, but we can estimate the ef-
fect of variable drift ice by modeling a scenario with a lo-
cally ice-free Fjord in the morning. In this scenario (no ice),
the ocean is set ice free for a 20 km× 10 km rectangular area
north of station west.

A further issue of interest is the effect of AOD. The AOD
on the measurement day was low and characterized by the
mean Ångstrom parametersα = 1.77 andβ = 0.034, where
α is the so-called Ångstrom exponent determining the wave-
length dependency of AOD andβ is the AOD at 1000 nm.
The corresponding mean AOD at 500 nm (AOD500) was
0.12 with a slight diurnal variability. Between 05:00 and
21:00 UTC, the AOD500 varied little between 0.115 and
0.125, while in the morning around 02:30 UTC the AOD500
was highest at 0.17. This might have a measurable effect on
the global irradiance. So we model all scenarios with a con-
stant mean AOD and an “aerosol” scenario considering the
real temporal AOD variation over the day.

6 UTC

16 UTC

Figure 3. Webcam view from Zeppelin mountain on 8 May 2009,
06:00 and 16:00 UTC. More drift ice is visible in the western outer
part of the Fjord in the morning. High clouds appear faintly on the
northwestern horizon. Note the changing brightness of the snow on
the frozen Fjord relative to the snow covered land.

We also model the effect of a non-perfect leveling of the
detectors, (“tilt” scenario) and we consider a flat land sur-
face to illustrate the effect of the topography (no topo). Fi-
nally, we also model a “cloud” scenario. High clouds were
faintly visible in our all-sky camera images as well as on
the webcam images from Zeppelin mountain between 01:00
and 06:00 UTC on the horizon northwest of Ny Ålesund (see
also Fig. 3). In our cloud scenario, we set up a homogeneous
cirrostratus cloud with a straight boundary line at an angle
of 22.5◦counterclockwise to the east–west direction and ex-
tending into the northwest sector. The cloud is at an altitude
between 4 and 5 km with an effective radius of 40 µm and an
ice water content of 0.00246 g m−3 which yields an optical
depth of 1. Since this scenario is based on somewhat arbi-
trary assumptions, albeit plausible, we use the result only as
a guideline to estimate the magnitude of the effect of clouds
that are far enough to not significantly perturb the local clear-
sky perception.

The model scenarios are summarized in Table 1. For the
following studies, we focus on two wavelengths 340 nm and
500 nm, compatible with reliable measurements and consti-
tuting two interesting cases, one with more diffuse and one
with more direct components of the global irradiance, re-
spectively. The ratio of direct to global (direct+ diffuse)
down welling irradiance for 340 nm and 500 nm is 0.12 and
0.58 at 70◦ SZA, respectively; the ratio is 0.01 and 0.35 at
80◦ SZA, respectively. These direct/global ratios are com-
puted for albedo 0.5, but the ratios are only weakly depen-
dent on albedo.

4 Effective albedos

An inhomogeneous albedo distribution is an intrinsic 3-D
problem for modeling the solar irradiance. When only a 1-D
model is available or computation time is critical, the irradi-
ance can also be modeled using the concept of an effective
albedo (Weihs et al., 2001). The effective albedo is a spa-
tially averaged homogeneous albedo that, for a 1-D calcula-
tion, yields the same irradiance as the 3-D model. We derived
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Table 1.Relevant input parameters for each modeled scenario with respect to land, ocean and atmosphere characteristics. Bold text indicates
the respective parameter that has been modified for the scenario.ρ0 is the albedo parameter in the snow RPV model,α andβ are the aerosol
Ångstrom parameters.

