

Supplement of

Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

K. L. Pereira et al.

Correspondence to: J. F. Hamilton (jacqui.hamilton@york.ac.uk)

Supplementary Information.

Table S1 – The molecular formulae (MF) and associated errors of the identified SOA compounds in experiment MC_{high} using FTICR-MS and HPLC-QTOFMS in negative ionisation mode.

t _R	MW [g mol ⁻¹]	FTICR-MS MF	Error [ppm]	Score [%]	HPLC-QTOFMS MF	Error [ppm]	Score [%]
14.3	138				C ₇ H ₆ O ₃	-9.7	100
30.1	152	C ₈ H ₈ O ₃ †	0.3	100	C ₈ H ₈ O ₃	-1.4	100
28.1	166	C ₉ H ₁₀ O ₃	0.8	100	C ₉ H ₁₀ O ₃	1.2	100
33	168	C ₈ H ₈ O ₄	0.7	100	C ₈ H ₈ O ₄	0.2	100
12.5	180	C ₉ H ₈ O ₄	0.9	100	C ₉ H ₈ O ₄	2.6	100
16.1	182	C ₉ H ₁₀ O ₄	0.8	100	C ₉ H ₁₀ O ₄	-0.3	100
17.6	191	C ₁₀ H ₉ NO ₃	0.7	100	C ₁₀ H ₉ NO ₃	-3.2	100
33.7	194	C ₁₁ H ₁₄ O ₃	0	100	C ₁₁ H ₁₄ O ₃	-0.9	0
25.2	196	C ₁₀ H ₁₂ O ₄	1	100	C ₁₀ H ₁₂ O ₄	2.5	100
20.2	198	C ₁₀ H ₁₄ O ₄ †	0.9	100	C ₁₀ H ₁₄ O ₄	2.4	100
20.7	199	C ₈ H ₉ NO ₅	0.2	100	C ₈ H ₉ NO ₅	-0.2	100
39.6	209	C ₁₀ H ₁₁ NO ₄ †	0	100	C ₁₀ H ₁₁ NO ₄	4.3	100
27.8	210	C ₁₁ H ₁₄ O ₄	0.9	100	C ₁₁ H ₁₄ O ₄	1.4	100
21.3	213	C ₉ H ₁₁ NO ₅	0.7	100	C ₉ H ₁₁ NO ₅	0.5	100
21	214	C ₁₁ H ₁₈ O ₄	0.4	100	C ₁₁ H ₁₈ O ₄	2	100
18.6	236	C ₈ H ₁₂ O ₈ †	0.5	100	C ₈ H ₁₂ O ₈	36.6	0.13
31.8	238	C ₁₂ H ₁₄ O ₅	0.9	100	C ₁₂ H ₁₄ O ₅	9.9	100
22.2	243	C ₁₀ H ₁₃ NO ₆	0.6	100	C ₁₀ H ₁₃ NO ₆	-0.7	100
35.9	252	C ₁₃ H ₁₆ O ₅	1.6	100	C ₁₃ H ₁₆ O ₅	8.1	30.3
12.8	277	C ₉ H ₁₁ NO ₉	0.2	100	C ₉ H ₁₁ NO ₉	0.9	100
28.8	292	C ₁₅ H ₁₆ O ₆	1.2	100			
23.3	296	C ₁₈ H ₁₆ O ₄	-6.8	100	C ₁₈ H ₁₆ O ₄	3.5	100
36.1	317	C ₁₆ H ₁₅ NO ₆	-0.3	100	C ₁₆ H ₁₅ NO ₆	1.8	100
36.2	428	C ₁₈ H ₂₀ O ₁₂	-0.1	100	C ₁₈ H ₂₀ O ₁₂	-0.8	100

