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Abstract. This study investigates the evolution of ship-
emitted aerosol particles using the stochastic particle-
resolved model PartMC-MOSAIC (Particle Monte Carlo
model-Model for Simulating Aerosol Interactions and
Chemistry). Comparisons of our results with observations
from the QUANTIFY (Quantifying the Climate Impact of
Global and European Transport Systems) study in 2007 in
the English Channel and the Gulf of Biscay showed that the
model was able to reproduce the observed evolution of to-
tal number concentration and the vanishing of the nucleation
mode consisting of sulfate particles. Further process analysis
revealed that during the first hour after emission, dilution re-
duced the total number concentration by four orders of mag-
nitude, while coagulation reduced it by an additional order of
magnitude. Neglecting coagulation resulted in an overpredic-
tion of more than one order of magnitude in the number con-
centration of particles smaller than 40 nm at a plume age of
100 s. Coagulation also significantly altered the mixing state
of the particles, leading to a continuum of internal mixtures
of sulfate and black carbon. The impact on cloud condensa-
tion nuclei (CCN) concentrations depended on the supersatu-
ration thresholdS at which CCN activity was evaluated. For
the base case conditions, characterized by a low formation
rate of secondary aerosol species, neglecting coagulation, but
simulating condensation, led to an underestimation of CCN
concentrations of about 37 % forS = 0.3 % at the end of the
14-h simulation. In contrast, for supersaturations higher than
0.7 %, neglecting coagulation resulted in an overestimation
of CCN concentration, about 75 % forS = 1 %. ForS lower

than 0.2 % the differences between simulations including co-
agulation and neglecting coagulation were negligible. Ne-
glecting condensation, but simulating coagulation did not im-
pact the CCN concentrations below 0.2 % and resulted in an
underestimation of CCN concentrations for larger supersat-
urations, e.g., 18 % forS = 0.6 %. We also explored the role
of nucleation for the CCN concentrations in the ship plume.
For the base case the impact of nucleation on CCN concen-
trations was limited, but for a sensitivity case with higher
formation rates of secondary aerosol over several hours, the
CCN concentrations increased by an order of magnitude for
supersaturation thresholds above 0.3 %.

1 Introduction

Emissions from ocean-going ships have been receiving in-
creased attention in recent years due to their adverse effects
on coastal and global air quality (Ault et al., 2009; Endresen
et al., 2003; González et al., 2011; Moldanová et al., 2009;
Eyring et al., 2007), human health (Corbett et al., 2007;
Winebrake et al., 2009) and the climate system (Capaldo
et al., 1999; Eyring et al., 2010; Lawrence and Crutzen,
1999). Aerosol particles from ship exhaust represent a large
fraction of global anthropogenic aerosol emissions (Agrawal
et al., 2009; Dominguez et al., 2008) and influence signifi-
cantly the radiative budget of the atmosphere both directly
and indirectly (Capaldo et al., 1999).
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Ship-emitted particulates are a mix of different particle
types. These include combustion particles consisting mainly
of black carbon (BC), primary organic carbon (POC), sul-
fate and ash, and volatile particles forming from nucleation
of sulfuric acid during plume expansion (Song et al., 2003;
Cooper, 2003; Petzold et al., 2008). Their overall direct ef-
fect on the climate system is complex since BC causes a pos-
itive radiative forcing, while sulfuric acid particles cause a
negative radiative forcing (Lauer et al., 2007; Kasper et al.,
2007). While the different particle types are initially exter-
nally mixed, internal mixtures can form as a result of co-
agulation and condensation processes as the plume evolves,
which may significantly alter the particles’ optical properties
and hence the magnitude of the direct climate impact (Dur-
kee et al., 2000b; Jacobson et al., 2011). Particles from ship
exhaust can also act as cloud condensation nuclei (CCN) and
thus indirectly affect the climate by increasing cloud reflec-
tivity (Twomey et al., 1968; Durkee et al., 2000a; Durkee
et al., 2000b; Porch et al., 1999; Russell et al., 2000; Pe-
ters et al., 2012). The “ship tracks”, shown as the curvilinear
cloud structures observed in satellite images of marine cloud
fields, in fact represented the first evidence of an indirect ef-
fect by ship emissions (Conover, 1966; Coakley et al., 1987).
Similarly to the particles’ optical properties, their CCN prop-
erties may change during the plume evolution, which in turn
impacts their indirect effect.

