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Abstract. We use secondary organic aerosol (SOA) produc-
tion data from an ensemble of unburned fuels measured in
a smog chamber to test various SOA formation models. The
evaluation considered data from 11 different fuels including
gasoline, multiple diesels, and various jet fuels. The fuels
are complex mixtures of species; they span a wide range of
volatility and molecular structure to provide a challenging
test for the SOA models. We evaluated three different ver-
sions of the SOA model used in the Community Multiscale
Air Quality (CMAQ) model. The simplest and most widely
used version of that model only accounts for the volatile
species (species with less than or equal to 12 carbons) in the
fuels. It had very little skill in predicting the observed SOA
formation (R2 = 0.04, fractional error = 108 %). Incorporat-
ing all of the lower-volatility fuel species (species with more
than 12 carbons) into the standard CMAQ SOA model did
not improve model performance significantly. Both versions
of the CMAQ SOA model over-predicted SOA formation
from a synthetic jet fuel and under-predicted SOA formation
from diesels because of an overly simplistic representation
of the SOA formation from alkanes that did not account for
the effects of molecular size and structure. An extended ver-
sion of the CMAQ SOA model that accounted for all organ-
ics and the influence of molecular size and structure of alka-
nes reproduced the experimental data. This underscores the
importance of accounting for all low-volatility organics and
information on alkane molecular size and structure in SOA
models. We also investigated fitting an SOA model based
solely on the volatility of the precursor mixture to the exper-
imental data. This model could describe the observed SOA
formation with relatively few free parameters, demonstrat-

ing the importance of precursor volatility for SOA formation.
The exceptions were exotic fuels such as synthetic jet fuel
that expose the central assumption of the volatility-dependent
model that most emissions consist of complex mixtures with
similar distribution of molecular classes. Despite its short-
comings, SOA formation as a function of volatility may be
sufficient for modeling SOA formation in chemical transport
models.

1 Introduction

Secondary organic aerosol (SOA) is aerosol mass formed
from the oxidation of gas-phase organic species emitted by
natural and anthropogenic sources. Most SOA models under-
predict SOA formation both in the laboratory and in the at-
mosphere (Volkamer et al., 2006; Robinson et al., 2007; Carl-
ton et al., 2010). This indicates that there are large gaps in un-
derstanding the numerous precursors and pathways to SOA
formation (gas-phase oxidation, multi-generational aging,
heterogeneous chemistry, condensed-phase reactions, cloud
processing).

Gas-phase oxidation of organic compounds is a major
source of SOA, and hence has been extensively studied us-
ing smog chamber experiments. However, these experiments
have focused on only a small subset (tens) of the thousands
of organic compounds found in the atmosphere (Goldstein
and Galbally, 2007). SOA models based on those data mostly
include emissions and subsequent SOA formation from
high-flux volatile organic compounds (VOC) like isoprene,
terpenes, single-ring aromatics, and alkanes and alkenes that
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have less than or equal to 12 carbons. Odum et al. (1997)
were able to explain the SOA formation from unburned gaso-
line by using a similar model that accounted for SOA for-
mation from the oxidation of single-ring aromatics in the
fuel. However, multiple studies have shown that these SOA
models are able to explain only a fraction of the SOA mea-
sured from diesel and aircraft exhaust, wood smoke and ur-
ban plumes (De Gouw et al., 2005; Volkamer et al., 2006;
Robinson et al., 2007; Grieshop et al., 2009; Jathar et al.,
2012). One contributor to this discrepancy is that combustion
sources emit substantial amounts of lower-volatility organ-
ics (e.g., hydrocarbons with more than 12 carbons), which
are difficult to speciate and therefore not commonly included
in models (Robinson et al., 2007). Hence, more research is
needed to test these SOA models against data for complex
mixtures that contain both small and large organics.

Single-compound smog chamber studies have demon-
strated that SOA formation depends both on precursor
volatility (vapor pressure) and molecular structure. In gen-
eral, SOA formation increases with decreasing volatility but
has a complex dependence on molecular structure. For ex-
ample, SOA formation from alkanes increases as the car-
bon number increases (Lim and Ziemann, 2009; Presto et
al., 2010; Tkacik et al., 2012); increasing the carbon num-
ber reduces the volatility of the precursor. The importance
of molecular structure is illustrated by experiments with dif-
ferent classes of alkanes. For the same carbon number or
volatility, cyclic alkanes form the most SOA, followed by
n-alkanes, followed by branched alkanes (Lim and Ziemann,
2009; Tkacik et al., 2012). Single-ring aromatics (benzene,
toluene and xylenes) form much more SOA than similar
sized (C6 to C9) n-alkanes or alkenes (Forstner et al., 1997;
Ng et al., 2007; Song et al., 2007; Hildebrandt et al., 2009;
Lim and Ziemann, 2009). However, multi-ring aromatics and
n-alkanes with similar carbon numbers form similar amounts
of SOA (Chan et al., 2009; Shakya and Griffin, 2010; Presto
et al., 2010).

