



# Supplement of

## A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China

M. Wang et al.

Correspondence to: M. Shao (mshao@pku.edu.cn)

## 1 Comparisons of anthropogenic NMVOCs emissions



Fig. S1 Comparison of anthropogenic NMVOCs emissions from different emission inventories (Klimont et al., 2002; Streets et al., 2003; Ohara et al., 2007; Bo et al., 2008; Wei et al., 2008; Zhang et al., 2009; Zhao et al., 2012).

## 2 VOCs sampling and analysis

#### 2.1 Sampling sites for VOCs regional measurements in Beijing

| Table S1 | Summary | of 27 sam | pling si | ites for reg | gional VOC | measurements | in Bei | jing | <u>y</u> . |
|----------|---------|-----------|----------|--------------|------------|--------------|--------|------|------------|
|          |         |           |          | (            | )          |              |        |      |            |

| Sites Category    | Urban | Suburban_South | Suburban_North | Rural | Roadside |
|-------------------|-------|----------------|----------------|-------|----------|
| (n <sup>a</sup> ) | (7)   | (6)            | (9)            | (2)   | (3)      |
|                   | BI1   | BOS1           | BONE1          | BOW1  | R1       |
|                   | BI2   | BOS2           | BONE2          | BOW2  | R2       |
|                   | BI3   | BOS3           | BONE3          |       | R3       |
|                   | BI4   | BOS4           | BONE4          |       |          |
| Sites No.         | BI5   | BOSE           | BOE2           |       |          |
|                   | BI6   | BOE1           | BONW1          |       |          |
|                   | BI7   |                | BONW2          |       |          |
|                   |       |                | BONW3          |       |          |
|                   |       |                | BONW4          |       |          |

<sup>a</sup> The n is the number of regional sites classified in each site category.

#### 2.2 Sampling periods for regional VOC measurements in Beijing

|               | Temperature |       | Relative<br>humidity |       | Wind speed         |       | Atmospheric<br>pressure |       | Wind direction <sup>a</sup> |       |  |
|---------------|-------------|-------|----------------------|-------|--------------------|-------|-------------------------|-------|-----------------------------|-------|--|
| Sampling date | (°          | C)    | (%)                  |       | $(m \cdot s^{-1})$ |       | (hPa)                   |       |                             |       |  |
|               | 09:00       | 13:00 | 09:00                | 13:00 | 09:00              | 13:00 | 09:00                   | 13:00 | 09:00                       | 13:00 |  |
| Jul. 24, 2009 | 25          | 28    | 70                   | 61    | 1.9                | 1.7   | 999                     | 999   | NE                          | NE    |  |
| Aug. 7, 2009  | 24          | 28    | 90                   | 74    | 0.8                | 1.6   | 997                     | 996   | SSE                         | NE    |  |
| Sep. 25, 2009 | 21          | 26    | 83                   | 64    | 1.1                | 1.3   | 1004                    | 1002  | S                           | SW    |  |
| Oct. 29, 2009 | 12          | 20    | 86                   | 47    | 0.9                | 1.0   | 1005                    | 1003  | NW                          | NW    |  |
| Nov. 30, 2009 | 3           | 10    | 62                   | 36    | 1.1                | 1.9   | 1012                    | 1010  | NW                          | NW    |  |
| Dec. 22, 2009 | -4          | 6     | 39                   | 20    | 1.0                | 1.8   | 1003                    | 1002  | NW                          | NNW   |  |
| Jan. 14, 2010 | -10         | -4    | 52                   | 33    | 1.3                | 1.3   | 1008                    | 1006  | NW                          | NW    |  |
| Feb. 4, 2010  | -5          | 1     | 31                   | 21    | 1.6                | 1.5   | 1012                    | 1009  | NW                          | NW    |  |
| Mar. 19, 2010 | 3           | 7     | 84                   | 67    | 1.0                | 1.1   | 988                     | 986   | WNW                         | NW    |  |
| Apr. 20, 2010 | 13          | 17    | 74                   | 41    | 0.8                | 2     | 1004                    | 1003  | NW                          | NE    |  |
| May 20, 2010  | 26          | 34    | 30                   | 15    | 1.2                | 2.6   | 993                     | 992   | NW                          | SW    |  |
| Jun. 24, 2010 | 26          | 31    | 53                   | 34    | 1.0                | 2.2   | 996                     | 994   | NW                          | SE    |  |
| Jul. 22, 2010 | 28          | 33    | 76                   | 59    | 1.0                | 1.7   | 995                     | 994   | Ν                           | S     |  |
| Aug. 24, 2010 | 24          | 28    | 81                   | 66    | 1.3                | 2.2   | 1001                    | 999   | NE                          | SE    |  |
| Sep. 14, 2010 | 21          | 27    | 68                   | 48    | 0.9                | 2.2   | 998                     | 995   | S                           | S     |  |
| Jan. 13, 2011 | -7          | 2     | 39                   | 18    | 0.8                | 2.2   | 1009                    | 1007  | NW                          | NW    |  |