Many studies have been conducted in the past decade
to characterize ship emissions and their effects on climate
through a combination of exhaust and plume measurements
(Murphy et al., 2009; Frick and Hoppel, 2000; Petzold et al.,
2008; Osborne et al., 2001; Sinha et al., 2003; Coggon et al.,
2012). Healy et al.(2009) investigated the freshly-emitted
ship exhaust particles on a single-particle level using an
aerosol time-of-flight mass spectrometer (ATOFMS) at the
Port of Cork, Ireland. They identified a unique ship exhaust
particle type residing in the ultrafine mode and containing
internally mixed elemental and organic carbon, sodium, cal-
cium, iron, vanadium, nickel and sulfate. To quantify the
in-plume mixing stateAult et al. (2010) conducted a series
of individual ship plume measurements at the port of Los
Angeles using a 4 m sampling mast at a site near the cen-
ter of the main channel. The measurements characterized
the size-resolved particle mixing state for individual plumes
with plume ages ranging between 10–45 min. Their study
showed enhanced sulfate concentration in ship plumes, prob-
ably due to vanadium-catalyzed sulfate-production reactions
in the plume within minutes of emission.

The evolution of ship-emitted particles has also been in-
vestigated in a number of modeling studies.Russell et al.
(1999) applied an externally mixed, sectional aerosol dy-
namic model to characterize condensational and coagula-
tional particle growth during the Monterey Area Ship Tracks
(MAST) experiment in 1994 and found that the sulfur con-
tent of fuels used in combustion processes had a direct im-
pact on the CCN properties. LaterErlick et al.(2001) applied

the same model as described inRussell et al.(1999) to-
gether with a delta-Eddington exponential-sum-fit radiation
algorithm to simulate aerosol-cloud-interaction during two
ship track events in the MAST experiment. The results sug-
gested that both the marine clouds and ship tracks enhanced
atmospheric absorption with respect to a clear sky.Song
et al.(2003) used a Lagrangian photochemical plume model
to explore the in-plume sulfur chemistry and new particle
formation. Their findings stressed the importance of pho-
tochemistry for the production of sulfuric acid particles in
plumes.von Glasow et al.(2003) introduced a plume expan-
sion scheme in a time dependent photochemical model based
on an updated version of the box model MOCCA (Model
Of Chemistry Considering Aerosols) (Sander and Crutzen,
1996; Vogt et al., 1996) to treat the mixing of background and
plume air. The evolution of particles in the plume was tracked
by considering dilution and chemical processes, while coag-
ulation was neglected. The influence of semi-volatile back-
ground aerosol particles was found to be important for the
in-plume gas phase chemistry, while including the soluble
ship-produced aerosols was of little importance for in-plume
heterogeneous reactions since dilution significantly reduced
ship-derived particles on a very short time scale.

For this study we represented the evolving particle dis-
tribution of ship-emitted aerosols with a new modeling
approach, the stochastic particle-resolved aerosol model
PartMC-MOSAIC (Particle Monte Carlo model-Model for
Simulating Aerosol Interactions and Chemistry) (Riemer
et al., 2009). This model explicitly resolves the composi-
tion of individual particles in a given aerosol population and
is therefore uniquely suited to investigate the evolution of
particle mixing states and the associated particle properties.
PartMC-MOSAIC has been used for detailed studies on the
particle level, for example to derive aging time-scales of
black carbon aerosol (Riemer et al., 2010), to investigate
the heterogeneous oxidation of soot surfaces (Kaiser et al.,
2011), to quantify the impacts of black carbon mixing state
on black carbon nucleation scavenging (Ching et al., 2012),
and to explore the sensitivity of cloud condensation nuclei
activity to particle characteristics at emission (Fierce et al.,
2013). It was also used as a modeling tool to explain the diur-
nal variations of aerosol hygroscopicity and the mixing state
of light-absorbing carbonaceous material in the North China
Plain (Liu et al., 2011; Ma et al., 2012).

The simulations for the present work were initialized with
gas and particle information obtained from a test-rig study
as part of the European research project HERCULES (High-
efficiency Engine R & D on Combustion with Ultra-Low
Emissions for Ships) in 2006 using a serial four-stroke ma-
rine diesel engine operating on high-sulfur heavy fuel oil
(Petzold et al., 2008). We then tracked the particle popula-
tion for several hours as it evolved undergoing coagulation,
dilution with the background air, and chemical transforma-
tions in the aerosol and gas phase. We compared the results
to aircraft measurements made in the English Channel and
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the Gulf of Biscay (France) in 2007 as part of the European
program QUANTIFY.