Existing gas-phase chemical mechanisms account for
some differences in volatility and molecular structure. For
example, the SAPRC gas-phase mechanism (Carter, 2007)
has different model species to account for differences in
volatility, e.g., ALK4 (C5–C7) versus ALK5 (C7+), and
molecular structure, e.g., alkanes (ALK) versus alkenes
(OLE) versus aromatics (ARO), so SOA models built us-
ing SAPRC can account for some differences in volatility
and molecular structure. However, SAPRC and other reduced
chemical mechanisms were developed to simulate ozone for-
mation and therefore lump different species by reaction rates
rather than SOA mass yields. Even fully explicit mechanisms
such as the Master Chemical Mechanism (Saunders et al.,
2003) emphasize low carbon-number VOCs that dominate
the hydrocarbon flux in most locations, due to a focus on
ozone formation and fast photochemistry. Therefore, all of
these mechanisms have limitations for predicting SOA for-
mation from complex mixtures.

Another challenge is incorporating unspeciated organ-
ics into SOA models. Low-volatility organics (semi-volatile
and intermediate-volatility organic compounds; SVOC and
IVOC) are thought to be important classes of SOA pre-
cursors (Robinson et al., 2007) but are difficult to speciate
(Schauer et al., 1999, 2001, 2002; Rogge et al., 1993, 1998;
Fraser et al., 1997). Gas-particle partitioning (Robinson et
al., 2007; May et al., 2013b, c; May et al., 2013a) and gas-
chromatography (Presto et al., 2011) measurements provide
some information on the volatility distribution of these emis-
sions; therefore, chemical transport models (CTMs) have
adopted a volatility-based approach to model SOA forma-
tion from unspeciated S/IVOCs. For example, Robinson et
al. (2007) assumed that unspeciated SVOCs and IVOCs and
their products react with the hydroxyl radical (OH) to form
products that were one order of magnitude lower in volatility
than their precursor. Jathar et al. (2012) extended this ap-
proach by distributing the reaction products across a range of
volatilities. Pye and Seinfeld (2010) proposed a single-step
mechanism for SVOC where the products of oxidation were
two orders of magnitude lower in volatility than the precursor
and used SOA mass-yield data for naphthalene as a surrogate
for unspeciated IVOCs. Although these studies have adopted
somewhat different approaches, they all show that including
unspeciated organics in SOA models helps close large gaps
between predicted and measured SOA mass concentrations
(Shrivastava et al., 2008; Tsimpidi et al., 2009; Dzepina et al.,
2010; Pye and Seinfeld, 2010; Jathar et al., 2011). These new
models used a lump-and-yield scheme to model SOA forma-
tion from speciated emissions and a volatility-based scheme
to model SOA formation from unspeciated S/IVOCs. Given
the success of volatility-based schemes, it may be worthwhile
to explore their capabilities for modeling all of SOA, not just
SOA from S/IVOCs.

In this work, we compared predictions from two differ-
ent types of SOA models to published data from smog-
chamber experiments conducted with different types of un-
burned fuel (Jathar et al., 2013): (1) three different vari-
ants of the SOA model that used volatility- and molecular
structure-resolved schemes used in the Community Multi-
scale Air Quality (CMAQ) model and other chemical trans-
port models and (2) a volatility-dependent model that relates
SOA production only to the precursor volatility and ignores
molecular structure.

2 Materials and methods

2.1 Experimental data

Jathar et al. (2013) present data from twenty-three high-
NOx photo-oxidation experiments conducted in the Carnegie
Mellon University smog chamber to quantify the SOA
formation from eleven different fuels (gasoline: 3 experi-
ments; Fischer–Tropsch derived from coal: 2 experiments;
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(a) Gasoline (b) FT-coal (c) FT-natural gas (d) JP-8
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Figure 1. Volatility and molecular structure distributions for un-
burned(a) gasoline,(b) Fischer–Tropsch from coal,(c) Fischer–
Tropsch from natural gas,(d) Jet Propellent-8 and(e)–(k)Diesel 1,
2, 3, 5, 7, 8 and 9, represented in the volatility basis set. For each
plot, the bars sum up to 1. The inset pie shows the relative fractions
of n-alkanes, branched/cyclic alkanes and aromatics in the fuel. The
magenta arrow shows the mass-weighted average of the volatility
distribution.

