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Abstract. Remote sensing of aerosols provides important
information on atmospheric aerosol abundance. However,
due to the hygroscopic nature of aerosol particles observed
aerosol optical properties are influenced by atmospheric hu-
midity, and the measurements do not unambiguously charac-
terize the aerosol dry mass and composition, which compli-
cates the comparison with aerosol models. In this study we
derive aerosol water and chemical composition by a mod-
eling approach that combines individual measurements of
remotely sensed aerosol properties (e.g., optical thickness,
single-scattering albedo, refractive index and size distribu-
tion) from an AERONET (Aerosol Robotic Network) Sun–
sky radiometer with radiosonde measurements of relative hu-
midity. The model simulates water uptake by aerosols based
on the chemical composition (e.g., sulfates, ammonium, ni-
trate, organic matter and black carbon) and size distribu-
tion. A minimization method is used to calculate aerosol
composition and concentration, which are then compared
to in situ measurements from the Intensive Measurement
Campaign At the Cabauw Tower (IMPACT, May 2008, the
Netherlands). Computed concentrations show good agree-
ment with campaign-average (i.e., 1–14 May) surface obser-
vations (mean bias is 3 % for PM10 and 4–25 % for the in-
dividual compounds). They follow the day-to-day (synoptic)
variability in the observations and are in reasonable agree-
ment for daily average concentrations (i.e., mean bias is 5 %
for PM10 and black carbon, 10 % for the inorganic salts and
18 % for organic matter; root-mean-squared deviations are
26 % for PM10 and 35–45 % for the individual compounds).

The modeled water volume fraction is highly variable and
strongly dependent on composition. During this campaign
we find that it is> 0.5 at approximately 80 % relative hu-
midity (RH) when the aerosol composition is dominated by
hygroscopic inorganic salts, and< 0.1 when RH is below 40
%, especially when the composition is dominated by less hy-
groscopic compounds such as organic matter. The scattering
enhancement factor (f(RH), the ratio of the scattering coef-
ficient at 85 % RH and its dry value at 676 nm) during 1–14
May is 2.6± 0.5. The uncertainty in AERONET (real) refrac-
tive index (0.025–0.05) is the largest source of uncertainty in
the modeled aerosol composition and leads to an uncertainty
of 0.1–0.25 (50–100 %) in aerosol water volume fraction.
Our methodology performs relatively well at Cabauw, but a
better performance may be expected for regions with higher
aerosol loading where the uncertainties in the AERONET in-
versions are smaller.

1 Introduction

Atmospheric aerosol particles interact directly and indi-
rectly, i.e., through cloud albedo and lifetime, with radiation
(Lohmann and Feichter, 2005). Aerosols influence weather
and climate through visibility, sunshine duration, global radi-
ation and temperature, as has been observed on regional (e.g.,
Van Beelen and Van Delden, 2012) and global scales (Wang
et al., 2009; Wild et al., 2007; Forster et al., 2007). Relatively
large uncertainties are associated with the aerosol radiative
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forcing. Estimates of radiative forcing from models range
from −0.2 to −0.9 W m−2 for the direct effect and−0.5
and−1.5 W m−2 for the indirect effect (Forster et al., 2007;
Quaas et al., 2009), while remote sensing estimates yield be-
tween−0.9 and−1.9 W m−2 for the direct effect (Bellouin
et al., 2005; Quaas et al., 2008) and−0.2± 0.1 W m−2 for
the indirect effect (Quaas et al., 2008). More recent esti-
mates of the aerosol radiative effects from models and re-
mote sensing tend to converge (e.g., Bellouin et al., 2008;
Myhre, 2009; Lohmann et al., 2010), but the uncertainty re-
mains large (Loeb and Su, 2010; Schulz et al., 2010; Kahn,
2012; Bellouin et al., 2013; Myhre et al., 2013a). The un-
certainty in aerosol forcing leads to large uncertainties in the
estimates of climate sensitivity and future projections of cli-
mate change (Andreae et al., 2005; Myhre et al., 2013b).

A better characterization of the aerosol chemical com-
position and hygroscopicity is a necessary step in reducing
these uncertainties. Aerosol properties such as size distribu-
tion and chemical composition are often measured in situ,
for example during dedicated measurement campaigns (e.g.,
Yu et al., 2009; Kulmala et al., 2011). These measurements
are relatively detailed and accurate, but they are only repre-
sentative of small areas, most of which are in the Northern
Hemisphere. Remotely sensed aerosol properties (e.g., from
AERONET (Holben et al., 1998), MODIS (King et al., 1992)
and POLDER/PARASOL (Deschamps et al., 1994; Tanré et
al., 2011)) are available at larger spatial scales, but they re-
flect a contribution of aerosol water. The amount of aerosol
water, and thus total aerosol mass and size, is strongly depen-
dent on not only the aerosol composition (hygroscopicity)
but also on relative humidity (RH). Discrepancies between
remotely sensed aerosol properties and aerosol–climate mod-
els can thus be caused by the description of RH or aerosol
processes in the model (e.g., Bian et al., 2009; Zhang et al.,
2012), which complicates the validation of aerosol properties
in aerosol–climate models.

In order to quantify the water contribution to AOT (aerosol
optical thickness), several studies have retrieved aerosol wet
growth or scattering enhancement factors due to aerosol wa-
ter uptake. Schuster et al. (2009) derive the aerosol water
fraction directly from measurements of the refractive index
and mass conservation, but they apply an empirical rela-
tion to constrain the insoluble-to-soluble aerosol mass ra-
tio. Jeong et al. (2007) derive vertical profiles of the aerosol
humidification factor (the ratio of the scattering coefficient
of aerosol at ambient RH and at dry (40 % RH) conditions)
over the Southern Great Plains (USA) using airborne aerosol
measurements of scattering and absorption under high- and
low-humidity conditions, together with ambient RH, tem-
perature and pressure profiles. Ganguly et al. (2009) use
monthly average AERONET AOT, SSA (single-scattering
albedo) and volume distribution, and MPLNET (Micro-pulse
Lidar Network) extinction profiles to retrieve vertical pro-
files of aerosol chemical compounds, assuming specific size
distributions for each aerosol component. Finally, Wang et

al. (2013) use AERONET imaginary refractive index and
SSA to retrieve columnar black carbon, brown carbon and
dust in Beijing, China.

We present first results of a modeling approach that es-
timates the aerosol dry mass, the masses of several aerosol
species, and aerosol water based on AERONET data from
Cabauw (the Netherlands). The methodology is applied to
individual measurements so that the short-term variability
of the concentrations is resolved. The model simulates hy-
groscopic growth and optical characteristics of an aerosol
population that is initialized with an a priori size distribu-
tion and chemical composition. In an iterative procedure the
modeled aerosol properties are optimized in order to min-
imize the differences between observations and the model
results. The resulting aerosol properties are compared with
detailed measurements, with a focus on chemical composi-
tion, from the measurement campaign IMPACT (Intensive
Measurement Period At the Cabauw Tower; Kulmala et al.,
2009; 2011; Mensah et al., 2012) during May 2008. Aerosol
characteristics resulting from this method can be used for a
more consistent comparison of modeled and remotely sensed
aerosol properties, as well as for a better understanding of
aerosol–humidity and aerosol–cloud interactions (Feingold,
2003; Jeong et al., 2007; Koren et al., 2007; Roelofs and
Kamphuis, 2009). Section 2 describes the model, the mea-
surements and the minimization procedure, and presents a
brief literature overview of specific weights and refractive in-
dices associated with aerosol chemical components. In Sect.
3 we present the resulting aerosol chemical composition and
compare it with measurements from IMPACT. Section 4
presents conclusions and a discussion of the results.

