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Abstract. The California Research at the Nexus of Air Qual-
ity and Climate Change (CalNex) and Carbonaceous Aerosol
and Radiative Effects Study (CARES) field campaigns dur-
ing May and June 2010 provided a data set appropriate for
studying the structure of the atmospheric boundary layer
(BL). The NASA Langley Research Center (LaRC) air-
borne high spectral resolution lidar (HSRL) was deployed
to California onboard the NASA LaRC B-200 aircraft to aid
in characterizing aerosol properties during these two field
campaigns. Measurements of aerosol extinction (532 nm),
backscatter (532 and 1064 nm), and depolarization (532 and
1064 nm) profiles during 31 flights, many in coordination
with other research aircraft and ground sites, constitute a di-
verse data set for use in characterizing the spatial and tem-
poral distribution of aerosols, as well as the depth and vari-
ability of the daytime mixed layer (ML) height. The pa-
per describes the modified Haar wavelet covariance trans-
form method used to derive the ML heights from HSRL
backscatter profiles. HSRL ML heights are validated using
ML heights derived from two radiosonde profile sites dur-
ing CARES. Comparisons between ML heights from HSRL
and a Vaisala ceilometer operated during CalNex were used
to evaluate the representativeness of a fixed measurement
over a larger region. In the Los Angeles basin, comparisons
of ML heights derived from HSRL measurements and ML
heights derived from the ceilometer result in a very good

agreement (mean bias difference of 10 m and correlation co-
efficient of 0.89) up to 30 km away from the ceilometer site,
but are essentially uncorrelated for larger distances, indicat-
ing that the spatial variability of the ML height is signifi-
cant over these distances and not necessarily well captured
by limited ground stations. The HSRL ML heights are also
used to evaluate the performance in simulating the temporal
and spatial variability of ML heights from the Weather Re-
search and Forecasting Chemistry (WRF-Chem) community
model. When compared to aerosol ML heights from HSRL,
thermodynamic ML heights from WRF-Chem were under-
predicted in the CalNex and CARES regions, shown by a bias
difference value of−157 m and−29 m, respectively. Better
agreement over the Central Valley than in mountainous re-
gions suggests that some variability in the ML height is not
well captured at the 4 km grid resolution of the model. A
small but significant number of cases have poor agreement
when WRF-Chem consistently overestimates the ML height
in the late afternoon. Additional comparisons with WRF-
Chem aerosol mixed layer heights show no significant im-
provement over thermodynamic ML heights, confirming that
any differences between measurement and model are not due
to the methodology of ML height determination.

Published by Copernicus Publications on behalf of the European Geosciences Union.



5548 A. J. Scarino et al.: ML Heights from HSRL and WRF-Chem

1 Introduction

Measurements of atmospheric boundary layer (BL) height
are of key importance as a prognostic variable in regional and
global weather forecasting and climate models (Atlas and
Korb, 1981) and for assessing these models. The National
Research Council (2009) points to inadequacies in current
national mesoscale observational capabilities necessary for
addressing priorities like forest wildfire smoke dispersion, air
quality forecasting, short-range forecasting of high-impact
weather, and regional climate modeling. In particular, verti-
cally resolved mesoscale observations are lacking and the re-
port specifically recommends that determining the height of
the atmospheric BL should be one of the highest priorities for
addressing these inadequacies. There is also interest in BL
height research for incorporation into weather and air qual-
ity forecasting models and for climate studies. The science
plan of the Department of Energy’s Atmospheric System Re-
search program (Department of Energy, 2010) highlights the
importance of measuring BL heights and, by studying them
with respect to aerosol and cloud interactions, topographic
features, and tropospheric dynamics, contributing to the de-
velopment and evaluation of forecasting models.

Since the mid-1960s, scientists have been researching dif-
ferent methods in order to determine the height of the at-
mospheric BL within the troposphere (Hosler and Lemmons,
1972; Stull, 1988; Heffter, 1980). The convective bound-
ary layer (CBL) is characterized by roughly uniform ver-
tical profiles of moisture and potential temperature within
that layer (Stull, 1988), and so many researchers use poten-
tial temperature to indicate BL height, measured, for exam-
ple, by radiosonde. Atlas and Korb (1981) present the use
of aerosol profile measurements made by lidar for determin-
ing BL heights, since aerosol gradients also can indicate BL
heights, where aerosol concentration is sufficient.

In the current study, measurements acquired by the NASA
Langley Research Center (LaRC) airborne high spectral res-
olution lidar (HSRL) during recent science campaigns are
used to examine the spatial and temporal variability of BL
height and to validate BL heights from the WRF-Chem trans-
port model. The term mixed layer (ML) height is appropri-
ate for the measurement made by lidar (Hayden et al., 1997;
Seibert et al., 2000; Stull, 1988; Tucker et al., 2009). Tucker
et al. (2009), defines the ML height as the volume of atmo-
sphere in which aerosol chemical species emitted within the
BL are mixed and dispersed and since all measurements dis-
cussed here were collected during the daytime, this terminol-
ogy is applicable to the airborne HSRL observations. This
term will be used for lidar, ceilometer, and radiosonde mea-
surements. In areas where it might be necessary to denote
the specific methodology from which the ML height is de-
rived, we will refer to it as the “aerosol ML height” when
discussing the lidar/ceilometer-derived height and the “ther-
modynamic ML height” when referring to heights derived
from potential temperature. These terms will also apply for

the WRF-Chem model as well when we discuss modeled
backscatter and thermodynamic profiles.