Fischer–Tropsch derived from natural gas: 2 experiments;
Jet Propellent-8: 6 experiments; multiple diesels: 10 exper-
iments). The Fischer–Tropsch fuels are synthetic substitutes
for Jet Propellent-8 fuel. The diesels are part of a test fuel ma-
trix (Fuels for Advanced Combustion Engines) designed to
investigate limits in possible fuel composition around three
properties of importance to combustion engines: ignition
quality, fuel chemistry and volatility (Alnajjar et al., 2010).

The fuels span a wide range of volatility and molecular
structure. In Fig. 1 we plot the fuel composition data using
the volatility basis set (VBS) (Donahue et al., 2006), color-
coded by molecular structure. The VBS is a modeling frame-
work that classifies organics into logarithmically spaced bins
of effective saturation concentration (C∗). C∗ (inverse of the
partitioning coeffcient,Kp (Pankow, 1994)) is proportional to
the saturation vapor pressure; it is a semi-empirical property
describing the gas-particle partitioning of an organic mixture
at 298 K.

To represent a fuel in the VBS, one needs to know the
volatility (or C∗) of each individual species in the fuel. How-
ever, the granularity of the composition data varied across
the fuels. The most comprehensive data were available for
the diesel fuels (Alnajjar et al., 2010), which had finely re-
solved data both by organic class and carbon number. For
gasoline, we had alkane and aromatic data by carbon num-
ber but no information about the specific species and no res-
olution in the alkene data. For Fischer–Tropsch from natu-
ral gas and Jet Propellent-8, we had speciated data forn-

alkanes ranging fromn-heptane ton-nonadecane but lumped
data for branched alkanes, cyclic alkanes and aromatics. We
assumed that the unspeciated hydrocarbons in the Fischer–
Tropsch from natural gas and Jet Propellent-8 have the same
carbon number distribution as then-alkanes in that fuel. Fi-
nally, the Fischer–Tropsch from coal was mostly composed
of branched and cyclic alkanes that are difficult to speciate.
For this fuel, we assumed that the distribution of branched
and cyclic alkanes was similar to the distribution ofn-alkanes
in Fischer–Tropsch from natural gas (Corporan et al., 2011).

To overcome the limitations in the fuel composition data,
we developed a mathematical relationship forC∗ as a func-
tion of carbon number of a hydrocarbon to map the fuel
composition data into the VBS. The relationship was de-
rived using vapor pressure data from NIST forn-alkanes,
cyclic alkanes, simple branched alkanes, single-ring aro-
matics, naphthalene, linear and cyclic alkenes, isoprene,
and common terpenes (NIST, 2012). We found aromatics
(C∗ = e(22.3−carbon#)/0.806) to have a slightly different rela-
tionship than alkanes and alkenes (C∗ = e(24.5−carbon#)/0.899).

The SOA formation for each fuel was characterized in a
smog chamber. The experimental procedures are described
in detail in Jathar et al. (2013). First, ammonium sulfate
seed was added to the chamber to facilitate condensation
and prevent nucleation of SOA products. Second, nitrous
acid (HONO) was bubbled into the chamber. Third, the
precursor mix (fuel) was introduced into the chamber us-
ing a heated septum. Finally, photo-oxidation was initi-
ated by turning on the chamber UV black lights, which
photolyzed HONO to produce OH radicals. NO and NO2
formed as by-products of HONO irradiation resulted in a
low VOC / NOx ratio that was consistent with ratios found
in urban polluted regions. The experiment was performed at
low relative humidity (<5 %) and a temperature of around
298 K. The experiments were run for 2 to 7 h with an aver-
age OH exposure of 1.7× 107 molecules h cm−3; this corre-
sponds to 17 h of photo-oxidation at an OH concentration of
106 molecules cm−3. Therefore the data represent relatively
fresh SOA formed under urban-like conditions.