2 Methodology

2.1 Model

We use a microphysical aerosol model that calculates aerosol
water uptake by considering aerosol chemical composition,
size distribution and relative humidity. The aerosol optical
properties are computed and compared to AERONET re-
trievals. Aerosol chemical composition and size distribution
are found using an optimization method. This involves in-
verting the following equation:

y = F(x) + Ey . (1)

Here,F is our forward model in which aerosol water up-
take and optical properties are calculated. The state vec-
tor x contains the parameters that can be adjusted by the
minimization routine. It is initialized with estimates of the
mass concentrations of the dry aerosol chemical composi-
tion, size distribution and RH, which are then used to calcu-
late aerosol water uptake and optical properties. The mea-
surement vectory contains the AERONET retrievals and
RH based on radiosonde measurements.Ey denotes the
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Table 1.Overview of the parameters in the state vector (x). Subscripts f and c denote fine and coarse mode, respectively.

x Description Remarks

mf , mc (SO4) column-average mass mixing ratio sulfate The inorganic composition is determined from sulfate by using (fixed)
ammonium-to-sulfate and nitrate-to-sulfate ratios (see text).

mf , mc (OC) mass mixing ratio organic carbon Water uptake is determined assuming 20 % wt levoglucosan, 40 % wt
succinic acid and 40 % wt Suwannee River reference fulvic acid (Sven-
ningsson et al., 2006).

mf , mc (BC) mass mixing ratio black carbon –
Nf , Nc column-average number concentration –
σf , σc (geometric) standard deviation Fine- and coarse-mode aerosols are assumed to be lognormally dis-

tributed. Geometric standard deviation of each mode can be varied by
the model.

SPH aerosol spherical fraction Only used when the (440–870 nm) Ångström exponent is< 1.2 and the
AOT is > 0.1, otherwise SPH = 1.

RH column-average relative humidity Initial guess is derived from sounding data.

Table 2.Overview of the parameters in the measurement vector (y) and the uncertaintiesEy in y used in this study.

y Description Ey

RRI(λ) real part of the refractive index for four ERRI = max
[
0.005RRI/AOT440nm,0.025

]
wavelengths (λ = 440, 676, 870, 1020 nm)

IRI(λ) imaginary part of the refractive index EIRI = IRImax
[
1
/
(1+ 2.5(AOT440nm− 0.05)) ,0.5

]
AOT(λ) aerosol optical thickness EAOT = 0.01
SSA(λ) single-scattering albedo ESSA= 0.07

/
(1+ 3(AOT440nm− 0.05))

Vi volume distribution in 22 bins EV = 0.15V ∗

SPH aerosol spherical fraction ∼25 %
RHprior column-average relative humidity from soundings∼10 %∗

∗ Approximation; see text.

uncertainty estimates of the parameters iny. In an itera-
tive procedure the parameters inx are adjusted so that the
discrepancies between modeled and observed aerosol opti-
cal properties, size distribution and RH are minimized. An
overview of the model structure is presented in Fig. 1.

2.1.1 Aerosol: initialization, water uptake and optical
properties

Tables 1 and 2 present an overview of the parameters inx

andy together with their uncertainty estimates used in this
study. The model describes aerosol using dry mass mixing
ratios, the number concentrations and (geometric) standard
deviations of lognormal fine and coarse modes, assuming in-
ternally mixed randomly oriented spheroid particles. Aerosol
chemical species considered by the model are sulfate (repre-
sented as a mixture of H2SO4, NH4HSO4 and (NH4)2SO4),
ammonium nitrate (NH4NO3), sea salt (NaCl), organic mat-
ter (OC), black carbon (BC), and mineral dust. We remark
that sea salt and mineral dust have been omitted from this
study for reasons explained in Sect. 2.2.1.

The hygroscopic growth of aerosols can be described from
their chemical composition by the Köhler relation (Köhler,
1936), a combination of Raoult’s law for water activity (aw)

over a flat surface and the Kelvin equation for the curva-
ture effect. We have neglected the Kelvin effect because it is
very small compared to the Raoult effect for optically active
aerosols with diameter larger than 0.1 µm (Tang, 1996). The
water activity (aw) of an aerosol component is then directly
linked to the ambient RH by %RH = 100aw. Measurements
describing water uptake by OC are taken from Svenningsson
et al. (2006). We have followed their assumption that wa-
ter uptake by OC can be described by a mixture of levoglu-
cosan, succinic acid and Suwannee River fulvic acid. Water
uptake by ammonium sulfate, ammonium bisulfate, sulfuric
acid, ammonium nitrate and sea salt is obtained from water
activity measurements by Tang and Munkelwitz (1994), Tang
(1996) and Tang et al. (1997). The density of the mixture of
inorganic salts and water is estimated from measurements of
the densities of the binary solutions of water and solute us-
ing a volume additivity rule (Tang, 1997). The total water
uptake of a mixture of components is assumed to be the sum
of the water uptake of each individual component (ZSR re-
lation; Zdanovskii, 1936; Stokes and Robinson, 1966). Some
inorganic salts display strong hysteresis behavior between a
dry (crystalline) and wet state (Tang and Munkelwitz, 1993;
Wang et al., 2008). Aerosols remain in the wet (deliquescent)
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Figure 1. Flow diagram of the model. The state vectorx contains
the initial guess, which can be updated by the minimization routine
which compares the output of the model with the measurement vec-
tor y. When the cost functionφ has reached a value lower than a
certain thresholdftol, or when the improvement ofφ in subsequent
runs is smaller thanrtol, a final estimate of the aerosol is obtained
and compared to observations.

state until RH drops below the efflorescence (crystallization)
RH. Boundary layer RH in the Netherlands is generally high
enough for deliquescence. Also, for complex aerosol mix-
tures, the deliquescence RH is unknown but generally lower
than its pure substances (Seinfeld and Pandis, 1998). Finally,
organic constituents in mixed aerosols suppress the deli-
quescence behavior of inorganic salts (Marcolli and Krieger,
2006; Sjogren et al., 2007; Meyer et al., 2009).

Aerosol optical properties (i.e., AOT, SSA) are calculated
using thet-matrix code described in Dubovik et al. (2006),
taking into account the complex refractive index (RI) for
each aerosol mode at four wavelengths (440, 676, 870 and
1020 nm) and non-sphericity of the aerosol (Mishchenko et
al., 1997). The RI of the mixture of inorganic salts and wa-
ter is calculated with the partial molar refraction method
(Moelwyn-Hughes, 1961; Stelson, 1990; Tang and Munkel-
witz, 1994). The imaginary refractive index (IRI) of inor-
ganic salts is assumed to be negligible. Weakly soluble or
insoluble species (e.g., OC, BC, dust) generally do not homo-
geneously mix with the water–salt solution (e.g., Péré et al.,
2009; Song et al., 2012). Since their mixing state and molec-
ular mass is poorly known, we assume that the final RI for
each mode is represented by the volume-weighted average RI
of the wet inorganic salts and the other components (Lesins
et al., 2002). This method can lead to an overestimation of
the absorption by aged black carbon of up to 35 % (Oshima
et al., 2009) and thus an underestimation of the amount of
BC, but this has a smaller impact than the uncertainty in its
refractive index and density (e.g., Schuster et al., 2005). Er-
lick (2006) and Erlick et al. (2011) show that the choice of

Table 3.Specific densities for the aerosol chemical components.