New particle formation (nucleation) may play an impor-
tant role in the evolution of the ship plume particle popu-
lation (Song et al., 2003). Significant uncertainties are as-
sociated with modeling nucleation and growth, both re-
garding the quantification of the nucleation rates (Lucas
and Akimoto, 2006; Yli-Juuti et al., 2011; Pierce and
Adams, 2009; Verheggen and Mozurkewich, 2002), as well
as regarding the mechanism responsible for particle growth
(Spracklen et al., 2008; Kulmala et al., 2004; Westervelt
et al., 2013). Here we use the parameterization byKuang
et al. (2008) to investigate when and to what extent nucle-
ation impacts CCN concentration in the plume. This paper
does not attempt to exhaustively survey the range of cur-
rently proposed models for nucleation and subsequent par-
ticle growth.

The scientific contribution of this study is twofold. First,
it is the first process study on the evolution of the particle-
resolved mixing state in ship plumes quantifying the roles
of coagulation and condensation in the plume and their im-
pact on CCN properties of the particles. Second, this study
provides validation for PartMC-MOSAIC due to good agree-
ment to field observations. The structure of this manuscript
is as follows. Section2 states the governing equations that
form the basis of the model, and Sect.3 describes the nu-
merical methods. Section4 shows the ship plume modeling
results for the simulations, which did not consider nucle-
ation. The result for the simulations considering nucleation
are presented in Appendix A. Section5 summarizes our ma-
jor findings.

2 Coupled equations governing gas-particle
interactions

Our modeling framework considers a Lagrangian parcel,
which simulates the evolution of aerosol particles and trace
gases that are emitted by the ship in a volume of air moving
along a specified trajectory at the center of the plume. After
leaving the exhaust stack the air parcel is not further influ-
enced by emissions. In addition to coagulation and aerosol
and gas chemistry within the plume, the model treats mix-
ing of the parcel with background air. Inherent to the parcel
modeling approach is the assumption that the plume is imme-
diately well-mixed. Within the air parcel we do not track the
physical location of aerosol particles, and we assume homo-
geneous meteorological conditions and gas concentrations.
Concentration gradients across the plume cannot be resolved
with this approach and would require the use of a spatially-
resolved 3-D model framework.

Assuming that an aerosol particle contains massµa> 0
(kg) of speciesa, for a = 1, . . . ,A, the particle composition
is described by theA-dimensional vectorµ ∈ RA. The cumu-
lative aerosol number distribution at timet and constituent

massesµ ∈ RA is N(µ, t) (m−3), which is defined to be the
number concentration of aerosol particles that contain less
thanµa mass of speciesa, for all a = 1, . . . ,A. The aerosol
number distribution at timet and constituent massesµ ∈ RA

is n(µ, t) (m−3 kg−A), which is defined by

n(µ, t) =
∂A N(µ, t)

∂µ1∂µ2 . . . ∂µA

. (1)

We denote the concentration of trace gas phase speciesi

at time t by gi(t) (mol m−3), for i = 1, . . . ,G, so the trace
gas phase species concentrations are described by theG-
dimensional vectorg(t) ∈ RG. We assume that the aerosol
and gas species are numbered so that the firstC species of
each undergo gas-to-particle conversion, and that they are
in the same order so that gas speciesi converts to aerosol
speciesi, for i = 1, . . . ,C. Besides, we further assume that
aerosol speciesC + 1 is water.

The complete set of differential equations governing the
time evolution of the multidimensional aerosol size distribu-
tion with gas phase coupling in PartMC-MOSAIC is written
in Eqs. (2) and (3).