 Table S2
 Sampling dates and meteorological conditions for regional VOC

measurements in Beijing.

<sup>a</sup> N, E, S, and W means wind from north, east, south, and west, respectively.

#### 2.3 VOCs analysis by online GC-MS/FID

Briefly, two parallel sampling channels collected two separate 300-mL aliquots of ambient samples cryogenically (at approximately -160°C), during the first 5 min of every hour. One channel was designed to measure C2–C5 hydrocarbons. Target compounds were first trapped in a porous layer open tubular (PLOT) capillary column (15 cm, 0.53 mm ID) and then vaporized (110°C) and injected into the GC system, separated using a PLOT (Al<sub>2</sub>O<sub>3</sub>/KCl) column (15 m × 0.32 mm ID, J&W Scientific, Folsom, CA, USA), and measured by a flame ionization detector (FID). In the other channel, C5–C12 NMHCs, C3–C6 carbonyl compounds, methanol, C1–C2 halocarbons, and C1–C4 alkyl nitrates were trapped by a deactivated quartz capillary column (15 cm, 0.53 mm ID), separated using a DB-624 column (30 m  $\times$  0.25 mm ID, J&W Scientific), and measured by a quadrupole mass spectrometer (MSD, QP-2010S, Shimadzu, Kyoto, Japan). The system was calibrated at multiple concentrations (in the range of 0.5–8 ppbv) by three gas standards: (1) a mixture of 55 NMHCs (Spectra Gases, Inc., Newark, NJ, USA) for C2–C12 hydrocarbons; (2) a mixture of 63 chemicals (Spectra Gases, Inc.) for methanol, C1–C2 halocarbons, and C3–C6 carbonyl compounds; and (3) laboratory-prepared RONO<sub>2</sub> samples (Earth System Research Laboratory, NOAA, Boulder, CO, USA) for C1–C4 RONO<sub>2</sub>. The method detection limits (MDLs) for C2–C12 NMHCs, C3–C6 carbonyl compounds, and C1–C4 RONO<sub>2</sub> were in the ranges of 0.004–0.013, 0.011–0.015, and 0.001–0.003 ppbv, respectively.