Compound Dry density Range Reference

(NH4)2SO4 1.76 – 1
NH4HSO4 1.78 – 1
H2SO4 1.841 – 2
NaCl 2.165 – 3, 4
Organic matter 1.547∗ 1.2–1.8

(6, 7, 8, 9, 10)
5

Black carbon 1.8 1.0∗∗–2.0
(10, 11)

11

Dust 2.65 2.5–2.75
(12, 13)

12

Water 0.9971 – 14

∗ Weighted density from 20 % wt levoglucosan, 40 % wt succinic acid, and 40 %
Suwannee River reference fulvic acid (Svenningsson et al., 2006).
∗∗ Bond and Bergstrom state that a density of 1.0 has never been observed.
1 Tang (1996), 2 Weast (1985), 3 Köpke et al. (1997), 4 Hess et al. (1998),
5 Svenningsson et al. (2006), 6 Turpin and Lim (2001), 7 Dick et al. (2000),
8 Hallquist et al. (2009), 9 Dinar et al. (2006), 10 Ganguly et al. (2009),
11 Bond and Bergstrom (2006), 12 McConnell (2009),
13 Wagner et al. (2009) and references therein,
14 Tang and Munkelwitz (1994).

mixing state for the calculation of the effective refractive in-
dex of these species causes only a moderate change in RRI,
∼0.01–0.02.

Table 3 lists molecular masses and specific densities of the
model species, and we notice that the specific densities for
OC and BC cover a large range over different studies. Table 4
presents an overview of RI values for aerosol dry components
currently found in the literature. The variation of RI with
wavelength has been estimated from published values when
measurements for that specific wavelength were not avail-
able. Also, a wide range of RI values can be found here for
OC, depending on its source: clean continental sources are
associated with lower RI (e.g., Kanakidou et al., 2005), while
pollution and biomass burning are associated with higher val-
ues (“brown carbon”; e.g., Dinar et al., 2008). For ammo-
nium nitrate, most studies list a real refractive index (RRI)
between 1.56 and 1.60 (e.g., Stelson, 1990), which is used in
our study (Table 4), but sometimes a much lower RRI of 1.42
is used (e.g., Weast, 1987).

2.1.2 Minimization procedure

Modeled aerosol optical properties and size distribution are
compared to observations from the AERONET Sun–sky ra-
diometer, an optical, ground-based aerosol monitoring sta-
tion located at Cabauw during May 2008. AERONET ver-
sion 2, level 2.0 (L2.0) inversions are quality assured, and
include SSA and RI when AOT> 0.4. For the period un-
der study at Cabauw, the AOT is generally smaller than
0.4. Whenever L2.0 AOT and size distribution are available
but L2.0 SSA and RI are not, SSA and RI are taken from
the corresponding L1.5 retrievals (Dubovik and King, 2000;
cloud screened but not quality assured, Smirnov et al., 2000)
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to improve data coverage to 66 points. This effectively ap-
plies the AERONET L2.0 criteria to all parameters, except
AOT > 0.4 for SSA and RI. In this study, we refer to this
data set as L2*. In addition, we consider a data set of all L1.5
inversions in Cabauw in May 2008, amounting to 132 data
points. We note that the L1.5 data set also includes retrievals
from measurements containing fewer scattering angles – for
example, when a portion of the angular scan is affected by
cloud contamination or when the solar zenith angle is rela-
tively low, e.g., between 40 and 50◦. For a complete overview
of the differences between L1.5 and L2.0, the reader is re-
ferred to Holben et al. (2006). The results of our study en-
able a comparison of the quality and consistency of both data
sets, L2∗ and L1.5, required for an accurate optimization of
aerosol physical and chemical properties.

Parameters used in our study are AOT, SSA and com-
plex refractive index data at four wavelengths (λ = 440, 676,
870 and 1020 nm), the volume size distribution resolved
in 22 size bins between 0.05 and 15 µm, and the aerosol
spherical fraction (Table 2). The model size distribution is
rebinned to the AERONET resolution before comparison.
The AERONET retrieval assumes that aerosols are homoge-
neous, internally mixed particles with a single wavelength-
dependent RI. However, aerosol RI is often size dependent
(e.g., Benko et al., 2009), and our method assumes a bimodal
lognormal size distribution with homogeneous composition
(and thus a single RI) in each individual mode. In the present
study the median absolute difference of RRI between both
modes is generally very small (0.01), but it can occasionally
be significant.

The uncertainties (Ey) used in our model can be found in
Table 2. The uncertainty in AERONET AOT is 0.01 (Eck et
al., 1999). The uncertainties in the inversion parameters are
derived from Dubovik et al. (2000) and pertain to the general
AERONET performance. The uncertainties in RI and SSA
are larger for low AOT (< 0.2) and low solar zenith angles
(Holben et al., 2006; Torres et al., 2014). We remark that the
expressions for uncertainties in Table 2 may lead to underes-
timation when applied to conditions with very low AOT and
solar zenith angles, as well as to dust events. The uncertainty
estimates presented here from Dubovik et al. (2000) are for
weakly absorbing aerosols. The uncertainty in RRI may be
larger under strongly absorbing conditions. For fine-mode-
dominated aerosols, the AOT strongly decreases with wave-
length, leading to larger uncertainties at longer wavelengths,
especially for SSA. Finally, we note that the AERONET re-
trieval algorithm places constraints on the spectral variability
of the complex refractive index, which may lead to additional
uncertainty. Dubovik et al. (2000) state that the uncertainty
in the AERONET volume distribution is 15 % between 0.1
and 7 µm, increasing up to 100 % at the distribution edges.
We have set the uncertainties of the three outlying bins be-
low 0.1 and above 7 µm to 30, 60 and 100 %, respectively.
Further, because the uncertainty in the aerosol spherical frac-
tion is not known, we arbitrarily assumed this to be 25 %.

The AERONET spherical fraction is used when the (440–
870 nm) Ångström exponent is< 1.2 and the AOT is> 0.1
(Holben et al., 2006); otherwise the particles are assumed to
be spherical. We note that the optimization does not appear
to be sensitive to the magnitude of the uncertainties of the
smallest and largest size bins and of the aerosol spherical
fraction. The column effective RH is used both as an initial
guess (x) to calculate aerosol water uptake, as well as a pa-
rameter (RHprior, in y) that is used in the optimization. It can
be adjusted by the model if this leads to a better fit with the
AERONET aerosol parameters, but this will contribute to the
cost function. The variance of the RH in the column is used
as an uncertainty estimate, and is generally on the order of
0.1 (i.e., 10 %).

A cost functionφ(x) quantifies the total difference be-
tween modeled (F (x)) and observed (y) aerosol parameters:

φ (x) =

N∑
i=1

(
F(x) − y

wEy

)2

. (2)

The difference between modeled and observed aerosol pa-
rameters is weighted by the uncertainties iny together with
a weighting factor,w, that considers interdependency of the
variables, and then summed overN , the number of parame-
ters iny .