∂n(µ, t)

∂t
=

1

2

µ1∫
0

µ2∫
0

· · ·

µA∫
0

K(µ′, µ − µ′)n(µ′, t)n(µ − µ′, t)dµ′

1dµ′

2 . . . dµ′

A︸ ︷︷ ︸
coagulation gain

−

∞∫
0

∞∫
0

· · ·

∞∫
0

K(µ, µ′)n(µ, t)n(µ′, t)dµ′

1dµ′

2 . . . dµ′

A︸ ︷︷ ︸
coagulation loss

+ λdil(t) (nback(µ, t) − n(µ, t))︸ ︷︷ ︸
dilution

−

C∑
i=1

∂

∂µi

(ci Ii(µ, g, t)n(µ, t))︸ ︷︷ ︸
gas-particle transfer

−
∂

∂µC+1
(cw Iw(µ, g, t)n(µ, t))︸ ︷︷ ︸

water transfer

+ Jnuc(g)δ (µ − µnuc)︸ ︷︷ ︸
nucleation

+
1

ρdry(t)

dρdry(t)

dt
n(µ, t)︸ ︷︷ ︸

air density change

(2)
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dgi(t)

dt
= λdil(t)

(
gback,i(t) − gi(t)

)︸ ︷︷ ︸
dilution

+ Ri(g)︸ ︷︷ ︸
chemical reactions

+
1

ρdry(t)

dρdry(t)

dt
gi(t)︸ ︷︷ ︸

air density change

−

∞∫
0

∞∫
0

· · ·

∞∫
0

Ii(µ, g, t)n(µ, t)dµ1dµ2 . . . dµA

︸ ︷︷ ︸
gas-particle transfer

−
vnucρi

ci

Jnuc(g)δ
(
i, iH2SO4

)
︸ ︷︷ ︸

nucleation

(3)

In Eq. (2), K(µ, µ′) (m3 s−1) is the Brownian coagula-
tion coefficient between particles with constituent massesµ

andµ′ (seeRiemer et al., 2009), λdil(t) (s−1) is the dilution
rate,nback(µ t) (m−3 kg−A) is the background number distri-
bution,ci (kg mol−1) is the conversion factor from moles of
gas speciesi to mass of aerosol speciesi (with cw the factor
for water),Ii(µ, g, t) (mol s−1) is the condensation flux of
gas speciesi (with Iw(µ, g, t) the flux for water),Jnuc(g)

(m−3 s−1) is the formation rate of particles by nucleation,
δ is the Kronecker delta function,µnuc represents the parti-
cle composition vector of each nucleated particle. In Eq. (3),
gback,i(t) (mol m−3) is the background concentration of gas
speciesi, Ri(g) (mol m−3 s−1) is the concentration growth
rate of gas speciesi due to chemical reactions in the gas
phase,ρdry(t) (kg m−3) is the dry air density (withρi the
density of gas speciesi), andvnuc (m3) is the volume of each
nucleated particle. The relevant references regarding the nu-
merical implementation are provided in Sect.3.

2.1 Model treatment of dilution

To model the dilution process we followedvon Glasow et al.
(2003) who proposed a Gaussian plume dispersion model for
the evolution of the plume in the horizontal and vertical di-
rections. The time-dependent plume widthwpl(t) and height
hpl(t) are described by two power laws as

wpl(t) = w0

(
t + t0

t0

)α

, (4)

hpl(t) = h0

(
t + t0

t0

)β

, (5)

wherew0 andh0 are the dimensions of the plume at the start
of the simulation. Note that compared to the formulation in
von Glasow et al.(2003) we introducedt0 in the numerator to
avoid a singularity fort = 0 in the expression for the dilution
rate below. The coefficientsα andβ are the plume expansion
parameters in the horizontal and vertical, respectively. As-
suming the plume cross section is semi-elliptic and is given
asApl = (π/8)wpl hpl, the dilution rateλdil(t) is:

λdil(t) =
1

Apl

dApl

dt
=

α + β

t + t0
. (6)

Previous ship plume studies have estimated the plume width
and height at a plume age of 1 s to be approximately 10 and
5.5 m, respectively (von Glasow et al., 2003; Durkee et al.,
2000a; Ferek et al., 1998), and we used these values fort0,
w0 andh0, respectively. The parametersα = 0.75 andβ = 0.6
are the “best guesses” estimated from the expansion of ship
tracks reported in the literature (von Glasow et al., 2003;
Durkee et al., 2000a) and confirmed by observations reported
in Petzold et al.(2008). von Glasow et al.(2003) evaluated
the influence of mixing by varyingα between 0.62 and 1. The
value ofα = 0.62 was deemed unrealistic as it caused a strong
and persistent separation between plume and background air,
which is not expected to occur in the marine boundary layer.
Values ofα > 0.82 caused very strong mixing, most likely
only valid in extremely turbulent conditions. From thisvon
Glasow et al.(2003) concluded thatα = 0.75 was appropriate
to characterize the plume dispersion.Petzold et al.(2008)
derived the values ofα and β by fitting simulated excess
CO2 as a function of plume age to the observed data. The
result ofα = 0.74 to 0.76 agreed well with the “best guess”
from von Glasow et al.(2003), while their result forβ = 0.70
to 0.80 was somewhat higher. While we will use the values
of α = 0.75 andβ = 0.6 for our base case, we will also explore
the sensitivity to changes in these parameters in Sect.4.2
below.