Our study follows a heritage of other studies, which have
examined how well various models perform when com-
pared with BL heights derived from a radiosonde or a li-
dar. These studies include evaluations of mesoscale models,
NCEP Mesoscale Eta (Angevine and Mitchell (2001) and
MM5 (Bidokhti et al., 2008), with wind profilers in Illinois
and Tennessee and a ground-based lidar in Zanjan, Iran, re-
spectively. Both studies showed good correlations between
the model and measurements. BL heights from global cir-
culation models have also been evaluated by two satellite-
based lidars. Measurements from the Cloud–Aerosol Li-
dar with Orthogonal Polarization (CALIOP) on the Cloud–
Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) satellite were used to validate the Goddard Earth
Observing System-version 5 (GEOS-5) Modern-Era Retro-
spective analysis for Research and Applications (MERRA)
(Jordan et al., 2010) and the Geoscience Laser Altimeter Sys-
tem (GLAS) evaluated the European Centre for Medium-
Range Weather Forecasts (ECMWF) model (Palm et al.,
2005). It was found that ECMWF under predicted the ob-
served GLAS BL heights, however, there were instances
of GEOS-5 over and under-predicting the BL heights from
CALIPSO due to land and water interactions.

The airborne HSRL provides an opportunity to quantify
spatial and temporal variations in ML heights that are diffi-
cult to obtain by other methods that rely on fixed sites. ML
heights derived from HSRL will be extremely useful since
it provides spatial and temporal evolution of the mixed layer
that cannot be obtained from any other type of information
and therefore can more rigorously evaluate meteorological
models, such as WRF-Chem.

The current study focuses on data sets from two field
campaigns in California that occurred from May to June
2010. The California Research at the Nexus of Air Qual-
ity and Climate Change (CalNex) campaign during May and
June 2010 focused on air quality in the Los Angeles basin
and the Carbonaceous Aerosol and Radiative Effects Study
(CARES) took place in the Sacramento, CA, region during
June 2010. The NASA LaRC airborne HSRL participated in
CalNex for May 2010 and CARES in June 2010. The exten-
sive suite of measurements and modeling during these cam-
paigns presents the opportunity for assessing the WRF-Chem
model in this region and presents insight into horizontal vari-
ability of ML height and the representativeness of localized
ML height measurements.

The CalNex Science White Paper (National Oceanic and
Atmospheric Administration, 2008) lists several science
questions that relate to the transport and meteorology of the
basin. Having extensive data on the BL height is useful in an-
swering these science questions since it defines the vertical
extent of mixing (e.g., dilution) of trace gases and aerosols in
the boundary layer. The Los Angeles basin is bordered by the
San Gabriel Mountains, the San Bernardino Mountains, and
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Table 1.Summary of HSRL flights during CalNex. Ceilometer data is available on all flight days.

Date (dd/mm) Begin time (LST) End time (LST) Comments

13/05 13:37 16:45 Salton Sea and LA basin flight
16/05 14:08 17:39 LA basin flight
19/05 11:05 15:17 LA basin flight
20/05 11:44 16:12 San Joaquin Valley flight
21/05 09:56 12:59 LA basin flight
22/05 11:55 16:36 San Joaquin Valley flight
24/05 10:50 14:12 LA basin, north through El Cajon

pass, and east over Salton Sea
25/05 12:06 14:59 Transit flight from Ontario, CA, to

Sacramento, CA, for CARES mission

Figure 1. (A) Summary of flight tracks during CalNex and the location of the ground site in Pasadena, CA.(B) Summary of flight tracks
during CARES along with the three study regions (A: San Francisco, B: Central Valley and C: Sierra Nevada) discussed in Sect. 3.3 and
locations of the two ground sites. In both images, the background behind the flight tracks is elevation (GLOBE digital elevation model),
where shades of green represent the lowest elevation and brown is the highest elevation.

the Pacific Ocean. Duong et al. (2011) discuss that the LA
basin is impacted by sea breezes and mountain flows that can
transport or trap aerosols. During CalNex, there were three
aircraft outfitted with atmospheric measurement instruments,
a research vessel also carrying atmospheric measurement in-
struments, and a suite of ground-based instruments (Ryerson
et al., 2012). The aircraft included the NOAA Twin Otter,
NOAA WP-3D, and the NASA King Air B-200, which was
outfitted with the NASA LaRC HSRL. A Vaisala ceilometer,
which was operated by a research group from the University
of Houston (Haman et al., 2012), was located in Pasadena,
CA (34.14◦ N, 118.12◦ W; ∼240 m m.s.l.), for the campaign.
During the CalNex campaign, the NASA B-200 completed
eight science flights. Figure 1a shows ground tracks of the
B-200 flights during CalNex and Table 1 summarizes the
specifics of the eight flights.

One of the objectives for the CARES campaign was to
study the regional-scale transport and mixing of the Sacra-
mento urban plume (Zaveri et al., 2012). Fast et al. (2012)
discuss the dominant meteorological conditions over cen-

tral California during CARES encompassing Sacramento,
San Francisco, and the Sierra Nevada. The CARES cam-
paign used two primary aircraft, the DOE G-1 and the NASA
King Air B-200. Since the CARES schedule overlapped with
CalNex, the NOAA WP-3 and Twin Otter aircraft partici-
pated in some of the central California flights. There were
also two ground sites utilized during CARES: the T0 site,
located in Sacramento (38.65◦ N, 121.35◦ W; 30 m m.s.l.),
and the T1 site, located in Cool, CA (38.87◦ N, 121.02◦ W;
454 m m.s.l.). Very comprehensive suites of instruments were
located at these ground sites; measuring meteorological pa-
rameters, trace gases, optical properties of aerosols, aerosol
composition, aerosol size distributions, and solar radiation.
Radiosondes were launched from these ground sites four
times per day on the days with science flights to capture the
evolution of the atmosphere. In total there were 23 science
flights by the NASA B-200 during CARES. Figure 1b shows
ground tracks of the B-200 flights during CARES, along with
three regions discussed in Sect. 3.3 and the locations of the
ground sites. Table 2 summarizes the 23 flights.
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Table 2.Summary of HSRL flights during CARES.