Scenario Land Ocean Atmosphere Detectors

“standard” Topography,
RPV,ρ0 = 0.728

Ice map α = 1.77,
β = 0.034
Clear sky

All detectors level

“high albedo” Topography,
RPV, ρ0 = 0.801

Ice map α = 1.77,
β = 0.034
Clear sky

All detectors level

“no ice” Topography,
RPV,ρ0 =0.728

Fjord north of west
is ice free before
12:00 UTC

α = 1.77,
β = 0.034
Clear sky

All detectors level

“aerosol” Topography,
RPV,ρ0 =0.728

Ice map Diurnal variation from
sun photometer

All detectors level

“tilt” Topography,
RPV,ρ0 =0.728

Ice map α = 1.77,
β = 0.034
Clear sky

Detector west tilted 0.5◦ west

“no topo” No topography,
RPV, ρ0 = 0.728

Ice map α = 1.77,
β = 0.034
Clear sky

All detectors level

“cloud” Topography,
RPV,ρ0 =0.728

Ice map α = 1.77,
β = 0.034
Stratus cloud

All detectors level

the effective albedos by comparing the modeled 3-D irradi-
ances with 1-D model calculations for a matrix of SZA and
equivalent Lambertian albedos stored in a lookup table. For
our standard scenario, we discuss the modeled effective albe-
dos first for each surface type separately, ocean and water,
and then for each station.

The water effective albedo (Fig. 4) is low at around 0.1
at 340 nm and independent of SZA, while at 500 nm the
albedo increases from 0.1 to 0.6 with increasing SZA in the
range 64–84◦ (the water’s reflectivity increases strongly for
decreasing angles of incidence). This feature is even more
prominent for longer wavelengths. This so-called sun glint
only occurs for long wavelengths because of the high direct
component of the global irradiance. At short wavelengths the
diffuse radiance is dominant and the reflection is indepen-
dent of SZA. For the modeled scenarios one must keep in
mind that the effective albedo of the ocean is increased by
the drift ice in the Fjord.

As an aside, we noticed that for SZA> 84◦ and wave-
lengths longer than 650 nm, the albedo exceeds one. Al-
though it seems unphysical, we understand it as a result of
the sharp forward peak in the BRDF, the sun glint. Virtu-
ally all solar radiation is reflected at a low angle, so the pho-
tons travel a long path through the atmosphere with an in-
creased chance of backscattering. In the Lambertian reflec-
tion, a higher proportion is reflected into the direction of the
zenith, which constitutes the shortest path through the atmo-
sphere. This effect illustrates the limits of the effective albedo
concept (Lambertian by definition) and 1-D modeling.
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Figure 4. The effective albedo of water and snow as a function of
SZA and wavelength. The right panels show slices at the two wave-
lengths 340 nm and 500 nm. Note the strong sun glint for the ocean
at high SZA and wavelength.

The effective snow albedo in the standard scenario is
about 0.81 at 340 nm and essentially independent of SZA,
resembling a Lambertian surface. For longer wavelengths
(500 nm), the albedo becomes SZA dependent and increases
from 0.8 at 65◦ SZA to 0.9 at 84◦ SZA. Since the RPV
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west center east

Figure 5. Simulated 360◦ views (RGB radiances) for the standard scenario from 2.5 km above each station, zenith to nadir. The sun is in the
north (black dot). The views nicely illustrate the different albedo environment at each station (increasing albedo from west to east) and the
sun glint at station west.

parameters for the snow BRDF are taken as spectrally con-
stant, this spectral difference has to be understood as a result
of different sky radiance distributions: shifting from the dif-
fuse to the direct sun regime with increasing wavelength.

Diurnal variation of snow albedo can also be affected ge-
ometrically by anisotropic snow surface structures (e.g., so-
called sastrugi) formed by wind erosion (e.g., Warren et al.,
1998). Sastrugi are common around Ny Ålesund roughly in
east–west direction (König-Langlo and Herber, 2006), and
have been noted to some extent during our campaign as
well. Wang and Zender (2011) have measured the broad-
band shortwave albedo in Ny Ålesund for clear-sky days in
April 2003–2008 and associate the observed symmetric di-
urnal variation of snow albedo (the minimum at local solar
noon is about 0.12 lower than in the morning or afternoon)
with sastrugi. The magnitude of this variation, however, is
comparable to the SZA dependence of the effective albedo at
500 nm from the RPV snow model (Fig. 4). Also, Carroll and
Fitch (1981) have reported shortwave albedo measurements
from Antarctica and presented a parametric albedo model
which exhibits a diurnal albedo variation of 0.15. They in-
fer that the sastrugi, which were prominent in the measure-
ment area, may only affect the albedo by a maximum of 4 %.
Furthermore, this geometric effect is only relevant for direct
illumination, i.e., in our case for 500 nm, where on the other
hand the albedo amplification factor (see section 5.1) is so
low that the effect on the global irradiance is not significant
(< 1 %).