Concentrations of gas-phase organic compounds were
tracked using a GC-MS (Logue et al., 2009) and a proton-
transfer reaction mass spectrometer (PTR-MS, Ionicon An-
alytik). The measured decay of individual species was used
to estimate OH concentrations and OH exposure during the
experiment. Particle-phase measurements were made using
a scanning mobility particle sizer (SMPS, TSI Inc.) and a
quadrupole or high-resolution aerosol mass spectrometer (Q-
AMS or HR-AMS, Aerodyne Research Inc.) to measure non-
refractory aerosol mass, size and composition. Both SMPS
and Q-AMS/HR-AMS results were wall-loss corrected to
calculate a lower and an upper bound on the total SOA for-
mation (Hildebrandt et al., 2009). Depending on the exper-
iment, an SOA measurement was characterized every 2 to
5 min.
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Jathar et al. (2013) found that, for a unit mass of fuel re-
acted and at an atmospherically relevant OA concentration of
10 µg m−3, unburned diesel formed the most SOA, followed
by Jet Propellent-8 and Fischer–Tropsch from natural gas,
gasoline and Fischer–Tropsch from coal. These trends re-
flected differences in fuel volatility and structure; fuels with
higher carbon numbers and/or more aromatics formed more
SOA. Fuels with lower carbon numbers and/or branched
alkanes formed less SOA. In contrast to gasoline (Odum et
al., 1997), the SOA formation from unburned diesel was not
a strong function of the aromatic content. In fact, all diesels
had similar SOA mass yields even though they varied in
volatility and had different proportions of linear, branched
and cyclic alkanes, alkenes and aromatics.

2.2 SOA models

We compared the measured SOA formation from Jathar et
al. (2013) to SOA predictions/fits from a number of different
models. In each model, fuel species react with the OH radical
to form a set of semi-volatile surrogate products in the VBS
(Donahue et al., 2006). The decay of the SOA precursor and
production of the semi-volatile species is described using the
following equations:

d[Xj ]

dt
= −kOH,Xj

[OH][Xj ] (1)

d[Mi |g+p]

dt
=

∑
j

αi,jkOH,Xj
[OH][Xj ], (2)

whereXj is an individual SOA precursorj , kOH,X is the
reaction rate constant between the oxidant [OH] and SOA
precursor [Xj ], andαi,j is the mass yield of productMi |g+p

(g + p indicates gas plus particle phase) in VBS bini. The
index j indicates different precursors, either an individual
fuel species or volatility bins of the fuel. The indexi indicates
differentC∗ bins in the VBS. ThekOH for each fuel species
is listed in Tables S1 through S5 (in the Supplement). Gas-
particle partitioning is calculated using Eq. (3).

ζi =

(
1+

C∗

i

COA

)−1

(3)

COA =

N∑
i=1

ζi × Mi

∣∣
g+p

∣∣ ,
whereζi is the fraction of mass ofMi

∣∣
g+p

∣∣ in the particulate
phase,C∗

i is the effective saturation concentration ofMi and
COA is the total particulate OA concentration. As described
in detail below, the different models use different lumping
schemes for the fuel species and different mass yieldsαi,j .

We do not explicitly consider additional multi-
generational oxidation of semi-volatile products because
the SOA mass yields used in this work were derived from
smog chamber experiments that spanned similar lengths
in reaction time and OH exposure. Therefore, the SOA
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Figure 2. Schematics for the(a) CMAQ-SAPRC and(b) volatility-
dependent SOA models.

mass yields already included some multigenerational aging,
comparable to what occurred in our experiments.

We used two different types of models in this work, which
are described in more detail in the subsequent sections. The
first type was different versions of the SOA module used
in the CMAQ model; they use volatility- and molecular
structure-resolved schemes commonly found in SOA mod-
ules in CTMs. The second type was a volatility-dependent
model that relates SOA production only to the precursor’s
volatility and ignores molecular structure.

2.2.1 CMAQ-SAPRC

Most SOA models used in CTMs account for SOA forma-
tion from speciated VOCs (isoprene, terpenes, single-ring
aromatics and smaller alkanes and alkenes) using a set of
lumped precursors that react to form products (αi,j ) derived
from fitting smog chamber data. The precursor lumping de-
pends on gas-phase mechanisms, e.g., SAPRC or Carbon
Bond. In this work, we used the SOA module implemented
in CMAQ that employs the SAPRC gas-phase mechanism
(Carlton et al., 2010). We refer to this as the CMAQ-SAPRC
model, which is shown schematically in Fig. 2a.

The CMAQ-SAPRC model accounts for some differ-
ences in both precursor volatility and molecular structure.
For example, it differentiates between alkanes (ALK), aro-
matics (ARO), isoprene (ISOP) and terpenes (TERP). For
each molecular class/structure, there are typically multiple
SAPRC lumped species to account for differences in reac-
tivity with the OH radical. For a given molecular structure,
reactivity partially correlates with volatility, so there is some
differentiation with precursor volatility. There are few to no
alkenes, terpenes or isoprene in any of the fuels; therefore
to calculate SOA formation from the unburned fuel experi-
ments involved accounting for four CMAQ-SAPRC lumped
precursor species: ALK5, BENZ, ARO1, and ARO2. ALK5
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is comprised of all alkanes larger than C7. BENZ is benzene.
ARO1 and ARO2 are lumped species for other aromatics.