Date (dd/mm) Flight no. Begin time (LST) End time (LST) Comments

03/06 1 12:24 15:49 Local flight over Sacramento
05/06 1 11:29 13:43 Flight south through SJV and north over

San Francisco
06/06 1 09:26 12:25 Local flight over Sacramento and through SJV
08/06 1 8:54 12:10 Local flight over Sacramento and down the SJV

2 14:35 17:56 Flight over Sacramento and down the SJV
10/06 1 14:31 17:56 Flight over towards Tahoe and then over SJV
12/06 1 09:08 12:41 Flights over Sacramento and Fresno areas

2 15:05 17:51
14/06 1 10:09 13:42 Looking at inflow from the SF bay area into

Sacramento
2 15:18 18:01

15/06 1 09:09 12:24 Looking at inflow from the SF bay area into
Sacramento

2 14:39 18:02
18/06 1 15:18 18:53 Flight over SJV
19/06 1 09:46 11:52 Flight legs across Sacramento valley and north of

Reno over mountains
2 15:32 18:33 Northeastern leg included for measurements of

aerosols over forest
21/06 1 15:32 18:53 Looking at flow down SJV valley and aerosols

over SF
22/06 1 14:09 16:17 Long-range transport of pollution and mixing in

northern California
23/06 1 09:51 12:02 Mountain venting flight plan

2 14:51 17:09
24/06 1 14:56 17:45 Mountain venting flight plan
27/06 1 09:19 12:26 Sampling over San Francisco and San Jose valley
28/06 1 10:10 13:20 Sacramento area, as well as SF and San Jose valley

2 15:56 18:19 West of Sacramento towards San Francisco

This paper presents the methodology used to derive
ML heights from airborne HSRL measurements of aerosol
backscatter and describes how these ML heights are used
to evaluate modeled ML heights from the 2010 CalNex and
CARES field campaigns. Portions of the flights during these
field campaigns occurred over complex terrain in Califor-
nia. Section 2 describes the data products from the airborne
HSRL instrument and the WRF-Chem model, and provides
an overview of the methods used to calculate and compare
the ML heights. Section 3 discusses these analyses in the
context of the CalNex and CARES campaigns and summa-
rizes the HSRL ML height values in comparison with the ML
heights from radiosondes, a ceilometer, and the WRF-Chem
model. Lastly, in Sect. 4, the results between the measured
and modeled ML heights are summarized along with a dis-
cussion of how these results may guide future model devel-
opments.

2 Methods

2.1 Determination of mixed layer heights from HSRL

The primary data set for this paper is the ML heights de-
rived from HSRL. The airborne HSRL has acquired exten-
sive data sets of aerosol extinction at 532 nm, backscatter at
532 nm and 1064 nm, depolarization at 532 nm and 1064 nm
and aerosol optical depth (AOD) at 532 nm (Hair et al., 2008;
Rogers et al., 2009). The instrument has flown aboard the
NASA LaRC King Air B-200 and UC-12 aircraft on 349 sci-
ence flights collecting 1142.4 h of data during 21 field cam-
paigns in North America since 2006. Aerosol ML heights
are derived for HSRL daytime measurements using an au-
tomated technique that utilizes a Haar wavelet transform
with multiple wavelet dilations (Brooks, 2003) to identify
the sharp gradients in aerosol backscatter profiles located
at the top of the ML, modified to identify the lowest, not
the strongest, significant aerosol gradient, as detailed in the
following paragraphs. We have used a modified version of
Brooks’ technique routinely across fifteen flight campaigns
(212 flights, 729 h) and have found that it identifies the ML
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height accurately 85 to 90 % of the time under a variety of
meteorological and terrain conditions. Manual adjustment of
the ML heights is performed when necessary, as discussed
later in this section.

In this study, aerosol backscatter profiles (532 nm) derived
from the HSRL measurements are the input data for the
wavelet algorithm. These profiles are computed every 0.5 s
using a 10 s running average of the HSRL 532 nm backscat-
ter data (Hair et al., 2008). The aerosol backscatter values
are averaged over∼1000 m horizontal and 30 m vertical res-
olution (Rogers et al., 2009). Clouds were removed from the
analyses because they can produce especially strong signal
gradients that can be misinterpreted by the wavelet algorithm
as the ML top. For cloud removal, a simpler algorithm is used
which follows Davis et al. (2000); a convolution of the mea-
sured signal with the Haar wavelet is used to identify cloudy
profiles in the lidar data. We use a flight-by-flight adaptive
threshold on the convolution that separates the cloud gradi-
ents from the weaker aerosol gradients (Burton et al., 2010).

To identify ML heights, the averaged cloud-free backscat-
ter profiles are then used in the wavelet transform algorithm
based on the method described by Brooks (2003). Brooks’
(2003) technique is an improvement over previous studies us-
ing wavelets (Davis et al., 2000; Cohn and Angevine, 2000),
which were effective where the vertical backscatter gradi-
ent is small everywhere except at the aerosol layer top, but
which can produce a bias in the ML height estimates when a
gradient is present above or within the ML (Brooks, 2003).
Brooks’ (2003) algorithm computes a wavelet transform at
multiple dilations (i.e., spatial extent) to compute the lower
(H1) and upper (H2) limits of the transition zone, as well as
the altitude of the maximum of the wavelet transform (H3).
Brooks (2003) indicated that H1, the lower limit of the transi-
tion zone, represents the top of the well-mixed aerosol layer.
However, the altitude of the maximum wavelet transform,
H3, is used more widely to identify the ML height and is
more closely related to the methods used by the other tech-
niques. Therefore, in this paper we also use the same conven-
tion and use H3 as the ML height; for completeness the tran-
sition zone limits H1 and H2 are also included in our product.