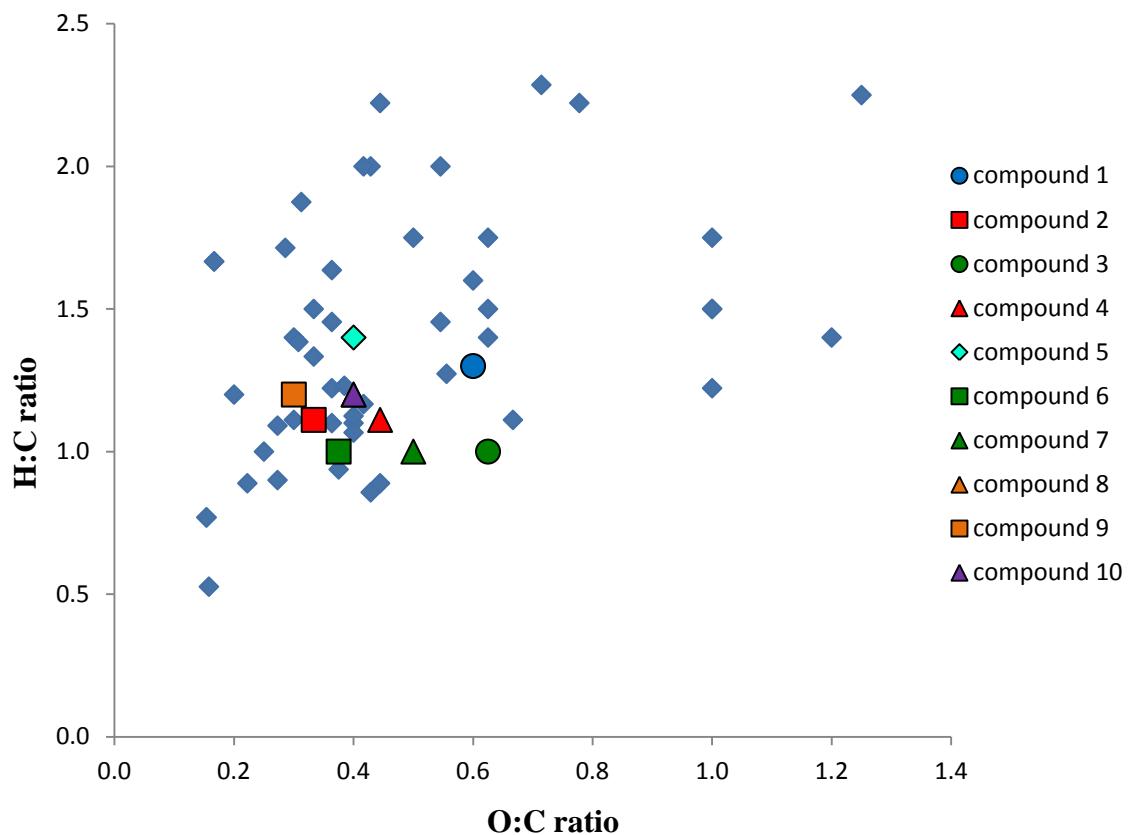
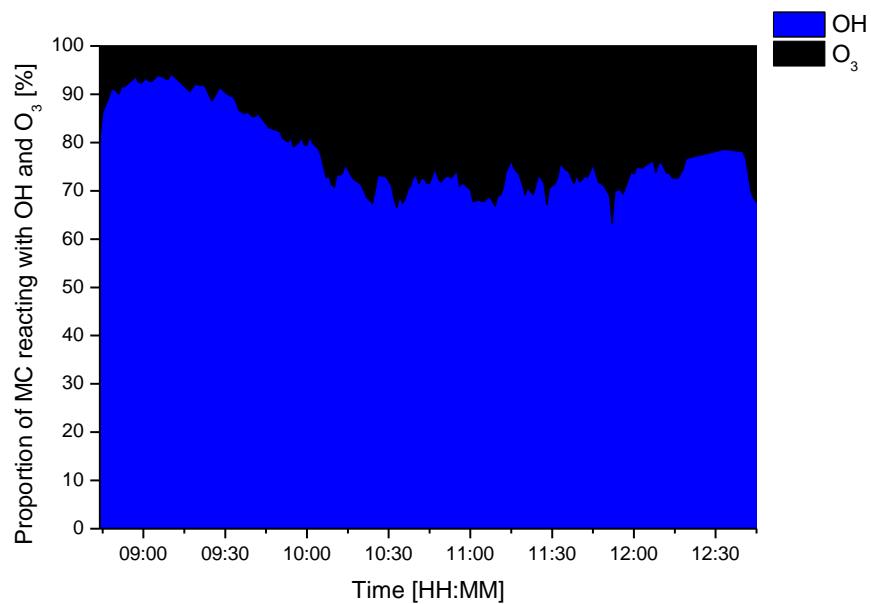
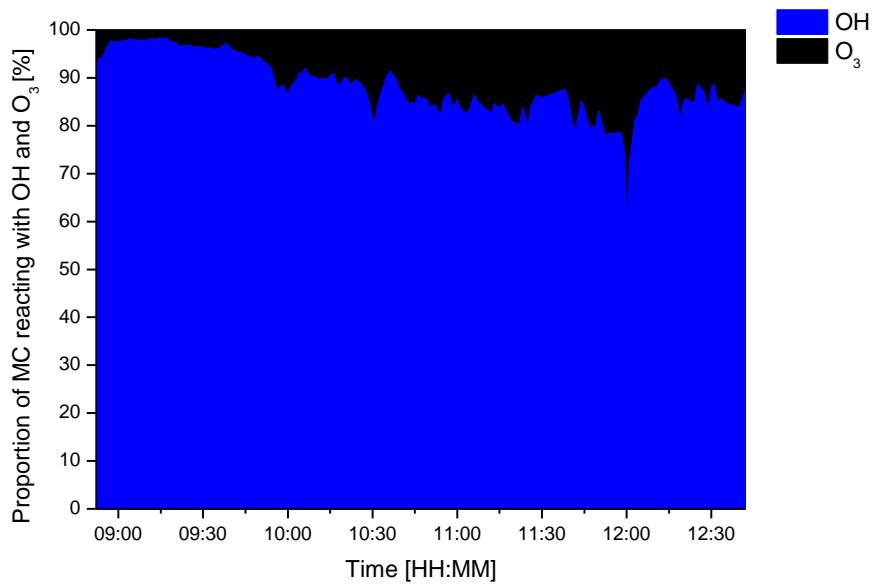