SAPRC and most other gas-phase mechanisms were orig-
inally designed to simulate hydrocarbon–NOx–ozone pho-
tochemistry, not SOA formation. Therefore, these lump-
ing schemes do not account for some important differ-
ences in molecular structure and volatility that strongly in-
fluence SOA formation. For example, CMAQ-SAPRC does
not differentiate between branched and linear alkanes even
though branched alkanes have much lower SOA yields than
equivalent-carbon linear alkanes (Lim and Ziemann, 2009;
Tkacik et al., 2012). In addition, CMAQ-SAPRC also lumps
all alkanes greater than C7 into ALK5 even though alkanes
smaller than about C10 form little SOA while alkanes larger
than C10 have increasingly higher SOA yields (Lim and Zie-
mann, 2009; Presto et al., 2010; Tkacik et al., 2012). There-
fore the SAPRC alkane lumping strategy has some shortcom-
ings for simulating SOA formation.

Another reason that SAPRC and other mechanisms have
not explicitly incorporated larger alkanes is that they are dif-
ficult to speciate using traditional GC-MS techniques and
therefore rarely found in emission profiles and emission in-
ventories (Robinson et al., 2007; Goldstein and Galbally,
2007). For example, in EPA’s SPECIATE database (version
4.3) – the database of source profiles used to build most
emission inventories for anthropogenic sources in the US –
the emission profiles of the top six combustion sources of
VOCs (on- and off-road gasoline, on- and off-road diesel,
wood burning and open burning; they accounted for 97 % of
all VOC combustion emissions in the US in 2008) have a
negligible fraction (<1 %) of organics with a carbon num-
ber greater than 12. In contrast, numerous experimental stud-
ies have demonstrated that combustion sources emit substan-
tial mass of organics with a carbon number greater than 12
(Schauer et al., 2002, 1999, 2001; Gentner et al., 2012; Presto
et al., 2011). We have comprehensive speciation data for the
fuel samples (Fig. 1); therefore we can explicitly incorporate
larger organics into our analysis.

To investigate these potential shortcomings, the CMAQ-
SAPRC model was run in three configurations that system-
atically increased the sophistication of the treatment of SOA
precursors:

1. CMAQ-SAPRC (speciated): In this configuration, the
model only considered organic compounds that have
less than or equal to 12 carbons. This configuration
was representative of the SOA treatment in most CTMs,
including the standard treatment of SOA formation
in CMAQ for alkanes and aromatics if one excludes
multigenerational chemistry (Carlton et al., 2010). For
Jet Propellent-8 and the Fischer–Tropsch experiments,
we assumed that the branched and cyclic alkanes had
the same carbon-number distribution as linear alka-
nes to determine the fraction of species that had fewer
than or equal to 12 carbons. The lumping of the fuel

species (species with less than or equal to 12 carbons)
into CMAQ-SAPRC model species used the standard
SAPRC scheme, which was based on the reactivity of
the species (Carter, 2007). This lumping is listed in Ta-
bles S1 through S5 in the Supplement. The SOA mass
yields for the CMAQ-SAPRC model species were from
the high NOx pathway in Carlton et al. (2010), which
were derived from fitting published smog chamber data.
For the benefit of the reader, those SOA mass yields
are listed in Table S6 in the Supplement. Those yields
were refit to a four-bin VBS ofC∗

= 1, 10, 100 and
1000 µg m−3 to enable use with the VBS.

2. CMAQ-SAPRC (all): This version of the CMAQ-
SAPRC model represented an extension of the base,
CMAQ-SAPRC (speciated), model. In this version the
model was extended to include all organics (speciated
and larger/unspeciated), not just organics with 12 or
fewer carbons. Again, the lumping of the fuel species
was based on the reactivity of the species following the
standard SAPRC scheme (Carter, 2007). This lumping
is listed in Tables S1 through S5 in the Supplement. The
larger alkanes (alkanes with more than 12 carbons) were
added to the ALK5 lumped species (the largest alkane in
the standard CMAQ-SAPRC mechanism) and the larger
aromatics were added to the ARO2 lumped species. The
CMAQ-SAPRC (all) model used the same SOA mass
yields as the CMAQ-SAPRC (speciated) model; those
yields are listed in Table S6 in the Supplement.