The routine searching for the minimum of the cost func-
tion is known as “amoeba” (Nelder and Mead, 1965). It uses
a simplex based on the logarithm of the model parameters
(i.e., mass concentrations of the components in each mode,
the number concentration and standard deviation of the log-
normal distribution of each mode and the RH; Table 1).
Amoeba finds a minimum on nearly all parameter spaces,
but convergence does not always result in the absolute mini-
mum. The probability of finding the latter is greatly improved
by restarting amoeba on a previously found minimum until
the cost function converges.

2.2 IMPACT observations

In order to assess the representativity of the optimized
aerosol composition, the model results are compared to sur-
face aerosol measurements from the IMPACT campaign
(Kulmala et al., 2011; Mensah et al., 2012), carried out at
Cabauw in the Netherlands as part of the European Integrated
Project on Aerosol Cloud Climate and Air Quality interac-
tions (EUCAARI, Kulmala et al., 2009, 2011). The Cabauw
Experimental Site for Atmospheric Research (CESAR,
Russchenberg et al., 2005;http://www.cesar-observatory.nl;
51.97◦ N, 4.93◦ E, −0.7 m a.s.l.) is located in a typical rural
area in the central Netherlands with nearly flat orography in
all directions. This area is also well representative of central
Europe. During IMPACT, aerosol and cloud data were gath-
ered near the 213 m high Cabauw Tower. Balloon sounding
and helicopter and aircraft measurements from a wider area
around Cabauw are also available. A direct comparison of
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Table 4.Refractive indices for four different wavelengths (440, 676, 870 and 1020 nm) presented with a range found in the literature. When
no imaginary part (italic) is listed, it is assumed to be zero.

Compound 440 nm 676 nm 870 nm 1020 nm Range Reference

(NH4)2SO4 1.535 1.525 1.52 1.52 – 1
NH4HSO4 1.48 1.47 1.465 1.465 - 2
H2SO4 (97 % wt) 1.43 1.42 1.415 1.41 1.41–1.43 (2, 3, 4) 3
NaCl 1.56 1.546 1.534 1.532 1.49–1.55 (5, 6, 1) 1
NH4NO3 1.56 1.545 1.54 1.535 1.41–1.60 (7, 8, 9, 10) 6
Organics 1.57−1.5e−2 i 1.55−5e−3 i 1.54−3e−3 i 1.535−3e−3 i 1.43–1.652e−3–0.1 i(11, 12, 13) 13
Black carbon 1.85−0.71 i 1.85−0.71 i 1.85−0.71 i 1.85−0.71 i 1.50–2.00.44∗–1.0 i (14, 16, 17, 18, 19) 15
Dust 1.54−8e−3 i 1.52−5e−3 i 1.51−3e−3 i 1.51−3e−3 i 1.52–1.581e−3–1e−2 i (20, 21, 22, 23) 20, 21
Water 1.344 1.331 1.324 1.321 – 24

∗ Bond and Bergstrom argue that the low IRI (0.44) value for BC (from the OPAC database) should be discarded.
1 Toon et al. (1976), 2 Stelson (1990), 3 Benko et al. (2009), 4 Hess et al. (1998), 5 Shettle and Fenn (1979), 6 Tang (1996), 7 Weast (1987) from Benko et al. (2009) (550–589 nm),
8 Richardson and Hightower (1987) (633 nm), 9 Tang (1996), 10 Weast (1985), 11 Köpke et al. (1997), 12 Dinar et al. (2008), 13 Hoffer et al. (2006), 14 Horvath (1998),
15 Stier et al. (2007), 16 Bond and Bergstrom (2006), 17 Chang and Charalampopoulos (1990), 18 Janzen (1979), 19 Schuster et al. (2005), 20 Kinne et al. (2003),
21 Sokolik et al. (1993), 22 Wagner et al. (2012), 23 Kandler et al. (2011) (532 nm, Cape Verde), 24 Segelstein (1981).

the optimized size distribution with surface measurements
is not possible due to technical problems with the scanning
mobility particle sizer (SMPS, a modified TSI Inc. model
3034) and the CPC (TSI Inc. model 3762). We note that
aerosol hygroscopicity measurements (90 % RH growth fac-
tors) from a hygroscopicity tandem differential mobility ana-
lyzer (H-TDMA) are available for particle radii Dp ≤ 165 nm
(http://ebas.nilu.no/), but their quality is unknown as the data
are as yet unpublished.

2.2.1 Specific model assumptions for Cabauw during
May 2008

The first two weeks of May 2008 were characterized by high-
pressure, relatively fair weather and a steady easterly wind in
the lower atmosphere throughout most of the period. During
the second half of the month the weather was more unset-
tled, with cloudy and rainy periods (e.g., Roelofs et al., 2010;
Hamburger et al., 2011), and as a result AERONET observa-
tions are relatively sparse. Therefore we focus our analysis
on 1–14 May. We assume that the aerosol is homogeneously
distributed in a layer of 2 km depth at the surface. The “ef-
fective” RH in this layer is derived from radiosonde measure-
ments by means of averaging water vapor pressure and tem-
perature in this layer. Radiosonde measurements are avail-
able three times a day during the campaign, around 05:00,
10:00 and 16:00 UTC. The columnar RH is time-interpolated
to the AERONET data available.

We remark that sea salt and dust have been omitted from
this study. Cabauw is located only 50 km from the coast, but
the first half of May is dominated by easterly winds and
therefore a strong continental influence. Further, observed
Cl− concentrations are very low (� 1 µg m−3). Traces of Sa-
hara dust were present over the Cabauw region only on 4
May (Roelofs et al., 2010). To reduce the number of pa-
rameters in the optimization we assumed specific ammo-
nium : sulfate and nitrate : sulfate ratios, based on Gysel et
al. (2007). The ammonium to sulfate mass ratio that corre-
sponds best to surface measurements is 1.8. Surface observa-

tions of ammonium nitrate during May 2008 correlate well
(R2 = 0.71) with that of sulfate; the mass ratio of ammonium
nitrate to sulfate is 1.3.