We further assume the top of the marine boundary layer to
be impenetrable by the plume and definezMBL as the height
of the marine boundary layer. The total dilution rate used in
our ship plume simulation is then written as

λdil(t) =

{
α+β
t + t0

hpl(t) < zMBL
α

t + t0
hpl(t) = zMBL

. (7)

2.2 Model treatment of nucleation

To model the nucleation process we follow the parameteri-
zation proposed byKuang et al.(2008) based on the concen-
tration of sulfuric acid. This uses a power law to quantify the
production rate of nucleated particles as follows:

Jnuc = K · [H2SO4]P . (8)

The values of prefactorK and exponentP in our model
framework are 10−18 m3 s−1 and 2, respectively, based on
least squares fitting between the measured formation rate and
corresponding sulfuric acid vapor concentrations at differ-
ent atmospheric environments as described inKuang et al.
(2008). The rateJnuc quantifies the production of particles of
diameter 1 nm, which initially consist of sulfuric acid.

Atmos. Chem. Phys., 14, 5327–5347, 2014 www.atmos-chem-phys.net/14/5327/2014/



J. Tian et al.: Particle-resolved modeling of a ship plume 5331

3 Numerical implementation

The detailed description of the numerical methods used in
PartMC-MOSAIC is given inRiemer et al.(2009). Here we
briefly introduce the salient features of the model. PartMC
(Particle-resolved Monte Carlo) is a 0-D, or box model,
which explicitly resolves the composition of many individ-
ual particles within a well-mixed computational volume rep-
resenting a much larger air parcel. During the evolution of
the air parcel moving along a specific trajectory, the mass
of each constituent species within each particle is tracked.
Emission, dilution, nucleation and Brownian coagulation are
simulated with a stochastic Monte Carlo approach. The rel-
ative positions of particles within the computational volume
are not tracked.

PartMC is coupled with the state-of-the-art aerosol chem-
istry model MOSAIC (Model for Simulating Aerosol In-
teractions and Chemistry) (Zaveri et al., 2008) which in-
cludes the gas phase photochemical mechanism CBM-Z
(Zaveri and Peters, 1999), the Multicomponent Taylor Ex-
pansion Method (MTEM) for estimating activity coefficients
of electrolytes and ions in aqueous solutions (Zaveri et al.,
2005b), the multi-component equilibrium solver for aerosols
(MESA) for intraparticle solid–liquid partitioning (Zaveri
et al., 2005a) and the adaptive step time-split Euler method
(ASTEM) for dynamic gas-particle partitioning over size-
and composition-resolved aerosol (Zaveri et al., 2008), as
well as a treatment for SOA (secondary organic aerosol)
based on the SORGAM scheme (Schell et al., 2001). The
CBM-Z gas phase mechanism treats a total of 77 gas species.
MOSAIC treats key aerosol species including sulfate (SO4),
nitrate (NO3), ammonium (NH4), chloride (Cl), carbonate
(CO3), methanesulfonic acid (MSA), sodium (Na), calcium
(Ca), other inorganic mass (OIN), BC, POC, and SOA.
OIN represents species such as SiO2, metal oxides, and
other unmeasured or unknown inorganic species present in
aerosols. SOA includes reaction products of aromatic pre-
cursors, higher alkenes,α-pinene and limonene.