Brooks (2003) demonstrated his procedure using airborne
backscatter lidar data acquired over relatively shallow marine
boundary layers. In more varied meteorological conditions
and over terrain, the mixed layer height can be more diffi-
cult to identify due to multiple sharp gradients in the profile
that can correspond to elevated aerosol layers (lofted layers
or residual layers), if these have stronger edge gradients than
the boundary layer. In order to address this problem, an ad-
ditional layer of logic is added for the HSRL algorithm that
searches for local maxima in the convolution greater than an
empirically determined threshold value, and chooses the one
at the lowest altitude, rather than the overall maximum. This
eliminates errors due to strong edges associated with elevated
aerosol layers. Where feasible, the search for the correct edge
gradient is also limited using the results for the transition

zone from the previous minute’s data. This restriction elim-
inates many of the false ML height detections; however, it
gives less stable results in cloudy cases because the clouds
interrupt the 1 min window. Because of the large changes in
ML height between land and water, the results computed over
water are not used as a limit on the results over land, and vice
versa.

In the HSRL algorithm, we increased the dilation value
used for searching for the maximum gradients. We found that
larger dilation values of 900 m over land and 360 m over wa-
ter generally capture the gradient at the boundary layer top
well over land without false positives due to noise. The top
and bottom of the transition zone is then found using Brooks’
(2003) algorithm, which uses smaller dilation values to hone
in on these boundaries.

Even with the modifications, complicated aerosol struc-
tures within and/or above the ML, or clouds at the top of the
ML, can potentially prevent the algorithm from producing
satisfactory results. Every curtain of backscatter profiles is
visually inspected. If the algorithm chooses an edge gradient
that does not appear to be associated with the mixed layer
top, a manually selected height can be logged. The heights
produced by the automated algorithm are also considered in
this manual determination, thus the set of manual heights is
not independent of the set of heights determined from the
automated method. The H3 altitudes determined from the au-
tomated algorithm and the ML heights determined from the
manual inspection are combined to produce a set of “best es-
timate” ML heights, equal to the automated estimate where
they agree within 300 m, and equal to the manual estimate
where they do not agree. For the CalNex and CARES cam-
paigns, the ML heights were determined manually 10–15 %
of the time. Indeed, in many of the cases where the automated
algorithm failed to give satisfactory results, it is also difficult
to accurately locate the ML height even by visual inspection.
In cases where the ML is not marked by a strong aerosol gra-
dient, the algorithm will not produce a good estimate of ML
height.

2.2 Thermodynamic mixed layer height calculation
from radiosonde

Since these ML heights from HSRL have not been previ-
ously published, we demonstrate their validity in Sect. 4.1
by comparison with thermodynamic ML heights from ra-
diosonde measurements. Thermodynamic ML heights are
derived from radiosonde profiles by using a technique de-
scribed by Heffter (1980) based on locating a critical inver-
sion in the potential temperature using the lapse rate and the
inversion strength. Various criteria for minimum lapse rate
and temperature difference for this algorithm have been pro-
posed for different regions by, for example, Heffter (1980),
Delle Monache et al. (2004), and Hayden et al. (1997). In
this study, we use the Hayden et al. (1997) values, since these
are appropriate for complex terrain similar to the conditions
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found in the radiosonde launch locations during the CARES
campaign. These are 0.002 K m−1 for the minimum inversion
lapse rate and 1 K for the temperature difference.

2.3 Mixed layer height calculation from ceilometer

In Sect. 3.2, we compare with mixed layer heights from
ceilometers. As with HSRL, the ceilometer ML heights are
based on aerosol backscatter gradients. ML heights calcu-
lated from ceilometers are limited to mostly cloud-free con-
ditions because the laser pulse is attenuated when it hits
dense clouds (Haman et al., 2012). The Vaisala ML height
algorithm (version 3.5) was used to analyze the ceilome-
ter backscatter coefficient to identify aerosol structures and
determine the height of the ML using the negative gradient
method (Münkel et al., 2007). Additional information on the
proprietary Vaisala ceilometer algorithm used in this analysis
can be found in Haman et al. (2012).

2.4 WRF-Chem configuration

As described in Fast et al. (2012), the WRF-Chem model
(Grell et al., 2005; Fast et al., 2006) was used to provide oper-
ational support for the CARES campaign by providing high-
resolution forecasts of wind and tracer dispersion resulting
from carbon monoxide emitted from urban locations. The
domain configuration used in this study is identical to Fast et
al. (2009), with a horizontal grid spacing of 4 km that encom-
passes all of California and the surrounding region. The spe-
cific parameterizations used in this study are listed in Table 3.
As in Fast et al. (2012), the Mellor–Yamada–Janjić (MYJ)
scheme (Janjić, 1990, 2002) is used to represent BL mixing.
Several other ML parameterizations that employ either tur-
bulence kinetic energy or non-local closure approaches are
available in WRF; however, it is beyond the scope of this
paper to compare the performance of multiple ML parame-
terizations using the lidar measurements (see LeMone et al.,
2013, for evaluation of ML schemes). Some of the meteoro-
logical parameterizations are also different than those in Fast
et al. (2012) because of future plans to study aerosol direct
and indirect effects that require coupling aerosols to certain
radiation and cloud schemes.

A continuous simulation from 1 May to 30 June 2010 was
performed. Initial and boundary conditions for the meteo-
rology were obtained from the global analyses of the Na-
tional Center for Environmental Prediction’s North Amer-
ican Mesoscale (NAM) model, while initial and boundary
conditions for trace gases and aerosols were obtained from
the global MOZART model (Emmons et al., 2010). The
large-scale synoptic conditions were also constrained by the
NAM model analyses from∼4 km above sea level to the
model top at∼12 km. The Model for Simulating Aerosol
Interactions and Chemistry (MOSAIC) (Zaveri et al., 2008)
and SAPRC-99 photochemical mechanism (Carter, 2000)
were used to simulate regional-scale evolution of aerosols

Table 3. Selected WRF-Chem configuration options used for this
study.