Of course also the microphysical properties (snow grain
size) of the snow pack can undergo change, typically dur-
ing melting and freezing cycles, which causes diurnal albedo
variations. Such variations have been observed on Arctic
snow in Finland (Meinander et al., 2008). On our measure-
ment day, the air temperature varied between a minimum of
−8◦C and a maximum of -5◦C, so no melting effects are
expected.

Finally, regarding snow albedo, we noticed a peculiarity in
the webcam images from the Zeppelin mountain overlook-
ing Ny Ålesund (Fig. 3). In the morning at 6:00 UTC, the
boundary of the frozen and snow covered Fjord and the snow
covered land is clearly visible. The snow on the ice appears
a little darker than the snow on the land indicating a differ-
ent BRDF. The situation is reversed in the afternoon. The
estimated snow depth on the ice and on the land is at least

0.5 m with recorded temperatures always below−5◦C. We
have discussed this observation with some snow physicists
but no plausible explanation has yet emerged, making it hard
to quantify its possible effect on our model results.

Using the same lookup table method as for the snow
and ocean effective albedos, we now determine the effective
albedos for each station, considering the elevation map and
ocean–snow distribution. The characteristic albedo environ-
ment is well visualized in the simulated radiances from above
each station in Fig. 5. To simulate the sky color, we calcu-
lated radiance distributions for the complete visible wave-
length region 380–780 nm and converted them to RGB val-
ues following Walker (2003).

The effective albedos (Fig. 6) show an interesting char-
acteristic diurnal variation, again dependent on wavelength.
Station west, situated close to the coast, exhibits the lowest
albedo of about 0.57 at 340 nm. It varies little over the day
(±0.01), as expected, since both snow and water have essen-
tially SZA independent effective albedos at this wavelength.
Directly on an idealized, infinitely long, straight coast line
the effective albedo would be 0.46, the geometric mean of
snow and water albedo. From west to east, the stations are
further away from the ocean and more and more surrounded
by snow. So the effective albedo at 340 nm increases up to
0.75 at east, approaching the asymptotic value of 0.81.

At high wavelengths (as for 500 nm), the effective albedos
show a strong dependence not only on SZA but also on solar
azimuth angle (i.e., it shows a hysteresis-like behavior with
SZA over the course of the day). In the morning, the sun is
in the east over the snow covered land, in the afternoon the
sun is over the ocean and produces a strong sun glint. This
increases the albedo in the west from 0.65 in the morning to
0.87 in the afternoon at 80◦ SZA. In the east further away
from the coast, the effect is less, and the albedo increases
from 0.77 to 0.93. Again, the effective albedo is higher than
one for high wavelengths and SZA, which is an effect of the
water BRDF as discussed above.

Finally, we have modeled the spatial distribution of irradi-
ances on a 60 km x 60 km grid with a 1 km resolution around
the measurement sites (“standard” scenario for a SZA of 62◦,
i.e., at local noon with the sun in the south). Again using the
lookup table method, we have converted the irradiance dis-
tribution to an effective albedo distribution (Fig. 7). This al-
lows a comprehensive illustration of how the effective albedo
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Figure 6. The effective albedo of stations west, center and east as a
function of SZA and wavelength. The sun glint causes an increased
albedo at high SZA and wavelengths, especially at station west. The
right panels show slices at the two wavelengths 340 and 500 nm.
Effective albedos at 340 nm are constant to within 0.02 over the
day.

varies over the albedo step transition at the Arctic coast and
gradually increases with increasing distance inland from the
coast.

Note that for the regions further than about 15 km inland,
especially in the northwest, the effective albedo is modified
by the topography. This is an artifact caused by the irradi-
ances in the lookup table that were calculated for sea level,
which strictly applies only for the vicinity of the measure-
ment sites. The increase of irradiance with altitude in turn
causes this increase of effective albedo.