A challenge of particle-resolved models is the large com-
putational burden when simulating the evolution of particles
under ambient conditions. Particle size distributions usually
cover a very broad size range from a few nanometers to
tens of micrometers, and typically the number concentra-
tions of the small particles compared to the large particles
differ by several orders of magnitude. Both sub-populations
are important as the small particles dominate particle number
concentration whereas the large particles dominate particle
mass concentrations. Moreover, the most likely coagulation
events involve interactions of small and large particles. It is
challenging to represent such a particle distribution with a
particle-resolved model, so that the large, rare particles are
sufficiently resolved, while the overall number of computa-
tional particles is still manageable. Here we used the method
by DeVille et al.(2011) to reduce the computational cost and
improve the model efficiency. This method is based on the

notion that a single computational particle can correspond to
some number of real particles, in other words, each compu-
tational particle is “weighted” by an appropriate factor. With
this approach it is possible to span the large range of sizes
and abundances of the particle population as will be demon-
strated in Sect.4.

We used model version PartMC 2.2.0 for this study. We
initialized all simulations with 105 computational particles.
To capture the aerosol dynamics during early plume ages,
when the particle number concentration rapidly decayed ow-
ing to coagulation and dilution, we used a time step of 0.2 s
for the first 600 s of simulation time, and a time step of 60 s
for the remainder of the simulation.

3.1 Aerosol distribution functions

While the underlying multidimensional aerosol distribution
is defined in Eq. (1), we often project this distribution in ap-
propriate ways to better display the results. We takeN(D) to
be the cumulative number distribution, giving the number of
particles per volume that have diameter less thanD. We then
define the number distributionn(D) by

n(D) =
dN(D)

dlog10 D
. (9)

The underlying particle initial and background number size
distributions used in our study were all superpositions of log-
normal distributions, each defined by

n(D) =
N

√
2π log10σg

exp

(
−

(
log10D − log10Dg

)2
2
(
log10σg

)2
)

, (10)

whereN is the total number concentration,Dg is the ge-
ometric mean diameter, andσg is the geometric standard
deviation.

To characterize the particle mixing state, we refer to the
mass fraction of a speciesa as

wa,dry =
µa

µdry
, (11)

whereµa is the mass of speciesa in the particle, andµdry is
the total dry mass of the particle. We can then define a two-
dimensional number distribution that is a function of both
particle composition and diameter. The two-dimensional cu-
mulative number distributionNa,dry(D, w) is the number of
particles per volume that have a diameter less thanD and a
dry-mass fraction less thanw for certain speciesa. Herea

could be BC, POC, sulfate, nitrate, etc. The two-dimensional
number distributionna,dry(D, w) is then defined by

na,dry(D, w) =
∂2Na,dry(D, w)

∂ log10 D∂w
. (12)

To investigate changes in the CCN properties of the aerosols,
we use the hygroscopicity parameterκ to define a two-
dimensional cumulative number distributionNκ(D, κ) in
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terms of diameter and hygroscopicity parameter. Then the
two-dimensional number distribution is written as

nκ(D, κ) =
∂2Nκ(D, κ)

∂ log10 D∂ log10 κ
. (13)

3.2 CCN activity module

The unique feature of PartMC-MOSAIC to provide particle-
resolved mixing state information enables us to calculate
the critical supersaturationSc,i that an individual particle
requires to activate. The procedure is as follows. The per-
particle water activityaw,i is given by

1

aw,i

= 1 + κi

Vdry,i

Vw,i

, (14)

whereκi is a single, dimensionless hygroscopicity param-
eter to relate particle dry diameter to CCN activity (Ghan
et al., 2001; Petters and Kreidenweis, 2007), Vdry,i is the dry
particle volume andVw,i is the volume of water in the par-
ticle. For an aerosol particlei containing several non-water
species, theκi value for the particle is the volume-weighted
mean of the individualκ value of each constituent species
(Petters and Kreidenweis, 2007). Table1 lists κ values for
individual aerosol components used in this study. The equi-
librium saturation ratioS(Di) over an aqueous particlei is
given by the Köhler equation:

S (Di) = aw,i exp

(
4σw Mw

RT ρw Di

)
, (15)

whereσw is the surface tension of the solution–air interface,
Mw is the molecular weight of water,R is the universal gas
constant,T is the temperature, andDi is the particle wet
diameter. Combining Eqs. (14) and (15) and using wet and
dry diametersDi andDdry,i to represent their respective vol-
umes, we obtain theκ-Köhler equation based onPetters and
Kreidenweis(2007):

S (Di) =

D3
i − D3

dry,i

D3
i − D3

dry,i (1 − κi)
exp

(
4σw Mw

RT ρw Di

)
. (16)

To calculate the critical supersaturation, we set∂S(Di)/∂Di

to zero and numerically solve for the critical wet diameter
Di , then use Eq. (16) to obtain the critical supersaturation
Sc,i for each particle.