Error = displayed in ppm and calculated by taking the difference between the exact and measured mass for the assigned molecular formula; dividing the difference by the exact mass and multiplying by 10^6 . MF score = the fit of the theoretical and measured isotopic distribution and abundance for the assigned molecular formula (displayed in percent). † Compound observed in both positive and negative ionisation mode.

Table S2 – The molecular formulae (MF) and associated errors of the identified SOA compounds in experiment MC_{high} using FTICR-MS and HPLC-QTOFMS in positive ionisation mode.


t _R	MW [g mol ⁻¹]	FTICR-MS MF	Error [ppm]	Score [%]	HPLC-QTOFMS MF	Error [ppm]	Score [%]
34.3	98				C ₆ H ₁₀ O*	18	100
36.4	98				C ₆ H ₁₀ O*	14	100
33.7	120				C ₄ H ₇ O ₄	31.3	100
28.2	146	C ₇ H ₁₄ O ₃	-1.9	100	C ₈ H ₁₂ O*	30.1	100
18.5	151				C ₄ H ₉ NO ₅	-21.2	100
30.2	152	C ₈ H ₈ O ₃ †	1.2	100	C ₈ H ₈ O ₃	2.5	100
27.3	164				C ₁₀ H ₁₂ O ₂	16.6	100
12.1	168	C ₉ H ₁₂ O ₃ *	4.7	100	C ₉ H ₁₂ O ₃ *	12.1	100
27.9	170	C ₈ H ₁₀ O ₄ *	4.4	100	C ₁₁ H ₁₂ O ₃	-2.6	100
20.5	174				C ₈ H ₁₄ O ₄ *	-5.5	100
14.5	177				C ₅ H ₇ NO ₆	-26.2	100
22.5	180	C ₁₀ H ₁₂ O ₃ *	4.3	100	C ₁₀ H ₁₂ O ₃ *	2	100
27.6	180				C ₁₀ H ₁₂ O ₃	-7.8	100
36	180	C ₁₀ H ₁₂ O ₃ *	4.2	100	C ₇ H ₁₆ O ₅ *	2.9	100
33.5	182	C ₁₀ H ₁₄ O ₃ *	4.4	100	C ₁₀ H ₁₄ O ₃ *	-43.3	1.2
10.2	184				C ₈ H ₈ O ₅	48	0
15.7	188	C ₈ H ₁₂ O ₅ *	4.6	100	C ₈ H ₁₂ O ₅ *	-3.8	100
19	190	C ₈ H ₁₄ O ₅ *	5.1	100	C ₈ H ₁₄ O ₅ *	-0.8	100
41.2	192	C ₉ H ₂₀ O ₄ *	3.9	100	C ₉ H ₂₀ O ₄ *	37.7	100