5 Results and discussion

Instruments were operating simultaneously in the field for a
week, out of which one clear-sky day (8 May 2009) was suit-
able for this study. Global irradiance spectra were recorded
over the complete day from 00:00 to 24:00 UTC simultane-
ously at the three locations west, center and east. The polar
day at this high latitude site offers a unique and extremely
valuable situation for such a 3-D model comparison as the
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Figure 7. Effective albedo distribution around the measurement lo-
cations (three dots) derived from modeled global irradiances of a
60 km× 60 km grid (“standard” scenario, SZA = 62◦).

sun traces the complete 360◦ azimuth angle range illuminat-
ing the landscape from all angles.

However, the high latitude also poses a challenge for both
modeling and measuring the absolute global irradiance be-
cause of the generally large SZA (62◦ < SZA< 84◦). As the
SZA approaches and exceeds 80◦several challenges appear
for the modeling. First of all, great care must be taken in
the calculation of the SZA. An SZA error of 0.1◦(e.g., when
neglecting refraction of the atmosphere) results in errors of
up to 3 % in the global irradiance at 500 nm and 80◦ SZA
and 1.5 % at 70◦ SZA. Comparing different available SZA
algorithms (Duffett-Smith and Zwart, 2011; Blanco-Muriel
et al., 2001; Spencer, 1971), we found differences of up to
0.3◦. The algorithm of Reda and Andreas (2004) claims an
uncertainty of below 0.001◦ and agrees within 0.01◦ with the
one used in this study (Duffett-Smith and Zwart, 2011) which
includes the refraction of a standard atmosphere.

Furthermore, with MYSTIC we use the plane-parallel ap-
proximation for the atmosphere which at 80◦ SZA induces a
bias of up to 4 % in the irradiances for the wavelength range
between 340 nm and 500 nm (determined by comparing the
irradiances from the 1-D discrete ordinate RT solver in li-
bRadtran which can be run in both plane parallel and pseudo-
spherical geometry). Also, the BRDF models are typically
not validated for SZA above 80◦and might need different pa-
rameterization. This applies to the RPV of snow, while the
Fresnel model for water is exact. The influence of aerosol
and atmospheric vertical profiles on the global irradiance has
been investigated and was found to be negligible (smaller
than 0.6 % at 80◦ SZA).

The spectral measurements with DA spectrometers are
also challenging at high SZA. First, the angular response (for
direct radiation) of the global input optics deviates from an
ideal cosine response specifically at angles exceeding 75◦.
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Figure 8. Ratios of global irradiances of stations east and west at wavelengths 340 nm(a) and 500 nm(b) plotted against SZA (black dots).
The colored curves show the relevant model scenarios. The “no ice” scenario only applies to the morning. The legend refers to both plots
(a) and(b). The measurement uncertainties are illustrated by gray shaded areas. Time progresses in counterclockwise direction along the
curves that exhibit an interesting hysteresis.

The error is slightly larger for longer wavelengths (maximum
6 % at 340 nm and 10 % at 500 nm), while also at longer
wavelengths, the direct-to-diffuse ratio is larger, so the im-
pact on the global irradiance is larger.

Second, stray light correction in the UV spectral range is
generally a challenge in processing DA spectrometer data of
solar measurements specifically at high SZA (Kreuter and
Blumthaler, 2009). A longer optical path through the at-
mosphere generally implies an increased extinction with in-
creasing effect for shorter wavelengths. So the cut-off wave-
length, below which the signal counts are smaller than the
noise (which is also dependent on stray light) increases with
increasing SZA. Considering measurements up to 84◦ SZA
and a rudimentary stray light correction method (as for east
and center), the lower wavelength limit is 340 nm to ensure a
reasonable error.

By taking ratios, the effects of all of the above problems
can be reduced and we will, in particular, consider two types
of ratios: ratios of irradiances between the different stations
and the ratios between afternoon and morning irradiances
with identical SZA at each station. In these ratios, the effects
of SZA uncertainty, PP-approximation and cosine response
errors are negligible. To minimize the uncertainty of abso-
lute radiometric calibration, the ratios between the stations
are also normalized to the ratios during the intercomparison
day under clear-sky conditions.