#### 2.4 Sampling locations and periods for regional VOC measurements in Beijing

To minimize the impact of meteorological conditions on ambient trace gas levels, 16 sampling days, once monthly from July, 2009 to September, 2010 and January 2011, were selected carefully. Most sampling campaigns were conducted on heavy air pollution days characterized by low wind speed, high relative humidity, and poor visibility. However, the air quality on July 24<sup>th</sup>, 2009 and February 4<sup>th</sup>, 2010 was excellent, the former because a summer precipitation process had just ended in Beijing and the latter because of a recent cold winter northwestern airstream. Sampling was conducted at 09:00, to assess atmospheric pollutant levels during morning traffic rush hour before the daily photochemical cycle, and 13:00, around the daily O<sub>3</sub> peak. This allowed temporal comparisons and an examination of the photochemical removal of reactive NMHC species and secondary production of ground-level O<sub>3</sub> and alkyl nitrates. Details of the sampling periods and meteorological parameters are summarized in Table S2. Backward trajectories (72-h duration) of air masses at an altitude of 500 m arriving in Beijing during the sampling periods were calculated with the NOAA HYSPLIT model (results not shown). Briefly, from October, 2009 to March, 2010 and in January 2011, air masses were transported from the northwest (NW) or west-northwest (WWN) with long transport distances, while during April–September, the air masses originated mainly from the south or southeast, usually traveling short distances. Based on the transport directions and distances of air masses, coupled with surface meteorological conditions, the 16 sampling periods were classified into three types corresponding to different seasons: spring/fall (April–May and September–October), summer (June–August), and winter (November–March).

#### 2.5 VOCs analysis by offline GC-MS/FID

A 500-mL aliquot of air sample from each canister was concentrated using a three-stage cryofocusing pre-concentration system (Entech 7100, Entech Instruments) and analyzed with a GC (HP-7890A, Agilent Technologies, Santa Clara, CA, USA). A PLOT (AL/KCL) column with a FID was used to separate and analyze most of the C2–C4 hydrocarbons. A DB-624 column with a MSD (HP-5975C, Agilent Technologies) was used to measure additional NMHCs.

#### **3** Correlations between VOC species and CO

In order to check whether VOC emission ratios between day and night is different, correlations between several species with long atmospheric lifetime and CO at the PKU site during summer were analyzed. The calculated ratios for ethane, propane, *n*-butane, benzene, and acetone relative to CO using measurement data of 03:00–07:00 LT and all data agrees very well (Fig. S2), suggesting that VOC emission ratios during daytime and nighttime do not change.



Fig. S2 Scatter plots of ethane, propane, *n*-butane, benzene, and acetone with CO at the PKU site during Aug.–Sep., 2011. The two-sided linear fit (ODR) is applied on measurement data of 03:00–07:00 LT and all data.

## 4 Average emission ratios of VOC in Beijing

The average emission ratios for VOC at 27 sites in Beijing can be calculated by

two approaches. The first method is to derive the slope of measured VOC mixing ratios to CO levels using the ODR linear regression fit for regional measurement data at 09:00 LT from all sites (the "linear regression" method). The standard deviations of linear regression slopes correspond to the standard deviations of average VOC emission ratios for regional sites. The relative standard deviations (RSD) of emission ratios for most VOC species were lower than 20%. The other method to calculate average value and standard deviation of VOC emission ratios in Beijing is based on the calculated VOC emission ratios at each regional site. For the VOC regional measurements in Beijing, there are two samples (09:00 and 13:00 LT) that were collected at each site during each month. VOC emission ratios at each site were calculated only based on 09:00 data due to the influence of photochemical processing on 13:00 data. Considering the limited data at each site (i.e. 6 data for winter, and 10 data for summer), the VOC emission ratio at each site was estimated as the average value of VOC/CO ratios in each sample (the "average" method). Average VOC emission ratios of Beijing calculated using "average" and "linear regression" methods showed a good agreement, with slope of 1.01 and r of 0.98 (Fig. S3). However, the relative standard deviations of VOC emission ratios calculated using the "average" method were larger than those determined by the "linear regression" method, with values in the range of 23–71%.



Fig. S3 Comparison of average VOC emission ratios at 27 sites calculated using the "average" and "linear regression" methods. The error bars correspond to the standard deviations of average VOC emission ratios.

Emission ratios for most VOC species determined at the PKU site agreed with average emission ratios of Beijing calculated using both methods within a factor 2 (Fig. S4 and Fig. 8a in the revised manuscript), with *r* of 0.98–0.99 and linear regression slope of 0.91, indicating that VOC emission ratios determined at the PKU site can represent the urban mixture of VOC anthropogenic emissions in Beijing.