19.8	196	C ₁₀ H ₁₂ O ₄ *	5	100	C ₁₀ H ₁₂ O ₄ *	9.4	100
10.8	198	C ₁₃ H ₁₀ O ₂ *	4.2	100	C ₁₃ H ₁₀ O ₂ *	-27.8	0.3
14.1	198	C ₁₃ H ₁₀ O ₂ *	3.9	100	C ₁₃ H ₁₀ O ₂ *	22.9	3.1
16.3	198	C ₁₀ H ₁₄ O ₄ *	4.2	100	C ₁₀ H ₁₄ O ₄ *	24	100
20.2	198	C ₁₀ H ₁₄ O ₄ *†	4.2	90.1	C ₁₀ H ₁₄ O ₄ *	1.3	100
14.8	204	C ₁₂ H ₁₂ O ₃ *	16	100			
39.7	209	C ₁₀ H ₁₁ NO ₄ *†	0.9	100	C ₁₀ H ₁₁ NO ₄	6.9	100
33	212	C ₁₁ H ₁₆ O ₄ *	5.1	100	C ₁₀ H ₁₈ O ₆	23.4	0.5
21.4	214	C ₁₁ H ₁₈ O ₄ *	5	100			
20.9	226	C ₁₂ H ₁₈ O ₄ *	5.4	100	C ₁₂ H ₁₈ O ₄ *	48	0
30.4	232	C ₁₀ H ₁₆ O ₆	5.3	100	C ₁₀ H ₁₆ O ₆	-10.7	100
18.8	237	C ₈ H ₁₂ O ₈ *†	-2.9	100	C ₈ H ₁₂ O ₈	5.5	100
33.8	238	C ₁₃ H ₁₈ O ₄ *	5.4	100	C ₁₃ H ₁₈ O ₄ *	33.1	0
41.5	240	C ₉ H ₁₄ O ₆ *	5	100	C ₉ H ₂₀ O ₇	-1.9	0
17.1	244	C ₁₁ H ₁₆ O ₆ *	5.6	100			
47.4	248	C ₁₂ H ₂₄ O ₅ *	4.7	100	C ₁₂ H ₂₄ O ₅ *	43.2	0
37.7	250	C ₁₁ H ₂₂ O ₆ *	6.2	100	C ₁₁ H ₂₂ O ₆ *	-17.4	4.1
43.2	256	C ₁₄ H ₂₄ O ₄ *	-3.3	100	C ₁₄ H ₂₄ O ₄ *	6.6	100
8.9	286	C ₁₉ H ₁₀ O ₃	5.2	100	C ₁₉ H ₁₀ O ₃	43.7	0
44	302	C ₁₆ H ₃₀ O ₅ *	6.2	100	C ₁₆ H ₃₀ O ₅ *	8	92


* Identified as [M+Na]⁺, the Na adduct has been removed from molecular formula and the molecular weight corrected. Error = displayed in ppm and calculated by taking the difference between the exact and measured mass for the assigned molecular formula; dividing the difference by the exact mass and multiplying by 10⁶. MF score = the fit of the theoretical and measured isotopic distribution and abundance for the assigned molecular formula (displayed in percent). † Compound observed in both positive and negative ionisation mode.

SI Figure 1 – Van Krevelen plot of the 59 SOA compounds observed in MC_{high}. Blue diamond's represent structurally unidentified compounds. Legend shows the structurally identified compounds 1 to 10, refer to Table 2 for compound identification. For the structurally identified compounds only; related generations of compounds are shown in the same colour. The change of shape but use of the same colour indicates a change in the SOA compound structure through the reaction with ·OH radicals or NO₂. Compounds 8 and 10 are structural isomers; compound 8 is hidden by compound 10.

SI Figure 2 – Proportion of methyl chavicol (MC) reacting with $\cdot\text{OH}$ and O_3 at each measured time point during MC_{high} . The proportion of methyl chavicol reacting with $\cdot\text{OH}$ and O_3 was calculated using Eq.1 and Eq.2, respectively.

SI Figure 3 – Proportion of methyl chavicol (MC) reacting with $\cdot\text{OH}$ and O_3 at each measured time point during MC_{low} . The proportion of methyl chavicol reacting with $\cdot\text{OH}$ and O_3 was calculated using Eq.1 and Eq.2, respectively.

Eq.1

$$\% OH = \left(\frac{k_{MC+OH}[OH]}{(k_{MC+OH}[OH] + k_{MC+O3}[O_3])} \right) \times 100$$

Eq.2

$$\% O_3 = \left(\frac{k_{MC+O3}[O_3]}{(k_{MC+O3}[O_3] + k_{MC+OH}[OH])} \right) \times 100$$

k_{MC+OH} = rate constant of the reaction of methyl chavicol with OH ($\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$)

k_{MC+O3} = rate constant of the reaction of methyl chavicol with O_3 ($\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$)

$[OH]$ = concentration of OH (ppbv)

$[O_3]$ = concentration of O_3 (ppbv)