Atmospheric process Option

Advection Monotonic
Long wave radiation RRTMG
Shortwave radiation RRTMG
Surface layer Monin–Obukhov (Janjić)

similarity theory
Land surface Noah
Boundary layer Mellor–Yamada–Janjić
Cumulus convection Kain–Fritsch
Cloud microphysics Morrison
Gas-phase chemistry SAPRC-99
Photolysis FTUV
Aerosol chemistry MOSAIC+ volatility basis set
Aerosol direct effects on
Aerosol indirect effects off

and trace gases, respectively. Secondary organic aerosol for-
mation was represented by a simplified two-species volatility
basis set approach as described by Shrivastava et al. (2011).
Anthropogenic emissions were obtained from the California
Air Resources Board and were developed for the 2008 NASA
Arctic Research of the Composition of the Troposphere from
Aircraft and Satellites (ARCTAS) mission over California
(Jacob et al., 2010).

The performance of the near-surface simulated meteorol-
ogy was very similar to that described in Fast et al. (2012)
and the differences in the meteorological parameterizations
did not lead to substantial changes in the overall model per-
formance (not shown). For example, the model reproduced
the observed variability in the synoptic conditions and near-
surface diurnal variation in thermally driven flows associated
with complex terrain and land–sea contrasts. Details of the
performance of simulated aerosol mass, composition, and
size distribution compared with the extensive CARES and
CalNex field campaign observations will be presented in an-
other study.

WRF-Chem ML heights are determined by two methods
from the instantaneous model output at hourly intervals. The
first method uses a critical potential temperature gradient
to identify the top of the CBL, which is widely used by
the atmospheric community. We estimate the ML height us-
ing a Heffter (1980) technique with a critical gradient of
0.001 K m−1 as in Delle Monache et al. (2004); however, this
method can identify multiple layers for weak vertical poten-
tial temperature gradients. In this case, sharp vertical gradi-
ents in specific humidity are used to define the simulated ML
height. The specific humidity is usually significantly higher
in the CBL than in the free troposphere and sharp vertical
gradients occur in the first layer above the ground, which
can be identified by the critical potential temperature gradi-
ent. Software tools from the Aerosol Modeling Testbed (Fast
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et al., 2011) are used to extract the potential temperature
and humidity profiles and interpolate those profiles in time
along the aircraft flight path. The second method is identi-
cal to the algorithm described in Sect. 3.2, except that simu-
lated profiles of backscatter are used. As described in Fast et
al. (2006) and Barnard et al. (2010), simulated aerosol prop-
erties and Mie theory are used to compute backscatter and
extinction at four wavelengths: 300, 400, 600, and 1000 nm.
To compare simulated backscatter and aerosol profiles with
the HSRL measurements during CARES and CalNex, the
Aerosol Modeling Testbed software tools are also used to in-
terpolate the simulated quantities in space and time to match
the aircraft flight paths. The Ångström relationship is then
used to interpolate the simulated optical properties to 532 nm
for direct comparisons with lidar measurements. As will be
shown later, both methods are used to compare with the mea-
sured HSRL aerosol ML heights. While the first method is
more commonly used by meteorological studies, the second
method is a more equivalent to the lidar measurements.

2.5 ML height comparisons

Comparisons of ML heights are conducted in different ways
depending on if it is the modeled output or measurements
from the ground sites. The resolution of the ML heights from
the HSRL aerosol backscatter profile is∼1000 m horizontal
and 30 m vertical. For the HSRL ML height comparisons to
the radiosonde and ceilometer, a separation distance and tem-
poral difference is used to determine coincident pairs to con-
duct the comparison. In the comparison with the radiosonde
profiles, a separation distance of 15 km and temporal dif-
ference of 30 min is used, as discussed in Sect. 3.1. The
ceilometer comparison varies in separation distance from 0
to 50 km and a temporal difference of 15 min, as discussed in
Sect. 3.2. WRF-Chem has horizontal grid spacing of 4 km
with hourly simulations and is extracted along the HSRL
flight track using the Aerosol Modeling Testbed software
tools. This provides a direct comparison of matched times
and locations between HSRL and WRF-Chem.

3 Results and discussion

3.1 Radiosonde and HSRL mixed layer heights

The CARES campaign in the Sacramento region provides the
opportunity for verifying the applicability of HSRL derived
aerosol ML heights by validating them with thermodynamic
ML heights derived from radiosondes. The T0 and T1 sites
were located in the Central Valley and at the foothills of the
Sierra Nevada, respectively, so we conducted our analysis of
these sites separately. Since radiosonde launches did not ex-
actly correspond with the aircraft overpass times, we lim-
ited our comparison data to separation distance of 15 km and
temporal difference of 30 min between the aircraft and the
radiosondes. Figure 2 summarizes the comparisons of ML

Figure 2. Scatter and bisector regression plot of HSRL aerosol ML
heights and radiosonde thermodynamic ML heights within 15 km
and 30 min of the ground sites. The statistics in the upper left cor-
ner are for the comparisons when both the T0 and T1 sites are com-
bined.

heights (both above ground level – a.g.l.). At the T0 site,
the comparisons resulted in anR of 0.95, RMS difference
of 113 m and a bias difference (HSRL minus radiosonde)
of −42 m. At the T1 site, the comparisons resulted in anR

of 0.94, RMS difference of 164 m and a bias difference of
119 m. The statistics for the combined T0 and T1 sites are
displayed on Fig. 2. The good agreement supports the use
of the HSRL derived aerosol ML heights for investigation of
spatial variability and evaluation of the WRF-Chem model.