Fig. S4 Comparison of VOC emission ratios determined at the PKU site with average emission ratios in Beijing calculated using (a) "average" and (b) "linear regression"

method. The error bars correspond to the standard deviations of average VOC emission ratios.

## 5 VOC source apportionment by CMB model

### 5.1 Fitting species for CMB application in this study

|                   | Alkanes            | unsaturated NMHCs                        |                                      |  |  |
|-------------------|--------------------|------------------------------------------|--------------------------------------|--|--|
| ethane            | 2,2-dimethylbutane | acetylene                                | styrene*                             |  |  |
| propane           | methylcyclopentane | ethene <sup>*, a</sup>                   | o-xylene <sup>*</sup>                |  |  |
| <i>i</i> -butane  | 2-methylhexane     | propene*                                 | <i>i</i> -propylbenzene <sup>*</sup> |  |  |
| <i>n</i> -butane  | 3-methylhexane     | trans-2-butene*                          | <i>n</i> -propylbenzene <sup>*</sup> |  |  |
| <i>i</i> -pentane | <i>n</i> -heptane  | cis-2-butene*                            | 1,3,5-trimethylbenzene <sup>*</sup>  |  |  |
| <i>n</i> -pentane | 2-methylheptane    | benzene                                  | 1,2,4-trimethylbenzene*              |  |  |
| 2-methylpentane   | 3-methylheptane    | toluene                                  | 1,2,3-trimethylbenzene*              |  |  |
| 3-methylpentane   | <i>n</i> -nonane   | ethylbenzene <sup>*</sup>                | isoprene                             |  |  |
| <i>n</i> -hexane  |                    | <i>m</i> , <i>p</i> -xylene <sup>*</sup> |                                      |  |  |

Table S3 Fitting species for CMB application in this study.

<sup>a</sup> The species marked by asterisk (\*) were used as fitting species for CMB modelling based on emissions, but not for CMB modelling based on measurement data.

#### 5.2 CMB performance

| Table S4 | CMB | performance | parameters | for three | VOC | datasets | in I | 3eiji | ing | 3. |
|----------|-----|-------------|------------|-----------|-----|----------|------|-------|-----|----|
|----------|-----|-------------|------------|-----------|-----|----------|------|-------|-----|----|

| VOC datasets for CMB model                                        | Number of data (N)  | $R^{2 (c)}$      | $\chi^{2 (c)}$   | % Conc. <sup>(c)</sup> |
|-------------------------------------------------------------------|---------------------|------------------|------------------|------------------------|
| Regional measurement at 27 sites in Beijing                       | 844                 | 0.65-0.98 (0.85) | 0.55-6.01 (2.27) | 81–118 (94)            |
| Online measurement at PKU site during summer, 2011                | 1131 <sup>(b)</sup> | 0.77-0.98 (0.89) | 0.68-4.00 (2.00) | 82–109 (102)           |
| Online measurement at PKU site during winter, 2011 <sup>(a)</sup> | 369                 | 0.87-0.98 (0.94) | 0.52–3.17 (1.64) | 92–100 (101)           |
| Total measurement data                                            | 2344                | 0.65-0.98 (0.88) | 0.52-6.01 (2.04) | 81–118 (99)            |
| Annual emissions of NMHC derived from measurements <sup>(a)</sup> | 1                   | 0.93             | 0.78             | 94                     |

<sup>(a)</sup> Biogenic emission was excluded when running CMB model for wintertime measurement data and NMHC emissions derived from measurements.

<sup>(b)</sup> VOC measurement data obtained during raining period (August 14, 15, 25 and September 8, 10 during 2011) were excluded when running CMB.

<sup>(c)</sup> Numbers in parenthesis are the average values of CMB performance parameters ( $r^2$ ,  $\chi^2$ , and %

Conc.).