2.2.2 AERONET

The optimization procedure uses AERONET retrievals for
Cabauw. Figure 2 shows AERONET AOT, the Ångström ex-
ponent, boundary layer RH, RRI, SSA and IRI for the first
half of May 2008. Between 6 and 12 May, dry continental
air was advected from the east. Figure 2a shows that AOT
(676 nm) is generally between 0.05 and 0.25 (the mean and
standard deviation are 0.13± 0.05 and 0.13± 0.04 for L1.5
and L2∗ AERONET data, respectively). The Ångström ex-
ponent generally exceeds 1 (1.48± 0.26 and 1.51± 0.24 for
level 1.5 and 2∗, respectively), indicating that the fine-mode
fraction dominates the aerosol optical properties. During
daytime a well-mixed boundary layer was formed between 0
and 2 km altitude above the surface. The atmosphere is rela-
tively dry, with RH between 30 and 70 % (48± 10 %) except
for the first three days (Fig. 2b), and the variability during
a day is on the order of 10–20 %. AOT displays a distinct
daily variability with a minimum around noon on days when
RH is relatively high (e.g., 6–8 May). On the driest days,
e.g., 9–11 May, AOT strongly increases during the day. The
RRI ranges between the AERONET lower and upper bounds
of 1.33 and 1.60 (the mean and standard deviation for RRI
(676 nm) are 1.46± 0.06 and 1.47± 0.05 for level 1.5 and 2∗,
respectively). It is highly variable, even during a single day
(e.g., 9 and 10 May) and appears to be only weakly related
to RH. Single-scattering albedo (676 nm) varies from 0.8 to
near 1.00 (0.88± 0.04 and 0.88± 0.03 for L1.5 and L2∗, re-
spectively) and is lowest on 11 and 12 May (∼0.82–0.87)
(Fig. 2c). The SSA is strongly correlated with IRI (R2 = 0.83
and 0.84 for L1.5 and L2∗ data, respectively).
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2.2.3 Aerosol chemical composition

Surface concentrations of inorganic aerosol species NO−

3 ,
SO2−

4 , NH+

4 , Na+ and Cl− were measured with a MARGA
instrument (Monitor for Aerosols and Gases, Applikon Ana-
lytical BV; ten Brink et al., 2007; Thomas et al., 2009), with
an hourly resolution and a measurement error smaller than
10 % (Schaap et al., 2011, and references therein). Black car-
bon mass concentrations are measured with a multi-angle
absorption photometer (MAAP; Thermo Scientific model
5012; Petzold et al., 2005) with a resolution of 5 min and un-
certainty of 12 % (Petzold and Schönlinner, 2004). Aerosol
organic concentrations were measured with an Aerodyne
aerosol mass spectrometer (HR-ToF-AMS) (Jülich ICG-2;
Canagaratna et al., 2007) with a 5 min time resolution from
an inlet at 60 m altitude (Mensah et al., 2012). Measured
AMS PM1 mass concentrations for inorganic and organic
ambient aerosol species are reproducibly accurate to approx-
imately± 25 % (Canagaratna et al., 2007).

We note that measured organic masses are effectively PM1
(100 % transmission in range 70–500 nm and 50 % for parti-
cles with 1 µm diameter). To compare these with the opti-
mized organic mass, which is essentially PM10, we scaled
the AMS measurements to PM10 based on the observed sul-
fate masses from MARGA and the AMS. This implies that
sulfate and organics are distributed similarly over aerosol
size, which is a reasonable assumption because a significant
fraction of secondary organic as well as inorganic (sulfate)
aerosol matter formed in the gas phase deposits onto the fine
mode (Kulmala et al., 2004; Kanakidou et al., 2005; Hal-
lquist et al., 2009).

3 Results

The refractive index is a crucial parameter in the optimiza-
tion of the aerosol chemical composition. Figure 3 shows a
comparison between the optimized RRI and the AERONET
retrieved values. Between the values 1.40 and 1.56 the dis-
crepancies between our results and AERONET are generally
within the uncertainty range (i.e., 0.025–0.05, Table 2). In
several cases, however, especially for the level 1.5 data, the
AERONET RRI is less than 1.40. As can be seen in Fig. 4,
which compares RRI and RH, the corresponding columnar
RH is relatively low, ranging between 38 and 65 %. The
AERONET RRI has a very low correlation with the colum-
nar RH (R2 = 0.14, 0.14 and 0.36 for the L1.5, L2∗ and
non-suspect data, respectively), suggesting large variations
in aerosol composition or relatively large uncertainties in the
AERONET RRI. Our model cannot simulate the lowest RRI
values at the observed columnar RH with the current choice
of aerosol compounds. These low RRI values also cannot di-
rectly be attributed to cloud contamination of the AERONET
retrievals (e.g., de Meij et al., 2007; Schaap et al., 2009), be-
cause close inspection of the CAELI (CESAR Water Vapour,

Figure 2. AERONET almucantar retrieval data (level 1.5: squares;
L2*: dots) during the first 14 days of May 2008 at the Cabauw
Tower. (a) Aerosol optical thickness (AOT) color-coded with val-
ues of the Ångström exponent (440–870 nm),(b) the columnar rel-
ative humidity from balloon soundings between 0 and 2 km color-
coded with the AERONET real part of the refractive index, and
(c) AERONET single-scattering albedo (SSA) color-coded with the
(base 10 logarithm) imaginary part of the refractive index.

Aerosol and Cloud Lidar; Apituley et al., 2009) data showed
that low RRI values seem to occur both on clear days (e.g.,
7 and 8 May) as well as on days with a slight lidar backscat-
ter signal between 8 and 12 km altitude (most other days).
Most of the discrepancies relate to L1.5 data and not to the
L2∗ data, which may reflect the difference in accuracy. Some
discrepancies remain in the L2∗ data, while several L1.5 data
points yield reasonable results. We have labeled “suspect”
those results associated with AERONET RRI values out-
side the range that our model can represent (at the effective
RH), and results with a cost function larger than 10. The sus-
pect data represent about 40 % of the data considered. Ta-
ble 5 presents the (squared) Pearson linear correlation coeffi-
cients between optimized and AERONET values of the RRI,
IRI, AOT, SSA, total binned volume (VOL), aerosol spher-
ical fraction (SPH) and RH. Generally, excellent agreement
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Table 5. Squared Pearson correlation coefficients (R2) between model computed (optimized) values and AERONET inversions of the real
and imaginary part of the refractive index (RRI and IRI), aerosol optical thickness (AOT), single-scattering albedo (SSA) at four wavelengths,
the sum of the binned AERONET volume distribution (VOL), AERONET spherical fraction (SPH) and columnar relative humidity (RH)
derived from radiosonde measurements for the non-suspect data, L1.5 and L2∗ data (latter two between parentheses) during the first 14 days
of May.

Correlation (R2) 440 nm 676 nm 870 nm 1020 nm

RRI 0.80 (0.78, 0.82) 0.94 (0.81, 0.89) 0.90 (0.84, 0.91) 0.84 (0.83, 0.89)
IRI 0.79 (0.79, 0.71) 0.98 (0.98, 0.98) 0.98 (0.98, 0.98) 0.97 (0.96, 0.96)

AOT 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99)
SSA 0.93 (0.84, 0.85) 0.98 (0.98, 0.98) 0.98 (0.97, 0.96) 0.98 (0.97, 0.96)
VOL 0.99 (0.85, 0.93)
SPH 1.00 (1.00, 1.00)
RH 1.00 (0.99, 0.99)

Figure 3. Scatterplot of model computed (optimized) and
AERONET level 1.5 (squares) and L2∗ (diamonds) real refractive
index (RRI) data averaged over four wavelengths. Model results
have been marked “suspect” (red) when the AERONET refractive
index is outside the range that our model can simulate and/or when
the cost function is larger than 10. The blue line shows the 1: 1
ratio.

Figure 4.Scatterplot of the column effective relative humidity (RH)
and the AERONET real refractive index (RRI) for level 1.5 data
(squares) and L2∗ data (diamonds). The AERONET data that have
been labeled “suspect” are presented in red.

is found for most parameters. It should be noted that in our
model, the RI tends to show a stronger increase near smaller
wavelengths (due to our choice of RI of the individual com-
pounds), leading to larger discrepancies for RI and SSA at
440 nm than at longer wavelengths. The correlation between

Figure 5. Scatterplot of model computed (optimized) and
AERONET total volume (level 1.5: squares, L2*: diamonds).
AERONET data that have been classified as suspect have been
marked in red. The blue line shows the 1: 1 ratio.