3.2 Comparison with ceilometer and investigation of
spatial variability

Evaluations of ML heights AGL from the ceilometer at the
Pasadena, CA, ground site and HSRL were performed to
compare the two instruments’ measurements against each
other and to better understand the extent to which the
ceilometer measurements of ML height were indicative of
the ML height throughout the CalNex study area. HSRL data
were screened to find the points of closest spatial approach
between the B-200 aircraft and the Pasadena ground site,
within ± 7.5 min of the times of a ceilometer measurement
and within various distances. Note that the ceilometer typ-
ically made a measurement every 15 min. Examination of
the ceilometer ML heights during CalNex (not shown) in-
dicates that the ML only changed by approximately 100 m
at most during a 15 min span, so a 15 min window for com-
parisons between HSRL and ceilometer heights is appropri-
ate. Figure 3a shows comparisons limited to 30 km spatial
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Table 4.Statistics of the HSRL aerosol ML and WRF-Chem thermodynamic ML height comparisons for CalNex and CARES. The CARES∗

statistics are from the HSRL and WRF-Chem aerosol ML height comparisons. The bias difference and RMS difference are calculated by
WRF-Chem minus HSRL. The number of points in these comparisons corresponds to the HSRL resolution of the backscatter profiles (1
point≈ 1 km of airborne HSRL data).

HSRL ML heights compared to WRF-Chem ML heights

Campaign region No. of points Bias difference RMS difference Slope InterceptR

CalNex 106 189 −157 m 604 m 0.87 −8.6 0.58
CARES – All 303 545 −29 m 547 m 1.35 −340 0.63
CARES A – San Francisco 58 820 −282 m 555 m 0.85 −173 0.4
CARES B – Central Valley 153 631 98 m 542 m 1.44−277 0.68
CARES C – Sierra Nevada 74 619 −63 m 495 m 1.55 −609 0.68
CARES* – All 237 880 211 m 574 m 1.32 −77 0.64

Figure 3. Scatter and bisector regression plots of HSRL and ceilometer aerosol ML heights as a function of distance of closest approach of
the aircraft to the ceilometer. The circles compare the ceilometer measurement to the HSRL data taken at the point of closest approach to the
Pasadena ground site. The comparison points in the plot on the far right (Fig. 4c) are further limited to only consider points where the HSRL
location had similar ground altitude (within± 200 m) of the altitude of the Pasadena ground site.

separation. Eighteen overpasses satisfy this strict coinci-
dence criterion and the agreement is very good, with anR

of 0.89 and an RMS difference of 108 m and bias difference
(HSRL minus Ceilometer) of−9.7 m within that separation
distance.

Generally, there is only at most one ceilometer in a given
geographical area, so it is important to investigate if the ML
height derived from a ceilometer is regionally representative.
The ceilometer during CalNex was only active during the
field campaign date range, as is the case with most ceilome-
ters, since an active ceilometer network does not exist in the
United States (Demoz et al., 2013). HSRL made measure-
ments over the entire region, many of them temporally co-
incident with the ceilometer but separated by various dis-
tances. The variability of the ML height over the larger re-
gion was examined by looking at HSRL-derived ML heights
as the B-200 flew within± 7.5 min of each ceilometer mea-
surement, though not limited by separation distance. It was
found that the ML height can vary by large amounts, up to as
much as 2 km, in locations surrounding the ceilometer. This
is likely due to variations of ML heights with the complex ter-
rain, differing meteorological conditions over the ocean and

mountains, and the transport of pollutants within the study re-
gion (Duong et al, 2011). Repeating the comparison between
HSRL and ceilometer ML heights, we see that the compari-
son breaks down quickly at separations beyond 30 km. Fig-
ure 3b illustrates this point with a comparison of points that
are within± 7.5 min but separated by 30–50 km spatially. We
find that the measurements are essentially uncorrelated, since
the comparison produces anR of 0.08 and an RMS differ-
ence of 554 m and bias difference (HSRL minus Ceilometer)
of 234 m for points between 30 and 50 km. We emphasize
that both the ceilometer and HSRL ML heights are calcu-
lated above ground level (a.g.l.), which maximizes the cor-
relation, as expected. However, at distances beyond 30 km
from the Pasadena ground site the B-200 flew over ocean
and high-altitude terrain and large differences in altitude and
differences in surface characteristics can dramatically affect
ML growth. Therefore, in Fig. 3c, the comparison points are
further limited to only consider points where the HSRL lo-
cation had similar ground altitude (within± 200 m) of the
altitude of the Pasadena ground site. With this further limi-
tation, good agreement can be found at separation distances
up to approximately 100 km. Up to 50 km,R is 0.83 for 23
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Figure 4. Google Earth images displaying the absolute differences
between the HSRL and ceilometer aerosol ML heights in meters
for portions of two flights during CalNex (1ML Height = HSRL-
ceilometer).(A) Data on 19 May were taken from approximately
14:00 to 14:10 LST;(B) data on 20 May were taken from approxi-
mately 12:45 to 13:15 LST.

comparison points within that distance, from 50 to 100 km,
R is 0.69 for 9 points, and from 100 to 150 km,R is 0.36 for
10 points. This supports the assumption that at least part of
the regional variability of ML height is due to differences in
terrain.

Figure 4 further illustrates that a point measurement of ML
height (i.e., from a ceilometer) may not be indicative of ML
behavior even in areas very close to the ceilometer (and at
similar altitude) and that the spatial variability changes on
different days. Figure 4a shows a case where the ML height
is a good analog for a large area of the LA basin, with differ-
ences between HSRL and ceilometer ML heights of less than
100 m over the entire region except over water and the coast.
Yet, the next day, illustrated in Fig. 4b, there is significant
disagreement of more than 1000 m between the ceilometer
and ML heights measured just tens of kilometers away. We
believe this abrupt change in variability is probably due a
change in the wind direction and the transport of aerosols
through the basin.

3.3 Evaluation of WRF-Chem mixed layer heights

Mixed layer heights from HSRL provide an opportunity
to assess model simulations from WRF-Chem over a large
geographical domain. Figures 5 and 6 show scatter plots
of HSRL aerosol ML heights and WRF-Chem simulated
thermodynamic heights for the CalNex and CARES cam-
paigns, respectively. ML heights are presented in meters
above ground level (a.g.l.) for both data sets. The temporal
resolution of the comparisons is 10 seconds, corresponding
to approximately∼1000 m at a typical B-200 flight speed.
The number of points in these comparisons corresponds to
the HSRL resolution of the backscatter profiles (1 point
≈ 1 km of airborne HSRL data).