3. CMAQ-SAPRC (alkane-resolved): In this configura-
tion, we extended the CMAQ-SAPRC (all) model to
account for differences in SOA yields of alkanes with
size and molecular-structure. This was done using the
method of Pye and Pouliot (2012), which weights the
emissions of different alkanes with their potential to
form SOA. In other words, it accounted for the vary-
ing SOA potential of alkanes as a function of carbon
number and linear/branched/cyclic structure to calcu-
late ann-dodecane equivalent emission, which served
as a surrogate for SOA formation from all alkanes. For
reference, the weighting scheme of Pye and Pouliot
(2012) is reproduced in Table S7. The SOA mass yields
of n-dodecane used here were from Pye and Pouliot
(2012) and are listed in Table S6 in the Supplement. The
treatment of all non-alkane organics in CMAQ-SAPRC
(alkane-resolved) was the same as in CMAQ-SAPRC
(all).

To apply any of these versions of the CMAQ-SAPRC model
to the fuel data required four SOA precursors (ALK5 orn-
dodecane equivalent, BENZ, ARO1, ARO2), each of which
required a four-parameter, two-product parameterization or
a four-bin VBS parameterization (a total of 16 free parame-
ters). Application of any of the CMAQ-SAPRC models did
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not involve any fitting of the smog chamber data presented
here.

2.2.2 Volatility-dependent model

In the volatility-dependent model, we assumed that SOA for-
mation depended only on the precursor volatility. Therefore,
this approach more explicitly accounted for the influence of
volatility (or carbon number) on SOA formation than the
CMAQ-SAPRC models, but it did not account for differences
in molecular structure (e.g., alkane versus aromatic). The po-
tential advantage of the volatility-dependent model was that
it efficiently accounted for at least one property (volatility)
known to influence SOA formation strongly.

The volatility-dependent model is shown schematically in
Fig. 2b. Each precursorC∗ bin (corresponding toXj in Eq. 1)
reacts with OH to form a distribution of semi-volatile prod-
ucts with mass yieldsαi,j . Each higher (or lower) precursor
C∗ bin is assumed to form the same product distribution but
shifted by oneC∗ bin. This strategy is based on the work
of Lim and Ziemann (2009b) and Presto et al. (2010), who
found that forn-alkanes, the addition of two carbon atoms to
ann-alkane shifted its corresponding SOA product distribu-
tion, on average, by oneC∗ bin.

Key inputs for the volatility-dependent model are the fuel
volatility distribution and OH reaction rates for each pre-
cursor bin. Figure 1 shows the volatility distribution for
each fuel. They were constructed from the composition data.
The reaction rate of each precursor bin with the OH radical
(kOH,X) was derived from data in Atkinson and Arey (2003).
We developed a mathematical relationship between C∗ of a
hydrocarbon andkOH. Alkanes and aromatics have differ-
ent relationships; alkanes:kOH = −1.84× 10−12 log(C∗) +

4.27× 10−11 and aromatics:kOH = −5.7× 10−12 log(C∗) +

1.14× 10−10.
To implement the volatility-dependent model in a CTM,

one needs eight lumped precursor species, one for eachC∗

bin from 102 µg m−3 to 109 µg m−3. Since each precursor has
the same five-bin VBS parameterization that is simply shifted
in volatility space, the model only has five tunable parame-
ters. As described below these parameters were derived by
fitting the time-dependent experimental data.

3 Modeling results

3.1 CMAQ-SAPRC models

SOA predictions from the CMAQ-SAPRC (speciated) model
were compared against measurements in Fig. 3a (Fig. 3
compares end-of experiment values; Fig. S1 in the Supple-
ment shows additional experiment-by-experiment compar-
isons as a function of time.). This version of the CMAQ-
SAPRC model displayed little skill in predicting the mea-
sured SOA formation (R2

= 0.04, fractional error = 108 %).
In addition to not predicting the variability in SOA forma-

tion, the CMAQ-SAPRC model over-predicted the Fischer–
Tropsch from coal SOA by a factor of 5 and under-predicted
the diesel SOA by a factor of 5. The CMAQ-SAPRC (all)
model addressed one of the shortcomings of the CMAQ-
SAPRC (speciated) model by accounting for all of the or-
ganics in the fuel. However, it only explained a little more
of the variability (R2

=0.21, fractional error = 81 %) than
the CMAQ-SAPRC (speciated) model (Fig. 3b; Fig. S2 in
the Supplement shows additional experiment-by-experiment
comparisons as a function of time). Like the CMAQ-SAPRC
(speciated) model, it over-predicted the SOA formation from
Fischer–Tropsch from coal. The minor improvement in the
CMAQ-SAPRC (all) model resulted from slightly increased
SOA predictions for the Jet Propellent-8 and the diesel fuels.