5.1 Irradiance ratios between locations

The primary and well-known effect of the surface albedo is
the enhancement of the global irradiance due to backscat-
tering of reflected solar radiation. Spectrally, this effect in-
creases with decreasing wavelength as the Rayleigh scat-
tering cross section increases. The irradiance enhancement
reaches a maximum at a wavelength of about 320 nm.
For shorter wavelengths, the tropospheric ozone absorption

counterbalances the Rayleigh scattering and the albedo effect
decreases again (Lenoble, 1998; Forster, 1995). The albedo
amplification factor (IA / I0), the factor by which the irradi-
ance I at albedo A is enhanced with respect to albedo 0,
is (1+0.45× A) at 340 nm and (1+0.15× A) at 500 nm. So
with albedo 0.3, the irradiance is expected to increase by
14 % at 340 nm and 5 % at 500 nm relative to a non-reflecting
surface. That factor is also weakly dependent on AOD and
not perfectly linear with albedo but the deviations are small.

The ratios of global irradiances of east and west (EW ra-
tios) at wavelengths 340 nm and 500 nm at common mea-
surement times are plotted against SZA (at station west) in
Fig. 8. The measured irradiances are averaged in a wave-
length bandwidth of 5 nm. The resulting ratios are normal-
ized to the diurnal ratios of the instruments of the intercom-
parison day, which largely eliminates the influence of ab-
solute calibration uncertainty and cosine error of the input
optics. The measurement uncertainties are indicated by the
gray bands. These include the relative stability of the instru-
ments at stations east and west (1.4 % in the ratio at both
wavelengths) and the uncertainties due to the stray light er-
ror (1.4 % in the ratio at 340 nm) and the azimuth error of the
global input optics (2.1 % and 1.4 % in the ratio at 500 nm
for 70◦and 80◦ SZA, respectively). All uncertainties are in-
dependent, added quadratically and estimate the 1σ standard
deviation. The gap in the data around 12:00 UTC is the result
of a power failure.

There are two features in Fig. 8 that we will focus on for
the discussion of the data and the model scenarios: the diur-
nal variation and the average of the EW ratio. The first obser-
vation we discuss is the hysteresis-like behavior of the EW
ratios. In both the measurement and all model scenarios for
both wavelengths, the EW ratios depend on SZA and solar
azimuth angle (i.e., the ratios are not symmetric around local
noon). Time progresses in counterclockwise direction in the
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Figure 9. Ratios of afternoon / morning global irradiances (AM ratios) at stations west, center and east for wavelengths 340 nm(a) and
500 nm(b). Measured ratios (dots) are compared to the relevant model scenarios (colored curves). The legends apply to all panels. The
measurement uncertainties are illustrated with gray shaded areas. The tilt scenario only applies to station west.

figure and the modeled EW ratios at 340 nm are higher in the
morning than in the afternoon by 3–4 %. This is not expected
from the effective albedos at this wavelength as they show
little diurnal variation. At station west, the effective albedo
is 0.56 in the morning and 0.58 in the afternoon at 70◦ SZA,
while at east, the difference between morning and afternoon
albedo is less than 0.05. From that consideration, the mod-
eled EW ratio should be constant within 1 % over the day.

This hysteresis is in fact the result of the local time shift
between the stations. Measurements and simulations at each
station are performed simultaneously at same UTC. The dis-
tance of 20 km between stations west and east corresponds
to 0.7◦ difference in longitude (at latitude 79◦ N). This re-
sults in a shift of the local time of three minutes and a shift
of the SZA diurnal variations with time. The SZA differ-
ence between west and east is a sinusoidal function of time
with a maximum SZA difference of 0.15◦ in the morning (at
07:00 UTC) and−0.15◦ in the afternoon (at 18:42 UTC). So
even without any albedo effect, this SZA difference causes
a higher relative global irradiance (east relative to west) in
the morning than in the afternoon, more prominent at longer
wavelengths because of the higher direct sun component in
the irradiance.

Another effect along the same line is noticeable in Fig. 8b.
At 500 nm, all modeled EW ratio curves are slightly tilted
towards lower ratios at high SZA and at SZA> 80◦ in the
afternoon, the ratios are even below one. While the effective
albedo of east is always higher than at west (although the dif-
ference shrinks in the afternoon), it is the lower SZA at west
in the afternoon that counterintuitively causes the irradiance
there to be higher.