# 6 The annual emission of individual VOC species

Table S5 listed the derived summertime and wintertime emission ratios and the estimated annual emissions for individual VOC species.

| Encoing                | ERs, ppbv (ppmv CO) <sup>-1</sup> |                 | Annual Emission*, | Species                     | ERs, ppbv       | (ppmv CO) <sup>-1</sup> | Annual Emission, |  |
|------------------------|-----------------------------------|-----------------|-------------------|-----------------------------|-----------------|-------------------------|------------------|--|
| Species                | Summer                            | Winter          | Gg/year           | Species                     | Summer          | Winter                  | Gg/year          |  |
| Alkanes                |                                   |                 | 143.11±66.55      | Alkenes                     |                 |                         | 50.35±24.73      |  |
| ethane                 | 4.34±0.15                         | 4.41±0.15       | 21.94±12.86       | ethylene                    | $4.44 \pm 0.07$ | 5.79±0.14               | 23.86±10.20      |  |
| propane                | $3.90\pm0.07$                     | $2.10\pm0.07$   | 22.21±9.51        | Propene                     | $1.39 \pm 0.03$ | $1.58\pm0.05$           | $10.39 \pm 5.23$ |  |
| <i>i</i> -butane       | 2.51±0.04                         | $0.75 \pm 0.03$ | 16.03±6.87        | trans-2-butene              | $0.42 \pm 0.01$ | $0.18\pm0.01$           | 2.81±1.65        |  |
| <i>n</i> -butane       | $2.50\pm0.05$                     | $0.79 \pm 0.05$ | 16.15±6.94        | 1-butene                    | $0.54 \pm 0.01$ | $0.29 \pm 0.01$         | 3.88±2.27        |  |
| cyclopentane           | $0.11 \pm 0.01$                   | $0.03\pm0.00$   | 0.84±0.37         | cis-2-butene                | $0.37 \pm 0.01$ | 0.11±0.01               | 2.32±1.37        |  |
| <i>i</i> -pentane      | $1.98\pm0.08$                     | $0.48\pm0.02$   | 15.05±6.46        | 1,3-butadiene               | $0.16\pm0.01$   | $0.18\pm0.01$           | $1.67 \pm 1.05$  |  |
| <i>n</i> -pentane      | $1.20\pm0.02$                     | $0.36\pm0.02$   | $9.50 \pm 4.08$   | 1-pentene                   | $0.10\pm0.00$   | $0.05 \pm 0.00$         | $0.88\pm0.52$    |  |
| 2,2-dimethylbutane     | $0.04\pm0.00$                     | $0.01 \pm 0.00$ | 0.37±0.16         | trans-2-pentene             | $0.14 \pm 0.01$ | $0.05\pm0.00$           | 1.11±0.66        |  |
| 2,3-dimethylbutane     | $0.18\pm0.02$                     | $0.03 \pm 0.00$ | $1.58\pm0.70$     | cis-2-pentene               | 0.13±0.01       | $0.05 \pm 0.00$         | $1.05 \pm 0.62$  |  |
| 2-methylpentane        | $0.61 \pm 0.01$                   | $0.25 \pm 0.01$ | 6.23±2.67         | 1-hexene                    | $0.10\pm0.00$   | $0.07 \pm 0.00$         | $1.14\pm0.68$    |  |
| 3-methylpentane        | 0.51±0.02                         | $0.17 \pm 0.01$ | 4.95±2.13         | isoprene                    | $0.05 \pm 0.01$ | $0.06 \pm 0.00$         | $0.57 \pm 0.46$  |  |