The under- and over-predictions were caused by shortcom-
ings in the strategy used to lump organic precursors to model
species. The CMAQ-SAPRC (all) and CMAQ-SAPRC
(speciated) models used a very simple representation to
model SOA formation from large alkanes, i.e., all alkanes
with a carbon number greater than 7 are lumped into ALK5,
which was assumed to form as much SOA as ann-undecane
(C11). This caused both of these models to over-predict the
Fischer–Tropsch from coal SOA because most of its alkanes
(88 % by mass centered around C11) are branched. Branched
alkanes have much lower SOA mass yields than linear and
cyclic alkanes for the same carbon number (Lim and Zie-
mann, 2009; Tkacik et al., 2012). Likewise, both models
under-predicted the diesel SOA because, on average, 80 %
of its alkanes are larger than ann-undecane and 58 % of its
alkanes are either linear or cyclic alkanes. Therefore, it is
important that models account for both the carbon number
and molecular structure if they are to predict SOA formation
from alkanes accurately.

The CMAQ-SAPRC (alkane-resolved) model provided a
more robust treatment of SOA formation from alkanes than
the other two CMAQ-SAPRC models (Fig. 3c; Fig. S3 in
the Supplement shows additional experiment-by-experiment
comparisons as a function of time). Not surprisingly, it
performed substantially better (R2

= 0.58 and fractional
error = 79 %) than the other two CMAQ-SAPRC models.
Treating the alkanes with the scheme of Pye and Pouliot
(2012) reduced the SOA formation from the branched alka-
nes in the Fischer–Tropsch fuels and increased the SOA
formation from the linear and cyclic alkanes in the Jet
Propellent-8 and diesel fuels. This underscores the impor-
tance of accounting for both carbon number and molecular
structure of alkanes in SOA models.

3.2 Volatility-dependent model

In contrast to the CMAQ-SAPRC models, for the volatility-
dependent model the time-dependent SOA data from all
of the fuels were fit simultaneously to determine an SOA
mass-yield matrix (αi,j ) for the precursor mass distributed
across a set ofC∗ bins; αi,j is listed in Table 1. The
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Table 1.SOA mass yields for model precursors in the volatility-dependent model.

ProductC∗ (µg m−3)

PrecursorC∗ 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105 106 107

102 µg m−3 0.011 0.078 0.034 0.006 0.297 – – – – – – – –
103 µg m−3 – 0.011 0.078 0.034 0.006 0.297 – – – – – – –
104 µg m−3 – – 0.011 0.078 0.034 0.006 0.297 – – – – – –
105 µg m−3 – – – 0.011 0.078 0.034 0.006 0.297 – – – – –
106 µg m−3 – – – – 0.011 0.078 0.034 0.006 0.297 – – – –
107 µg m−3 – – – – – 0.011 0.078 0.034 0.006 0.297 – – –
108 µg m−3 – – – – – – 0.011 0.078 0.034 0.006 0.297 – –
109 µg m−3 – – – – – – – 0.011 0.078 0.034 0.006 0.297 –
1010µg m−3 – – – – – – – – 0.011 0.078 0.034 0.006 0.297

goodness-of-fit is shown in Fig. 4a (R2
= 0.53, fractional

error = 73 %). Figure 4a also indicates that most predictions
were within a factor of 2; Fig. S4 in the Supplement shows
additional experiment-by-experiment comparisons as a func-
tion of time. This was comparable to the level of performance
of the best CMAQ-based model, CMAQ-SAPRC (alkane-
resolved), and much better than the other two CMAQ-based
models. Therefore a model based on precursor volatility
alone explained more than half of the variability in the
measured SOA data. Of course, this model was fit to the
data while the CMAQ-SAPRC models were based on pub-
lished SOA parameterizations. However, the ability of the
volatility-dependent model to describe the data highlights the
strong dependence of precursor volatility on SOA formation.

There were several instances where the volatility-
dependent model performance was poor. This likely was
due to the influence of molecular structure. For example,
although there was some variation in the measured diesel
SOA mass, the volatility-dependent model predicted roughly
the same SOA mass for the different diesel fuels because
all of the diesel fuels had similar volatility distributions.
The volatility-dependent model also predicted the same SOA

formation from Fischer–Tropsch from coal and Fischer–
Tropsch from natural gas because they had the same volatil-
ity profile, but the measured yields were quite different.
Fischer–Tropsch from coal is mostly composed of lower
yield branched alkanes, while Fischer–Tropsch from natural
gas is an equal mix of linear and branched alkanes.