For the following discussion of the albedo effect we con-
sider the average of the EW ratios. Over the entire day on
average, the model “standard” scenario shows an enhanced
global irradiance at station east compared to west, higher at
340 nm than at 500 nm, as expected from the higher albedo
environment in the east. The average effective albedos are
0.74 and 0.57, respectively. The “standard” scenario predicts
an EW ratio of 1.09 at 340 nm (9 % average enhancement) as
shown in Fig. 8a. The measured ratio averaged for SZA< 75◦

is 1.15 at 340 nm. For 500 nm, the average measured EW ra-
tio in the same SZA range is 1.05, which is close to the aver-
age ratios of the modeled scenarios of 1.02–1.03.

The “higher albedo” scenario considers a higher snow
albedo (equivalent to a Lambertian albedo of 0.86), which
increases the effective albedo difference between west and
east and hence increases the modeled average EW ratio to
1.10 at 340 nm. A similar effect is achieved by removing
the ice in the morning in the Fjord (“no ice” scenario). In
that scenario the effective albedo of the ocean is reduced
in the morning, which predominantly reduces the effective
albedo around station west before 12:00 UTC, and increases
the model ratio by 1.5 % relative to the standard scenario.
Note that in the “no-ice” scenario also the hysteresis is in-
creased. So a combination (effects can be added linearly to
good approximation) of both scenarios “high albedo” and
“no ice” yields the best comparison with the measurements.

Furthermore, we also investigate an uncertainty in the ex-
act station positions. From the GPS positioning, station west
is situated 1 km inland from the coast as given by the ice
map, whereas from our judgment it was rather a little closer,
possibly as close as 500 m. The modeled global irradiance at
west with a position 500 m north (i.e., closer to the coast) was
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decreased by 1 %, which would increase the EW ratio by an-
other 0.01. At the coast, the gradient of the effective albedo is
highest (see Fig. 7), and the irradiance is very sensitive on the
exact position. The irradiances of stations center and east are
relatively insensitive to the position, as the effective albedo
away from the coast line varies slowly with position.

Regarding the diurnal hysteresis of the EW ratio with
SZA, we note that, at 340 nm, the only way to model an in-
creased hysteresis is the “no ice” scenario (in the morning
and the “standard” scenario in the afternoon). This increases
the EW ratio at 340 nm in the morning only and hence in-
creases the difference of morning and afternoon ratios. At
500 nm, the albedo has a lower impact and consequently, the
drift ice significantly modifies neither the average EW ratio,
nor the hysteresis.

From our range of plausible scenarios, the only possible
cause for the higher observed hysteresis at 500 nm is a detec-
tor tilt. Routinely, the detectors are mounted with a leveling
precision of 0.1◦. However, the detector at station west was
mounted on the roof of a small wooden cabin resting on the
snow surface. The cabin could have been tilted during mea-
surement phase due to an unequal compression of the snow
pack below its base. The effect of a 0.5◦ tilt of detector west
towards west (“tilt” scenario) is shown in Fig. 8. The effect is
< 1 % for 340 nm, because of the mainly diffuse sky at this
wavelength. At 500 nm, the direct proportion of the irradi-
ance is larger and the magnitude of the hysteresis is increased
by 4 % at 75◦ SZA. Even a larger tilt of 1◦cannot be excluded
which would, to a good approximation, have double the ef-
fect and reproduce the magnitude of the observed hysteresis.
Note that the azimuth error of the input optics has a simi-
lar effect as the tilt and also causes a hysteresis. This uncer-
tainty can be of the order of 2 % at 500 nm but is somewhat
arbitrary to model and is considered within the measurement
uncertainty.

The AOD variations are assumed and modeled equally for
all stations (“aerosol” scenario). In principle, the AOD has
an effect on the effective albedo, due to enhanced backscat-
tering, but for low AOD, the impact can safely be neglected
for the EW ratios here. Only for much higher optical depth
such as for stratus clouds, the ratios would be affected.