3.3 Setup of case study

Measurements of the particle and gas phase of the raw engine
exhaust served as initial input parameters for our model runs.
To evaluate our model, the output was compared to measure-
ments performed in a single ship plume and in a ship corridor
study. The two campaigns, HERCULES and QUANTIFY are
briefly described in the following section.

The initial concentrations of gases and particles as well
as particle size distribution and composition were obtained

Table 1.Hygroscopicity values,κ, for individual model species.

Species Hygroscopicity,κ

H2SO4 0.9
NH4HSO4 0.65
NH4NO3 0.65
NaCl 1.12
POC 0.001
SOA species 0.1
BC 0.0
Ash 0.1

from the HERCULES study in 2006 during which a se-
rial four stroke marine diesel engine was used on a test rig
(Petzold et al., 2008; Petzold et al., 2010). The heavy fuel
oil was composed of 86.9 wt% carbon, 10.4 wt% hydrogen,
2.21 wt% sulfur, and some minor constituents. We used the
exhaust data under 75 % engine load condition for our model
inputs. These exhaust conditions are expected to be similar to
the ones encountered in the QUANTIFY study, therefore the
aerosol population and the gas phase concentrations present
in the engine exhaust served as input for the model.

During the QUANTIFY field study in June 2007, airborne
measurements of a single ship plume (14 June 2007) as well
as aged aerosol in highly frequented sea lanes (11 June 2007)
were performed. During the single-plume study, the plume
was crossed several times during the time interval of approx-
imately one hour. As in-plume total particle number con-
centrations we considered the maximum measured concen-
tration during one plume crossing (D > 4 nm). Size distri-
butions of both the polluted and the clean marine boundary
layer were determined using a combination of instruments
capable of measuring in different size ranges. The research
domain with the flight path for 11 June is shown in Fig.1.
The location of the shipping corridor is marked. In addition
to the size distributions observed in the shipping corridor, we
also used measurements of gas phase species (NO, NOy, O3,
SO2, and CO) to qualitatively compare to our simulations.
Last but not least, the following meteorological parameters
in the well-mixed marine boundary layer were measured and
used for the model runs: a relative humidity of RH = 90 %,
a temperatureT = 289 K and a boundary layer mixing height
zMBL = 300 m. These parameters were obtained from obser-
vations on 14 June 2007. The mixing height was derived from
the vertical potential temperature profile.

Table2 shows the initial and background conditions of the
gaseous species obtained from the measurements during the
HERCULES and QUANTIFY study, respectively. From the
HERCULES measurements only the total amount of non-
methane hydrocarbons (NMHC) was known. We partitioned
the total mixing ratio of NMHCs to different categories
based on the composition fractions provided inEyring et al.
(2005), including (1) hexanes and higher alkanes, (2) ethene,
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Table 2.Gas phase initial and background conditions.

Ship-engine exhaustsa Model inputs

Measured Conc. (ppbV) CBM-Z Initial Background
species speciesb (ppbV, ppbC)c (ppbV, ppbC)d

NOx 9.14× 105 NO 8.77× 105 1.86× 10−2

CO 3.4× 104 NO2 3.7× 104 3.95× 10−2

SO2 4.7× 105 HNO3 0 3.29× 10−1

NMHC 1.39× 105 O3 0 3.39× 101

CO 3.4× 104 1.05× 102

SO2 4.7× 105 1.55× 10−1

HCl 0 5.99× 10−1,e

PAR 3.09× 105 2.46
ETH 2.94× 104 1.37
OLET 3.38×104 5.1×10−2

OLEI 1.55× 103 5.0× 10−3

TOL 2.56× 104 1.6× 10−2

XYL 6.06× 103 1.5× 10−2

a Ship exhaust data are obtained from HERCULES measurement in 2006 under 75 % engine load
condition (Petzold et al., 2008; Petzold et al., 2010). NMHC refers to non-methane hydrocarbon.b PAR,
ETH, OLET, OLEI, TOL, XYL stand for paraffin carbon, ethene, terminal olefin carbons, internal olefin
carbons, toluene and xylene, respectively.c Initial data are based on HERCULES measurement data. A
NO : NO2 ratio of 96 : 4 is assumed for the ship exhaust (von Glasow et al., 2003). The attribution of
non-methane hydrocarbons are based on Table 2 inEyring et al.(2005). The units of inorganic and
organic species are ppbV and ppbC, respectively.d Values of background inorganic species are obtained
from European program QUANTIFY in 2007. NOx to NOy ratio is 0.15 based on Table 2 inShon et al.
(2008) in the marine boundary layer. Organic species mixing ratios are based on measurements while
approaching the UK from the west on 8 July 1988 (Penkett et al., 1993). e Value from Table 2 inKeene
et al.(2007).