Figure 5. Scatter and bisector regression plot of WRF-Chem ther-
modynamic ML heights and HSRL aerosol ML heights across all
flights during CalNex. Number of occurrences in each histogram
bin is shown in color. The bias difference and RMS difference
are calculated by WRF-Chem minus HSRL. The number of points
in these comparisons corresponds to the HSRL resolution of the
backscatter profiles for the 8 CalNex flights (1 point≈ 1 km of air-
borne HSRL data).

Figure 5 shows ML height comparisons for all flights dur-
ing CalNex. The region from which the data used in this plot
were obtained is bounded by the 35◦ N line (see Fig. 1a) to
include only the flights in the Los Angeles (LA) basin. A bi-
sector regression produces anR of 0.58 with a bisector slope
of 0.87 and intercept of−8.6 m. A bias difference value of
−157 m indicates the WRF-Chem ML heights were under-
predicted. Statistical results from this comparison are found
in Table 4.

Figure 6 shows a similar comparison of WRF-Chem ther-
modynamic ML height and HSRL aerosol ML height for
all flights during CARES. The bisector regression produces
an R of 0.63 with a bisector slope of 1.35 and intercept of
−340 m with a small bias difference of−29 m. WRF-Chem
again underpredicted the ML heights when the ML height is
low, but tends to over predict when the ML height is large.
Statistical results from this comparison are found in Table 4.

A potential factor affecting the accuracy of the WRF-
Chem simulation is the complexity of the terrain. Complex
terrain and bodies of water introduce larger uncertainties in
the simulated interaction of surface fluxes, boundary layer
mixing, and ambient winds and there are local variations in
the ML depth that the model may not be able to resolve us-
ing a grid spacing of 4 km. To investigate this further, the
CARES domain was split into three regions, shown in Fig. 1b
– A: San Francisco Bay region (including the southern Coast
Range), B: Central Valley (that includes Sacramento and
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Figure 6. Scatter and bisector regression plot of WRF-Chem ther-
modynamic ML and HSRL aerosol ML heights across all flights
during CARES. The PBL heights for WRF-Chem are derived from
potential temperature. Number of occurrences in each histogram bin
is shown in color. The bias difference and RMS difference are cal-
culated by WRF-Chem minus HSRL. The number of points in these
comparisons corresponds to the HSRL resolution of the backscatter
profiles for the 23 CARES flights (1 point≈ 1 km of airborne HSRL
data).

the T0 ground site), and C: Sierra Nevada (includes the T1
ground site) – for further analysis of the ML height values
from both HSRL and WRF-Chem. Figure 1b shows how the
regions are divided and the locations of the ground sites. Sta-
tistical results from the comparisons in the three regions sep-
arately are found in Table 4, along with the results for all
regions together. Of the three regions, the worst agreement
is found in region A, the San Francisco Bay and southern
Coast Range area. The regression for region A (San Fran-
cisco Bay and southern Coast Range) has better agreement
in the slope but relatively low correlation coefficient. Ex-
amination of specific cases shows that the comparisons over
the bay itself are of similar quality to adjacent land regions,
but flight segments in the southern Coast Range often have
very poor agreement. In these cases, both the HSRL aerosol
ML height and the WRF-Chem thermodynamic height esti-
mates are indicated at very high altitudes (a.g.l.). We can un-
derstand this by looking at HSRL backscatter curtains. The
mountain range reaches above the local boundary layer and
there is very little aerosol above the mountains. Therefore,
the ML height often indicates the top of the residual layer
or weak structures in the free troposphere, and these tenuous
features have much greater variability. The thermodynamic
ML heights from WRF-Chem also reach very high altitudes
(a.g.l.) in this situation, but show poor agreement with the
aerosol ML heights observed by HSRL.

In the Sierra Nevada region, the correlation is better, but
the slope and intercept reveal relatively poor agreement. Ex-
amination of specific cases in the Sierra Nevada region (not
shown) suggests that the ML height in these mountainous re-
gions is as well characterized in a regional sense as elsewhere
(such as the Central Valley), but the greater variability of the
ML height in the mountains is not well captured by the simu-
lation. This suggests that the 4 km grid spacing is too coarse
to resolve local variations of the ML height.

The Central Valley region also has a large slope, but in
this case, it reflects poor agreement on a limited number of
flights where WRF-Chem distributes the aerosol over a much
taller column than that which is observed by HSRL. One of
these cases is illustrated in Fig. 7, showing the HSRL aerosol
backscatter and modeled WRF-Chem aerosol backscatter
curtains from the 14 June 2010 afternoon flight. The first half
of the flight was a raster pattern in region B (Central Valley),
and the second part of the flight was mostly in region A (San
Francisco Bay and southern Coast Range). In the Central Val-
ley region on this particular day, the WRF-Chem simulation
distributes aerosol up to 1.5 or even 2 km, whereas HSRL
infers the ML top much lower, below 1 km, in the valley.

In order to make a more direct one-to-one comparison
and separate potential issues with ML height determination
form errors in the simulation of aerosol, another experiment
was performed where ML heights from WRF-Chem sim-
ulated backscatter are compared to the HSRL ML heights
for the CARES flights (results in Table 4). Figure 7 demon-
strates that although the WRF-Chem simulations of aerosol
backscatter and aerosol ML height are generally in good
agreement with the HSRL measurements, the simulations
sometimes have difficulty in accurately forecasting the ver-
tical extent of aerosols in the ML as well as the magnitude
of aerosol backscatter both in the ML and the free tropo-
sphere. In addition to the treatment of atmospheric chemistry,
particularly secondary organic aerosol, emissions of primary
aerosols and aerosol precursors over California, and bound-
ary conditions also affect predictions of aerosols that will be
described in a subsequent study. These observations are late
in the day and the ML heights in the same region earlier in
the day, before the growth of the boundary layer, show better
agreement.