Also very noticeable in the observed EW ratios are the
prominent peaks between 75◦ and 80◦ SZA in the morn-
ing and similarly in the afternoon. Both features are larger
for 500 nm than for 340 nm, which is typical for clouds. As
mentioned, clouds were indeed faintly visible on the north-
western horizon and we modeled the effect of clouds and
found that a homogeneous cloud cover at a minimal distance
of 15 km northwest of station west affects the global irradi-
ance ratios by less than 2 % as long as it does not obscure the
direct sun (which can be excluded from the sun photometer
data). However, the effect depends on the cloud parameters,
such as distance, height, thickness and optical depth and our
assumptions are somewhat arbitrary by lack of more detailed
cloud information.

5.2 Afternoon / morning (AM) ratios

The measured irradiances at each station are interpolated to
an SZA grid with 0.1◦ resolution so that ratios at the exact
same SZA can be computed. These afternoon / morning ra-
tios (A / M ratios) for each station (west, center and east) for
the two wavelengths 340 nm and 500 nm are shown in Fig. 9.
The measured ratios are averaged within a 10 nm wavelength
bandwidth. The measurement uncertainties are indicated by
the gray bands which are estimated as for the EW ratios ex-
cept for the stray light error which is assumed equal for spec-
tra at equal SZA and is rejected in the AM ratios.

For west, the measured global irradiance at 500 nm in
the afternoon is 10 % higher than in the morning between
67◦ SZA and 75◦ SZA, while at 340 nm, the difference is
5 %. This asymmetry is qualitatively reproduced in the “stan-
dard” model scenario but with a much smaller magnitude. At
the other stations the AM ratios significantly deviate from 1
only at 500 nm and at SZAs around 80◦. So we investigate
the individual effects of the alternative model scenarios.

Most prominently, the “aerosol” scenario with a higher
AOD in the morning around 80◦ SZA has an almost 4 %
effect at 500 nm. This is interesting, because the AOD at
500 nm was quite low and increased only by 0.05 from 0.12
to 0.17. However, the small AOD difference has a large effect
because the extinction of the direct radiation is an exponen-
tial function where the exponent is the product of AOD and
air-mass factor. The air-mass factor defines the direct optical
path length through the atmosphere as a ratio to the vertical
path. At 80◦ SZA, the (Rayleigh) air mass is 5.6. So by con-
sidering the attenuated direct radiation only, a 3 % increase
in the AM ratios would be estimated.

To estimate the effect of the drift ice for the AM ratios,
we consider the scenario of drift ice in the Fjord in the af-
ternoon (standard) and an ice-free Fjord in the morning (no
ice). As noted above, the effect of the drift ice is an albedo
effect and mainly affects the AM ratios of the west station at
short wavelengths. At west it amounts to 3 % at 340 nm and
70◦ SZA while at 500 nm the drift ice effect is smaller than
1 %.

As already indicated in the discussion of the EW ratios, the
“tilt” scenario of the detector at the west station is plausible
and reduces the model to measurement discrepancy. This is
confirmed in the AM ratios, again especially at 500 nm. At
west, a tilt of 0.5◦ (towards west) has a 4 % maximum effect
at 500 nm and 75◦ SZA. At 340 nm the tilt effect is below
1 %, because of the predominantly diffuse sky radiance.

The scenario of higher albedo has no effect in AM ratios,
as it only affects the quasi-Lambertian snow albedo, which
is also independent of the solar azimuth angle. Also the to-
pography around the locations is of minor influence; the only
visible effect of 1 % is for west at 500 nm, and is negligible
at the other stations. This is because at west the snow cov-
ered hills are to the southeast of the station, so they are il-
luminated by the sun only in the afternoon and increase the
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global irradiance for the longer wavelengths with a large di-
rect radiation component. At 340 nm the irradiance mainly
consists of a diffuse component which is independent on the
solar azimuth angle. So the characteristic deviations from ho-
mogeneous albedo evident in afternoon morning asymme-
tries at high SZA are not a topography effect, but rather a
sun glint effect. The characteristic signature is the increase
of this effect with increasing wavelength and that it is most
prominent at west closest to the ocean, and decreasing for the
stations towards east. However, due to the low albedo sensi-
tivity of long wavelengths, the effect remains small (< 3 % at
500 nm).