In Fig. 4b we plot the SOA mass yields as a function of
C∗ from the volatility-dependent model and compare them to
published single precursor yields. The comparisons are made
at a typical atmospheric OA concentration of 5 µg m−3. The
SOA mass yields derived by fitting the volatility-dependent
model are comparable to the single-compound data. For ex-
ample, the fit for the volatility-dependent model predicted
the range and drop in SOA mass yield forn-alkanes. Sim-
ilarly, the fit predicted the right SOA mass yield range for
alkenes and aromatics. The fit agreed with SOA mass yields
for monoterpenes but under-predicts the SOA mass yields for
isoprene and sesquiterpenes. It does this despite having no
a priori information about the SOA mass yields for species
in a given volatility range. This good agreement highlights
the significant role that precursor volatility (carbon num-
ber/molecular size) has on SOA yields.
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One could extend the volatility-dependent model to also
incorporate molecular structure by having a different set of
mass yields for different molecular structures. This would
address some of the discrepancies shown in Fig. 4a. How-
ever, the fuel composition data were insufficient to determine
a molecular structure-resolved volatility-dependent scheme.

4 Discussion

The comparisons of predictions from different versions
of the CMAQ-SAPRC model with the SOA data under-
scored the importance of including all the speciated and
larger/unspeciated organic precursor mass and accounting
for the effects of alkane carbon number (molecular size) and
molecular structure (linear/branched/cyclic) in SOA mod-
els. Historically, traditional SOA models employed in CTMs
have only considered SOA formation from VOCs with a
carbon number less than or equal to 12, mostly because
larger/unspeciated SOA precursors are absent (or not prop-
erly accounted for) from emission profiles and inventories.
These traditional SOA models have been sufficient to ex-
plain the SOA formation from single-ring aromatics present
in unburned gasoline (Odum et al., 1997) but have failed
in predicting the SOA formation from mixtures that contain
larger/unspeciated organics. Addressing this need likely re-
quires additional development of instruments and techniques
to characterize these larger/unspeciated organics present in
emissions. Furthermore, current ozone-focused VOC lump-
ing schemes are inadequate for modeling SOA formation
even if all of the organic mass is included in the model.
The methods of Pye and Pouliot (2012) to determine ann-

dodecane equivalent mass were found to be both sufficient
and efficient for modeling SOA formation from alkanes.

An SOA model based purely on the precursor volatility
was able to capture the variability in SOA formation from
different fuels that, similar to combustion emissions, con-
tain complex mixtures of alkanes, alkenes and aromatics and
their sub-types (linear, branched, cyclic, single-ring, multi-
ring). In addition, the SOA yields of the volatility-dependent
species (byC∗) were similar to data from single-compound
experiments. The volatility-dependent approach implicitly
assumed that the different fuels have a similar distribution of
molecular structure. Hence, the SOA model based on volatil-
ity alone performed poorly when tested with SOA data from
synthetic fuels like Fischer–Tropsch from coal and natural
gas that have a much simpler composition, dominated by
one class of species. For example, the Fischer–Tropsch from
coal is mostly composed of branched alkanes. For these types
of mixtures, it becomes important to account for the effects
of molecular structure on SOA formation. For the same rea-
son, the volatility-dependent approach may not be appropri-
ate for modeling SOA formation from biogenic emissions
(isoprene, monoterpenes, sesquiterpenes) because they have
distinct molecular structures. This limitation of the volatility-
dependent approach makes it unfit to predict changes in SOA
formation with fuel reformulation that does not significantly
change the volatility distribution of the fuel.

At present, the CMAQ-SAPRC-based models require 16
parameters (4 parameters each for 4 SOA precursors de-
rived from previous smog chamber experiments) from high
NOx formation of SOA from alkanes and aromatics. In con-
trast, the volatility-dependent model required only 5 pa-
rameters (fit to unburned fuel smog chamber experiments)
and had roughly the same skill as the CMAQ-SAPRC
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model in predicting SOA formation from unburned fuel mix-
tures. Furthermore, the volatility-dependent model provides
a compatible framework to include larger organic precur-
sors on the basis of their volatility as and when they are
characterized through emissions testing. These precursors
would be tricky to incorporate into CMAQ-SAPRC-type
models where lumping strategies are largely based on re-
activity. So, although molecular structure influences SOA
formation, given the results of this work, SOA formation
as a function of volatility may be sufficient to model SOA
formation in CTMs, especially from emissions of fossil-
fuel sources. Biomass burning emissions also contain the
same speciated SOA precursors as fossil fuel-based sources
(Yokelson et al., 2013), so it is likely that a volatility-
dependent approach would work to model SOA formation
from biomass burning sources.

The Supplement related to this article is available online
at doi:10.5194/acp-14-5771-2014-supplement.
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