| <i>n</i> -hexane       | $0.57 \pm 0.01$                   | $0.37 \pm 0.02$ | 6.78±2.91         | Aromatics                   |                 |                         | 98.65±45.47      |  |
| 2,4-dimethylpentane    | $0.03\pm0.00$                     | $0.01 \pm 0.00$ | 0.38±0.17         | benzene                     | $1.24\pm0.02$   | $1.06\pm0.03$           | $15.00 \pm 6.42$ |  |
| methylcyclopentane     | $0.30\pm0.01$                     | $0.14\pm0.01$   | 3.16±1.39         | toluene                     | $2.41 \pm 0.05$ | $1.20\pm0.05$           | 27.93±11.97      |  |
| 2-methylhexane         | $0.14\pm0.01$                     | $0.08\pm0.00$   | $1.81\pm0.80$     | ethylbenzene                | $0.97 \pm 0.08$ | $0.33 \pm 0.02$         | $11.63 \pm 5.04$ |  |
| cyclohexane            | $0.14 \pm 0.01$                   | $0.08 \pm 0.00$ | $1.52 \pm 0.68$   | <i>m</i> , <i>p</i> -xylene | $1.56\pm0.04$   | 0.53±0.03               | $18.74 \pm 8.05$ |  |
| 2,3-dimethylpentane    | $0.08\pm0.00$                     | $0.04\pm0.00$   | $1.01\pm0.45$     | o-xylene                    | $0.59 \pm 0.01$ | $0.19\pm0.01$           | 7.01±3.01        |  |
| 3-methylhexane         | 0.23±0.01                         | $0.08 \pm 0.00$ | 2.64±1.17         | styrene                     | $0.41 \pm 0.01$ | 0.17±0.03               | 5.12±3.10        |  |
| 2,2,4-trimethylpentane | $0.02\pm0.00$                     | $0.01 \pm 0.00$ | 0.24±0.11         | <i>i</i> -propylbenzene     | $0.03 \pm 0.00$ | $0.01\pm0.00$           | $0.46\pm0.28$    |  |
| <i>n</i> -heptane      | $0.20\pm0.01$                     | $0.11 \pm 0.01$ | 2.62±1.16         | n-propylbenzene             | $0.06 \pm 0.00$ | $0.02\pm0.00$           | 0.77±0.46        |  |
| methylcyclohexane      | $0.11 \pm 0.01$                   | $0.04 \pm 0.00$ | $1.25 \pm 0.56$   | <i>m</i> -ethyltoluene      | $0.23 \pm 0.01$ | $0.05 \pm 0.00$         | $2.85 \pm 1.70$  |  |
| 2,3,4-trimethylpentane | $0.01 \pm 0.00$                   | $0.00 \pm 0.01$ | 0.11±0.05         | <i>p</i> -ethyltoluene      | $0.09\pm0.00$   | $0.03 \pm 0.00$         | 1.15±0.69        |  |
| 2-methylheptane        | $0.07 \pm 0.00$                   | $0.03 \pm 0.02$ | $1.00\pm0.62$     | 1,3,5-trimethylbenzene      | $0.11 \pm 0.01$ | $0.02 \pm 0.00$         | 1.31±0.79        |  |
| 3-methylheptane        | $0.05 \pm 0.00$                   | $0.02 \pm 0.03$ | 0.73±0.73         | o-ethyltoluene              | $0.09 \pm 0.00$ | $0.02 \pm 0.00$         | 1.10±0.66        |  |
| <i>n</i> -octane       | $0.12\pm0.01$                     | $0.06 \pm 0.04$ | $1.74{\pm}1.08$   | 1,2,4-trimethylbenzene      | $0.35 \pm 0.01$ | $0.06\pm0.00$           | 4.22±2.52        |  |
| <i>n</i> -nonane       | $0.15 \pm 0.01$                   | $0.04 \pm 0.05$ | $1.97{\pm}1.74$   | 1,2,3-trimethylbenzene      | $0.11 \pm 0.01$ | $0.02\pm0.00$           | $1.35 \pm 0.81$  |  |
| <i>n</i> -decane       | $0.08\pm0.01$                     | $0.03 \pm 0.06$ | $1.34{\pm}1.68$   |                             |                 |                         |                  |  |