So at stations center and east, the AM ratios of the aerosol
model scenario are in agreement with the measurements for
both wavelengths within the measurement uncertainty. At
station west, the combination of aerosol, drift ice and tilt,
yields a satisfactory agreement of data and model. There
are some remaining discrepancies between 75◦and 80◦ SZA
which may be explained by high clouds, although from our
cloud scenario, the ratios should not be affected by more than
3 % at 500 nm.

6 Conclusions

3-D radiative transfer model simulations and measurements
of the global irradiance at three locations are compared for
a full clear-sky day at the Arctic coast of Svalbard. The ef-
fective albedos for snow and water are modeled and show a
strong dependence on wavelength and SZA. At 500 nm, the
effective albedo increases with SZA, in particular for water,
which is the so-called sun glint. The sun glint causes a strong
diurnal cycle of the effective albedo at long wavelengths. The
albedo has the biggest impact at short wavelengths and the
effective albedos at 340 nm increase from west to east, from
0.57 to 0.75, constant within 0.02 over the day.

We observe the well-known albedo effect that the irra-
diance increases with increasing albedo. The measured ra-
tios at 340 nm between stations east and west indicate an
increase of the average irradiance of 15 %, which is higher
than our model result from standard parameters for snow
BRDF and drift ice on the ocean. In addition, the observed
hysteresis with SZA, which we found to be an interesting
result of a local time shift between the stations, exceeds our
standard model prediction. The hysteresis emphasizes that ir-
radiances, simultaneously measured at even relatively close
locations, may be affected by the corresponding differences
in the SZA, particularly for the typically large SZAs at high
latitudes.

Modeling the observed drift ice-free Fjord in the morning
increases both the average east–west (EW) ratio and the hys-
teresis. For the modeled average EW ratio to be within the
measurement uncertainty the snow albedo should be higher
still than our model scenario with a Lambertian equivalent
snow albedo of 0.86 and is likely bigger than 0.9. At 500 nm,

the average EW ratio is close to one. Since the albedo has
a smaller influence on the irradiance the only plausible way
to model a greater observed hysteresis is a tilt of the detec-
tor at station west of about 1◦. This is plausible because the
detector was mounted on the roof of a small wooden cabin
with no permanent support on the frozen ground. The tilt has
a similar effect as an azimuth error of the input optics.

The afternoon / morning (AM) ratios confirm the above
conclusions. While these ratios are insensitive to the value
of the snow albedo, increasing amount of drift ice during the
day and the detector tilt are needed to explain the higher ir-
radiance in the afternoon, especially at station west. Further-
more, the AM ratios illustrate the significant effect of small
AOD variations at high SZA. Including these variations in
a model scenario reduces the discrepancies between model
and observations especially at stations center and east. The
remaining discrepancies are possibly due to clouds on the
northwestern horizon in the morning. Although in our par-
ticular modeled cloud scenario the cloud effect was small,
different cloud parameters may lead to a higher effect. The
AM ratios also illustrate the negligible effect of topography
for our locations and that the prominent sun glint (evident in
the effective albedos at 500 nm) has only a minor effect on
the global irradiances because of the low albedo sensitivity
at long wavelengths.

In summary, we presented a unique multi-dimensional
data set with respect to SZA (time), wavelength and posi-
tion. Our study of global irradiances in a highly heteroge-
neous albedo environment shows that even for the relatively
simple clear-sky situation, a variety of parameters have to
be considered which illustrates the complexity of modeling
solar irradiances at the Arctic coast. The associated uncer-
tainties of both measurements and model input parameters
conceal many of the model effects and reduce the suitability
for a stringent validation of the 3-D model and BRDF param-
eterizations.

No doubt, more data of a series of at least two completely
clear-sky days with stable atmospheric and sea ice conditions
would be desirable to better constrain the model input. Mea-
surement uncertainties are expected to be reduced by tech-
nological advancement of DA systems and improved input
optics. This leaves room for future efforts to more accurately
map the irradiance distribution along a large albedo gradient.
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