AERONET RRI and RH is smaller at 440 nm than at longer
wavelengths, suggesting larger uncertainties at the shorter
wavelengths. This is consistent with the results of Torres et
al. (2012) for urban aerosol. We also note that we did not find
a significant correlation between the AERONET SSA and the
fine-mode volume median radius.

Figure 5 shows a comparison of the optimized and
AERONET total aerosol volume. The agreement is very
good for non-suspect data, but for suspect data the model cal-
culates substantially smaller aerosol volumes, mostly associ-
ated with discrepancies between modeled and observed RRI.
The average AERONET (non-suspect) and modeled (opti-
mized) volume size distributions during 1–14 May are shown
in Fig. 6. It can be seen that the AERONET coarse mode con-
tains two weak maxima, and is therefore generally wider than
the optimized (single) coarse mode.

We note that technical problems with the SMPS and
CPC during the first two weeks of IMPACT hamper a di-
rect comparison of the size distribution with surface mea-
surements. The modeled column average number concen-
trations are generally between 800–3000 cm−3 during 1 to
10 May, approximately 1200 cm−3 on 11–12 May and in-
creasing to 4000 cm−3 on 14 May. They are of the same
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Table 6. Mean (column-average) modeled (µmod ) and mean observed (µobs) (near-surface) mass concentration (µg m−3) together with
corresponding standard deviations (σ ), modeled and observed medians (medmod and medobs) and mean absolute gross error (MAGE) for
the non-suspect (N-S) data, L1.5 and the L2∗ data during the first half of May 2008. NB: NA is given when there are no observational data
available.

Conc [µg m−3] µmod± σmod µobs± σobs medmod medobs MAGE

Dry mass N-S 30.3± 8.40 31.3± 11.0 27.8 30.1 9.99
L1.5 36.1± 28.2 30.2± 11.2 30.4 28.5 13.6
L2∗ 32.3± 9.66 28.6± 12.2 29.4 28.4 12.1

SO42− N-S 5.51± 3.11 4.42± 1.38 4.92 4.84 2.87
L1.5 7.11± 4.57 4.37± 1.38 6.67 4.69 4.37
L2∗ 6.99± 4.21 4.24± 1.64 6.62 4.44 4.01

NH4+ N-S 4.03± 2.27 3.34± 1.55 3.59 3.05 2.19
L1.5 5.20± 3.34 3.35± 1.57 4.87 3.23 2.94
L2∗ 5.11± 3.08 3.11± 1.66 4.84 3.03 2.92

NO3− N-S 7.44± 4.20 7.76± 3.64 6.63 7.71 3.73
L1.5 9.60± 6.17 7.48± 4.35 9.00 7.04 4.75
L2∗ 9.44± 5.68 7.00± 4.07 8.94 5.02 4.79

OC N-S 12.6± 7.43 14.8± 5.35 13.4 14.6 6.77
L1.5 13.3± 27.5 13.9± 5.37 10.4 14.1 13.0
L2∗ 9.98± 9.68 13.0± 6.22 8.92 14.0 9.09

BC N-S 0.73± 0.32 0.88± 0.46 0.69 0.75 0.41
L1.5 0.75± 0.34 0.89± 0.49 0.72 0.74 0.48
L2∗ 0.71± 0.24 0.83± 0.49 0.70 0.70 0.46

H2O N-S 6.09± 4.98 NA 4.60 NA NA
L1.5 8.55± 7.84 NA 7.45 NA NA
L2∗ 7.79± 6.86 NA 6.26 NA NA

Figure 6. Average AERONET (black dots) and optimized
(turquoise dots) volume distribution for the non-suspect data dur-
ing 1–14 May. The bars indicate the standard deviation of the data
in each bin.

magnitude as observed during aircraft measurements in the
boundary layer around Cabauw: approximately 1500 cm−3

on 6 May (FAAM BAe-146,Dp = 0.1–0.8 µm), 2500 cm−3

on 8 May (DLR Falcon 20, CCN> 10 nm), 800 on 12 May
and 1200 cm−3 on 13 May (FAAM BAe-146) (Hamburger et
al., 2011, their Fig. 9).

Figure 7 shows computed column-average dry aerosol
mass concentration and the total observed dry mass con-
centration at the surface, i.e., the sum of scaled organic
mass concentrations from the AMS instrument, all aerosol

Figure 7. Time series of total (PM10 equivalent) dry mass con-
centration from surface measurements (black dots), and our model
results (turquoise squares and diamonds for results based on non-
suspect AERONET L1.5 data and L2∗ data, respectively) during
the first half of May 2008 at the Cabauw Tower. Results based on
AERONET data that have been labeled “suspect” are presented in
red.

PM10 from the MARGA instrument and black carbon from
the MAAP. Excluding the suspect values, the modeled con-
centrations show good agreement with the mean and vari-
ability of observed concentrations, i.e., 30.3± 8.40 µg m−3

vs. 31.3± 11.0 µg m−3 (normalized mean bias is 3 %). The
agreement between observations and retrieval is generally
best in a period of quiet, dry and sunny weather between 6

www.atmos-chem-phys.net/14/5969/2014/ Atmos. Chem. Phys., 14, 5969–5987, 2014



5978 A. J. van Beelen et al.: Estimation of aerosol water and chemical composition from AERONET

Figure 8. Time series of black carbon concentration from surface
observations (multi-angle absorption photometer, black dots) with
3 h centered moving average (black line), and our model results
(L1.5: turquoise squares; L2∗: turquoise diamonds; suspect: red).

and 14 May. Measurements from the CAELI and radiosonde
observations indicated that most of the aerosol and high-
est RH were located in a (reasonably) well-mixed bound-
ary layer of approximately 2 km depth, consistent with our
assumptions. Including the suspect values, the computed
values and associated standard deviation are significantly
larger (36.1± 28.2 µg m−3) than observed (30.2± 11.2).
Note, however, that this is predominately caused by a few
outliers, and that the modeled and observed medians are still
reasonably close (30.4 versus 28.5 µg m−3).

Although the daily averages of computed dry mass and
the observations appear to be in reasonable agreement, for
some days (e.g., 8–11 May) the daily cycle of the computed
aerosol concentration is opposite to that of the surface ob-
servations, with the former showing an increase and the lat-
ter a decrease during the day. The increase in modeled dry
aerosol concentration during the afternoon is associated with
a large, approximately two-fold increase in AERONET AOT
(e.g., 8 and 9 May), while RRI slightly increases or remains
approximately equal. The discrepancy between modeled and
observed variability is partly due to the different effects of
boundary layer meteorology on columnar mass and on sur-
face concentration. During the early morning hours, aerosols
are trapped in a thin, stable layer near the surface. This layer
will rapidly mix with the atmosphere above when heated by
the sun, leading to a reduction in the aerosol concentration
near the surface without changing the total column aerosol
burden. Additionally, rapidly rising temperatures near the
surface during the day shift the partitioning of semi-volatile
gases such as ammonium nitrate and volatile organic com-
pounds to the gas phase (Schaap et al., 2011; Aan de Brugh
et al., 2012). More abundant road traffic and photochemi-
cal production of secondary aerosol during daytime may be
the reason why the computed (column-average) dry mass
increases in the afternoon, reflecting the strong increase of
AERONET AOT.