These cases notwithstanding, in general, WRF-Chem and
HSRL show good agreement in the characterization of diur-
nal growth of the boundary layer. Figure 8a, b show statis-
tics of the ML heights as a function of time of day for the
Los Angeles area during CalNex and in central California
during CARES, respectively. During both field campaigns,
the hourly median values between the two methods agree
to within a few hundred meters throughout most of the day.
For CalNex, the largest difference in of approximately 700 m
between hourly median values was found to be in the late
afternoon between 16:00 and 17:00 LST. During CARES,
the largest difference was approximately 200 m and found
in the early morning between 09:00 and 10:00 LST. Upon
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Figure 7. (Top) aerosol backscatter measured from HSRL with aerosol ML heights derived from aerosol backscatter and (bottom) simulated
aerosol backscatter from WRF-Chem with thermodynamic ML heights (in black) and aerosol ML heights (in white); data are from the second
research flight on 14 June 2010.

examination of backscatter curtain plots and flight plans, the
large differences in both campaigns are associated to loca-
tions over higher terrain and not diurnal ML height growth.

4 Summary

HSRL aerosol backscatter profiles were used to derive
aerosol ML heights and assess simulations of the temporal
and spatial variability of thermodynamic ML heights in both
the CalNex and CARES study regions. The ML height as-
sessments are critical for evaluation of the performance of
research forecasting models like WRF-Chem when they are
used for air quality assessments.

The use of aerosol ML heights from HSRL was shown to
be justified by comparisons of the aerosol ML heights de-
rived from HSRL and the thermodynamic ML heights from
the radiosonde potential temperature profiles, which showed
reasonable agreement. Although the ML heights are derived
differently, the two measurements compared well with anR

of 0.94, slope of 0.94, and a bias difference of 35 m.
The HSRL aerosol ML heights during the CalNex cam-

paign were compared with the corresponding aerosol ML
heights computed from a ground-based ceilometer located
in Pasadena, CA. Overall these heights agreed well (R is
0.89) when HSRL is within 30 km of the ceilometer, or up

to 50 km when considering only regions with terrain height
similar (> 200 km difference) to the ceilometer location (R

is 0.83). Spatial variability in the ML heights leads to sig-
nificantly poorer comparisons for greater spatial separation,
suggesting that ML height measurements at a single location
are not representative beyond 30 km away, or 50 km for sim-
ilar terrain height. Furthermore, the spatial variability of ML
heights is highly variable from day to day, implying that the
regional representativeness of the ceilometer heights is also
highly variable.

HSRL ML heights were used to assess WRF-Chem ML
heights. Overall, the WRF-Chem ML heights were under-
predicted in the study regions for CalNex and CARES. To
evaluate the impact of the complex terrain in the CARES
study region, the domain was divided into the three regions
to see how well the model simulations of ML performed
as a function of location. While there are differences, it is
not clear that WRF-Chem performs significantly better or
worse in one region or another, but the investigation revealed
some patterns in the comparisons that are instructive. There
is generally good agreement over the flat terrain in the Cen-
tral Valley, but on certain days WRF-Chem does not cor-
rectly represent the diurnal growth of the mixed layer and
distributes aerosol over a much taller ML than measurements
indicate, up to twice the measured ML height. In contrast, the

www.atmos-chem-phys.net/14/5547/2014/ Atmos. Chem. Phys., 14, 5547–5560, 2014



5558 A. J. Scarino et al.: ML Heights from HSRL and WRF-Chem

Figure 8. Diurnal variation for HSRL aerosol ML heights and
WRF-Chem thermodynamic ML heights over the entireA) CalNex
andB) CARES campaigns. Filled boxes denote the 25th and 75th
percentiles and vertical lines denote the 5th and 95th percentiles.
Lines connecting the white dots denote the median value for each
hour. The blue and red boxes are gridded by time and offset for
clarity.

complex terrain in the San Francisco Bay and Sierra Nevada
regions introduce larger uncertainties in the simulated inter-
action of surface fluxes, boundary layer mixing, and ambient
winds or there are local variations in the ML depth that the
model cannot resolve using a grid spacing of 4 km. In both
the Sierra Nevada and San Francisco regions, WRF-Chem
under-predicts the ML heights; more so in the San Fran-
cisco area with the bias difference being−263 m. In the Cen-
tral Valley region, WRF-Chem over-predicts the ML heights,
as indicated by the bias difference of 121 m. The disagree-
ment between measurements and models is exacerbated over
the southern Coast Range when the mountains interrupt the
mixed layer and ML heights over the high terrain are not well
defined. Disagreement in these specific cases is probably not
very significant in terms of WRF-Chem performance.

To further separate potential differences in ML height
methodologies from errors in aerosol prediction by WRF-
Chem, a further comparison was made by computing ML
heights using aerosol gradients with WRF-Chem instead of
thermodynamic gradients. This results in no significant im-
provement when compared to the HSRL aerosol ML heights.
This finding supports the use of the ML height computed

from aerosol backscatter gradients as a proxy for the BL.
This also suggests that other factors in the modeling and/or
HSRL ML height retrieval techniques were responsible for
differences between the HSRL and WRF-Chem ML heights.
The differences between the HSRL and WRF-Chem ML
heights could be due to errors in the timing in convective BL
growth in the model, which could be too fast or too slow.
There could also be errors in surface fluxes, such as soil
moisture errors, that will lead to the ML height being too
shallow or too deep.

The results presented here demonstrate that the aerosol
ML heights derived from HSRL aerosol backscatter profiles
are closely comparable to those derived from radiosonde
temperature profiles, and that these HSRL ML heights can
be used to evaluate ML heights from other sensors (e.g.,
ceilometers) and models. As in earlier studies (Baker et al.,
2013; Fast et al., 2012), the HSRL aerosol ML heights also
provide additional information for validating and improving
model ML heights by providing the means to distinguish be-
tween biases due to BL parameterizations from those due to
other factors such as interaction with synoptic meteorology.
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