Table S5Emission ratios and annual emission strengths of anthropogenic VOC species calculated based on measurement data.

| continued          |                                   |               |                                                                       |           |                 |                             |            |
|--------------------|-----------------------------------|---------------|-----------------------------------------------------------------------|-----------|-----------------|-----------------------------|------------|
| Species            | ERs, ppbv (ppmv CO) <sup>-1</sup> |               | ERs, ppbv (ppmv CO) <sup>-1</sup> Annual Emission,<br>Gg/year Species |           | ERs, ppbv       | Annual Emission,<br>Gg/year |            |
| OVOCs              |                                   |               | 111.92±56.98                                                          | Others    |                 |                             |            |
| Methanol           | 13.75±0.61                        | 7.91±0.39     | $58.30 \pm 29.85$                                                     | Acetylene | $3.67 \pm 0.38$ | 3.26±0.2                    | 15.06±6.56 |
| Formaldehyde       | $2.89\pm0.22$                     | 3.00±0.15     | $14.52 \pm 7.46$                                                      |           |                 |                             |            |
| Acetaldehyde       | $1.50\pm0.10$                     | $0.86\pm0.04$ | 8.73±4.48                                                             |           |                 |                             |            |
| Propanal           | $0.11 \pm 0.01$                   | $0.08\pm0.01$ | $0.96 \pm 0.50$                                                       |           |                 |                             |            |
| <i>n</i> -Butanal  | $0.06\pm0.01$                     | $0.03\pm0.00$ | $0.49 \pm 0.27$                                                       |           |                 |                             |            |
| <i>n</i> -Pentanal | $0.06\pm0.01$                     | $0.02\pm0.01$ | 0.52±0.33                                                             |           |                 |                             |            |
| <i>n</i> -Hexanal  | $0.20\pm0.03$                     | $0.15\pm0.01$ | $3.36 \pm 1.76$                                                       |           |                 |                             |            |
| Acetone            | 2.95±0.13                         | 0.93±0.04     | 19.07±9.76                                                            |           |                 |                             |            |
| Methylethylketone  | $0.68 \pm 0.05$                   | $0.30\pm0.02$ | 5.97±3.07                                                             |           |                 |                             |            |

\* The standard deviation of VOC emission (U<sub>E</sub>) was calculated used the equation:  $U_E = \sqrt{U_M^2 + U_{OH}^2 + U_{ER}^2 + U_{CO}^2}$ . U<sub>M</sub>, U<sub>OH</sub>, U<sub>ER</sub>, and U<sub>CO</sub> are the uncertainty of

VOC measurements, OH exposure, emission ratio, and CO emission.

### **References:**

- Bo, Y., Cai, H., and Xie, S. D.: Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China, Atmos. Chem. Phys., 8, 7297-7316, doi:10.5194/acp-8-7297-2008, 2008.
- Klimont, Z., Streets, D. G., Gupta, S., Cofala, J., Fu. L. X., and Ichikawa, Y.: Anthropogenic emissions of non-methane volatile organic compounds in China, Atmos. Environ., 36, 1309-1322, doi: 10.1016/s1352-2310(01)00529-5, 2002.
- Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 1980-2020, Atmos. Chem. Phys., 7, 4419-4444, doi: 10.5194/acp-7-4419-2007, 2007.
- Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H., and Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., 108, 8809, doi: 10.1029/2002jd003093, 2003.
- Su, J., Shao, M., Lu, S., and Xie, Y.: Non-methane volatile organic compound emission inventories in Beijing during Olympic Games 2008, Atmos. Environ., 45, 7046-7052, doi: 10.1016/j.atmosenv.2011.09.067, 2011.
- Wei, W., Wang, S., Chatani, S., Klimont, Z., Cofala, J., and Hao, J.: Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China, Atmos. Environ., 42, 4976-4988, doi: 10.1016/j.atmosenv.2008.02.044, 2008.
- Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153, doi: 10.5194/acp-9-5131-2009, 2009.
- Zhao, B., Wang, P., Ma, J. Z., Zhu, S., Pozzer, A., and Li, W.: A high-resolution emission inventory of primary pollutants for the Huabei region, China, Atmos. Chem. Phys., 12, 481-501, doi: 10.5194/acp-12-481-2012, 2012.