Table 6 lists modeled (total column-average) and ob-
served (surface) mass concentrations. The agreement be-
tween both is reasonable for the non-suspect data, i.e., within
the computed standard deviations, with computed BC (bias is
−17 %), OC (−15 %) and nitrate (−4 %) somewhat smaller,
and sulfate (+25 %) and ammonium (+21 %) significantly
larger than observed.

A comparison between optimized and measured concen-
trations for individual aerosol species is presented in Fig. 8
for black carbon, and in Fig. 9 for the inorganic salt ions
(SO2−

4 , NH+

4 and NO−

3 ) and organic matter. Optimized BC
concentrations (Fig. 8) fall within the same range as observed
concentrations. On some days the observed hourly variabil-
ity, represented by the black line, appears to be captured by
the model (6, 13 May). A significant overestimation occurs
on 4 May (to a lesser extent also on 2 May and during one
measurement in the afternoon of 12 May; however these are
already marked as “suspect”), when traces of Sahara dust
were present over the Cabauw region (Roelofs et al., 2010).
Since mineral dust is not taken into account in this study, the
associated scattering and absorption is now attributed to the
other compounds in our model. Nevertheless, we conclude
that the optimization performs relatively well for BC, espe-
cially considering the uncertainties in AERONET SSA and
IRI. For other species the comparison for the individual op-
timizations is less favorable. Optimization results display a
relatively large variability compared to measured concentra-
tions. As will be discussed later, RRI is a dominant parame-
ter in the optimization, and errors in RRI lead to compensat-
ing solutions between the more hygroscopic inorganic salts
and the less hygroscopic OC. Figure 10 shows daily aver-
ages of modeled and observed aerosol species. The day-to-
day variability and the daily averaged concentrations, espe-
cially for the inorganic salts (sulfate, ammonium and nitrate),
are captured reasonably well (i.e., mean bias is 5 % for PM10
and black carbon, 10 % for the inorganic salts and 18 % for
organic matter, and root-mean-squared deviations are 26 %
for PM10 and 35–45 % for the individual compounds; Ta-
ble 7). Concentrations are relatively low on 1–2, 5–7 and
11–12 May, while higher concentrations are observed and
modeled between 7 and 10 and between 13 and 14 May.
We note that on 11–12 May a brief period with northeast-
erly winds occurred, advecting relatively clean air character-
ized by small AOT (∼0.1), low RH and high refractive index
(RRI> 1.48, Fig. 2). Our model calculates concentrations of
inorganic salts that are considerably smaller than those of the
surrounding days, in good agreement with the observations.

The largest discrepancies are found on 7–9 May and later
on 14 May, when our method overestimates concentrations
of sulfate and ammonia but underestimates OC. This relates
to days when the RI shows strong hourly variability even
though RH is relatively constant. For relatively high RRI
(> 1.52) our method calculates relatively high concentrations
of OC, whereas for relatively small RRI (< 1.44), water and
inorganic salts dominate the modeled aerosol composition.
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Figure 9. Inorganic salt ion concentrations, SO2−

4 (upper left), NH+4 (upper right), NO−3 (lower left) from surface observations of the
MARGA (small grey dots), and organic matter (OC) from Jülich ICG-2 AMS (scaled to PM10, lower right), interpolated to AERONET
times (bold black dots) and compared to the column-average model results (turquoise squares and diamonds for data based on AERONET
L1.5 and L2∗ data, respectively). Results based on suspect AERONET data have been left out.

Table 7. Daily average mean (column-average) modeled (µmod ) and observed (µobs) (near-surface) mass concentration (µg m−3) together
with corresponding standard deviations (σ), mean and standard deviation errors in model and observations (µer± σer), regression slope and
offset, correlation coefficient (R), and root-mean-squared deviations (RMS) for non-suspect data during the first half of May 2008. Inorganic
salts (“Salts”) is the sum of the mass concentrations of SO4, NH4 and NO3 ions.

Conc [µg m−3] µmod± σmod µobs± σobs µer± σer (model) µer± σer (obs) regression R RMS

Dry mass 29.2± 6.31 27.9± 11.0 7.8± 1.7 2.0± 1.4 y = 1.37x−12.1 0.78 7.4
BC 0.87± 0.33 0.92± 0.39 0.38± 0.15 0.04± 0.03 y = 0.45x+0.53 0.37 0.41
Salts 16.7± 5.85 14.1± 5.53 5.6± 1.9 0.36± 0.27 y = 0.55x+4.81 0.59 5.83
OC 11.6± 3.64 13.0± 5.89 6.7± 2.2 1.9± 1.4 y = 1.05x+0.86 0.65 4.70

We note that the RRI of the mixture of inorganic salts is only
slightly lower than that of OC (approx. 1.53, Table 4) while
the assumed hygroscopicity of OC is much smaller than that
of inorganic salts. Therefore, when both RRI and RH are rel-
atively large the model computes a predominantly organic
composition.

The resulting aerosol water volume fraction (fVwater, the
water volume divided by total volume) is displayed in
Fig. 11. We find that at high RH (e.g., 80 %), more than
half of the total aerosol volume, and therefore approximately

half of the optical thickness, consists of water. The aerosol
growth factor g(RH) = (1-fVwater)−1/3 in this case ranges be-
tween 1.3 and 1.4. At low RH (e.g.,< 40 %) the aerosol water
fraction is approximately 0.1± 0.08 andg(RH) is 1.01–1.06.
Note the strong variability of the aerosol water fraction on 7–
9 May, associated with the variability in AERONET RRI dur-
ing each day. We calculate a scattering enhancement factor
(f (RH, λ), i.e., the ratio of the scattering coefficient at 85 %
RH and its dry value at 676 nm) of 2.6± 0.5 during 1–14
May. This is significantly larger than the estimate from flight
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Figure 10.Modeled (turquoise squares) and observed (black dots) daily average concentrations of dry mass (PM10, upper left), black carbon
(BC, upper right), inorganic salts (lower left) and organic matter (OC, lower right). Only the results of non-suspect AERONET data have
been used in the averaging. The error bars show the uncertainty in modeled (turquoise) and observed (black) data.

Figure 11.Calculated water volume fraction, optimized real refrac-
tive index (RRI, color-filled squares for L1.5 and dots for L2*) and
columnar relative humidity (RH). Results from suspect AERONET
data are opaque.

nephelometer measurements above northwestern and central
Europe, with a monthly range off (RH = 85 %, 550 nm) be-
tween 1.23 and 1.63 (Highwood et al., 2012), but it is in
relatively good agreement with surface nephelometer mea-
surements at Cabauw for continental air in the period June–
October 2009, wheref (RH = 85 %, 550 nm) is 2.25± 0.16
(Zieger et al., 2013). Discrepancies between the studies are

Figure 12. Volume fraction of the modeled aerosol components as
a function of the optimized real refractive index during May 2008.
Here, the sum of (ammonium) sulfates and ammonium nitrate has
been taken into inorganic “salts”, because their ratio is held constant
throughout the retrieval.

likely associated with measurement inaccuracies and with
different model assumptions regarding the absorption and
hygroscopicity of the relatively abundant organic matter.

Figure 12 shows the relation between optimized RRI and
the optimized volume fractions of the aerosol inorganic salts,
OC, BC and water. The figure shows that inorganic and
organic fractions depend strongly on RRI, with decreasing
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inorganic and water volume fractions and increasing organic
fractions for increasing RRI. In general the aerosol compo-
sition appears to be predominantly defined by RRI; other
factors, specifically RH, may also exert significant influence
(e.g., at RRI = 1.41 in Fig. 12). The uncertainty associated
with the optimized aerosol chemical composition strongly
depends on the uncertainty of AERONET RI, the description
of aerosol RI as a complex mixture of components and the
optical model of scattering and absorption. Another uncer-
tainty is associated with the depth and homogeneity of the
boundary layer. Based on the model results and sensitivity
tests, we tentatively estimate the uncertainties in computed
volume fractions to be approximately 50 % for inorganic
salts, black carbon and water, and 100 % for organic mat-
ter. We estimate that the uncertainty caused by the discrep-
ancy between column-average and surface concentrations is
on the order of 25 % for this study. Combined, this corre-
sponds to uncertainties of approximately 50, 100, 50, 30 and
65 %, for inorganic salts, OC, BC, dry mass and water in the
total column aerosol mass, respectively. We expect that these
uncertainties can be reduced by considering the vertical dis-
tribution of aerosols in the optimization (e.g., from a lidar)
and applying our methodology to regions with higher AOT.

4 Conclusions and discussion

We have presented an optimization technique that derives
aerosol chemical composition from remotely sensed aerosol
optical thickness, single-scattering albedo, refractive index,
size distribution and measurements of relative humidity. The
model calculates aerosol water uptake and optical proper-
ties of a mixture of sulfate, ammonium, nitrate, black carbon
and organic matter, assuming a single homogeneous layer of
air, aerosol and RH. Aerosol composition and concentration
are determined by minimizing the difference between mod-
eled and AERONET aerosol properties and effective RH.
The method is applied to individual measurements so that the
short-term variability of the concentrations is resolved. This
potentially enables study and aerosol–climate model valida-
tion of the effects of temporal variations in, for example, pho-
tochemistry, humidity and emissions on the aerosol concen-
tration and chemical composition (Derksen et al., 2011; Aan
de Brugh et al., 2012). The technique is compared to sur-
face concentrations observed during the IMPACT measure-
ment campaign carried out at Cabauw (the Netherlands, May
2008).

On most days the optimized column-averaged dry mass
concentration agrees relatively well with surface observa-
tions from MARGA and from the Jülich ICG-2 aerosol mass
spectrometer, especially during a series of dry and sunny
days between 6 and 12 May. During this time most water
vapor and aerosols were confined to a boundary layer of ap-
proximately 2 km deep, consistent with our assumptions. For
the individual aerosol species, sulfate, nitrate, ammonium,

BC and OC the resulting concentrations compare relatively
well with observations and reflect realistic day-to-day vari-
ability.

Nevertheless, discrepancies occur for several reasons,
mainly associated with boundary layer characteristics and
with RI.

1. Model results reflect columnar aerosol concentrations,
while observations (e.g., MARGA, AMS) reflect sur-
face concentrations. The daily cycle in boundary layer
height affects both concentrations in different ways. In
addition, the neglect of altitudinal variability of RH,
aerosol concentration and chemical composition within
the boundary layer leads to further inaccuracies, espe-
cially for aerosol water uptake (e.g., Yeong et al., 2007;
Bian et al., 2009; Zieger et al., 2011) and the gas–
particle partitioning of ammonium nitrate (Morgan et
al., 2010; Aan de Brugh et al., 2012). These discrep-
ancies may be reduced by including information on the
vertical distribution of aerosol, e.g., from lidar extinc-
tion profiles.

2. The most important parameter in the optimization of the
aerosol chemical composition is the RRI. Uncertainties
in modeled RRI are primarily associated with uncertain-
ties of the RI of individual components. We found that
the overall agreement between optimized and observed
surface concentration of OC can only be improved by
applying a somewhat larger value for RRI for OC (e.g.,
1.60) in combination with an unrealistically small value
for RRI for ammonium nitrate (1.42). On the other hand,
the choice of the RI of individual compounds and the
mixing rule used to calculated RI for internally mixed
aerosol appears not to have a major influence on the op-
timized total dry aerosol mass and the amount of aerosol
water, because the effect of water uptake on the aerosol
RI dominates.

3. Uncertainties in AERONET RRI (0.025–0.05) lead to
10–25 % (absolute) difference in water volume fraction.
AERONET RRI shows very large variations, including
during the course of a single day. The correlation be-
tween RH and AERONET RRI is relatively low (R2

∼

0.14 for all data, and 0.36 for non-suspect data). The
optimization results display a daily variability of com-
puted aerosol composition and hygroscopicity that may
be unrealistic considering the stable and fair weather
conditions in the period under research. The large vari-
ability of RRI and the low correlation between RRI and
RH may be attributed to a relatively large uncertainty in
RRI caused by a combination of relatively low AOT, the
inclusion of low solar zenith angles for L1.5, and data
with relatively high absorption in this study. Another
minor inaccuracy is associated with the wavelength de-
pendence of the AERONET RRI. For most compounds,
especially OC, RI decreases with wavelength (Table 4),
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but on several occasions AERONET RI increases with
wavelength, which leads to discrepancies between mod-
eled and observed aerosol optical properties, especially
at 440 nm. Since IRI strongly increases towards the ul-
traviolet wavelengths for OC, contrary to that of BC (Ja-
cobson, 1999; Kirchstetter et al., 2004; Sun et al., 2007;
and Chen and Bond, 2010), this hampers the method’s
ability to distinguish black carbon from absorbing or-
ganic matter (“brown carbon”) (e.g., Bergstrom et al.,
2007; Russell et al., 2010; Arola et al., 2011).

We conclude that the remotely sensed aerosol optical mea-
surements from AERONET allow for a fairly accurate anal-
ysis of the daily averaged atmospheric aerosol composition,
separated into the most common aerosol species (inorganic
salts, BC, OC, water). The uncertainties appear too large
for an accurate optimization of individual measurements, but
the day-to-day variability is captured reasonably well. The
study indicates that RRI has the largest information con-
tent with regard to aerosol water, while RH is of secondary
importance. The results from level 2∗ data (including L1.5
SSA and RI when AOT is< 0.4) are generally more accu-
rate than those from L1.5, although part of the L1.5 data
also yields reasonable results. Therefore we conclude that
despite relatively low AOT, our model performs relatively
well at Cabauw, but a better performance is expected in re-
gions with higher aerosol loading where uncertainties in SSA
and RI are smaller. Our technique may be extended to global
scales by using satellite remote sensing of aerosol proper-
ties (e.g., from the Polarization and Directionality of Earth
Reflectances (POLDER) instrument onboard the PARASOL
satellite (Hasekamp et al., 2011; Tanré et al., 2011). Accurate
retrieval of the refractive index is vital for determination of
column aerosol composition; in light of this, the loss of the
Aerosol Polarimetry Sensor (APS) with the Glory satellite is
extremely unfortunate.
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