(3) propene, (4) toluene, (5) xylene, (6) trimethylbenzenes
and (7) other alkene. We then converted these mixing ra-
tios to model surrogate species mixing ratios as listed in
Table 2 suitable for the use in CBM-Z. Note that CBM-Z
is a carbon bond mechanism, and the model species repre-
sent the mixing ratios of constituent groups regardless of the
molecule to which they are attached (Stockwell et al., 2012).
The background inorganic gas phase mixing ratios in Table2
were obtained by averaging the values along the segment of
the flight track as marked in Fig.1. This segment was outside
the shipping corridor, and sampled at low enough altitude.
The background NHMC concentrations were estimated from
measurements byPenkett et al.(1993). They were taken on
8 July 1988, while approaching the UK from the west (with
similar time and location to the QUANTIFY measurements).
The measured species were converted to CBM-Z species in-
cluding PAR, ETH, OLET, OLEI, TOL and XYL.

Table3 shows the total number concentration, count me-
dian diameter and geometric standard deviation, the param-
eters determining the initial, background and ship corridor
size distributions. The initial aerosol size distribution from
the test rig study was composed of three distinct modes
with one volatile nucleation mode and two larger combus-
tion modes. The volatile mode consisted of 100 % sulfate,
while BC, POC and ash were present in the two combustion
modes. The background aerosol distribution was tri-modal
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Figure 1.Map of research domain with flight path for 11 June 2007.
The section of the flight path marked with “corridor plumes” marks
the section of the path where the shipping corridor was sampled.
Also marked is the section of the path that was used to obtain the
background gas concentration (see Sect.3.3and Table2 for details).

with Aitken, accumulation and coarse modes. We assigned
the fractions of sulfate, ammonium, nitrate, POC, BC and sea
salt to these three modes based onO’Dowd and De Leeuw
(2007).

We initialized our model with 105 computational particles
and followed the air parcel as it evolved for 14 h to predict the
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Table 3.Aerosol initial, background and ship corridor conditionsa.

Initial N (m−3) Dg (nm) σg Composition by Mass
(hygroscopicity,κ)

Volatile mode 2.29× 1015 15 1.66 100 % SO4 (0.9)
Combustion mode 1 4.36× 1014 38 1.40 11.7 % BC+ 88.3 % POC (0.0009)
Combustion mode 2 3.11× 1010 155 1.25 27.6 % Ash+ 8.4 % BC+ 64.0 % POC (0.014)

Background N (m−3) Dg (nm) σg Composition by Massb

(hygroscopicity,κ)

Aitken mode 9.6× 108 40 1.7 9 % SO4 + 2 % NH4 + 1 % NO3
+ 82 % POC+ 2 % BC+ 4 % Sea salt (0.07)

Accumulation mode 2.3× 108 200 1.25 22 % SO4 + 6 % NH4 + 1 % NO3 +

64 % POC+ 1 % BC+ 6 % Sea salt (0.163)
Coarse mode 3.2× 106 900 1.8 1 % NO3 + 5 % POC+ 94 %

Sea salt (0.999)

Ship corridor N (m−3) Dg (nm) σg Composition by Mass

Aitken mode 7.7× 1010 60 1.6
Accumulation mode 1.8× 108 220 1.25

a Initial aerosol size distribution and chemical composition data are obtained from HERCULES measurement in 2006 under 75 % engine
load condition (Petzold et al., 2008; Petzold et al., 2010). Parameters are defined in Eq. (10). Background and ship corridor aerosol size
distribution data are obtained from the QUANTIFY campaign. The ship corridor number concentrations represent concentrations above the
background level.b Background aerosol compositions are estimated from Fig. 5 inO’Dowd and De Leeuw(2007).

aged plume and to compare to measurements from the ship
corridor. For the base case, the simulation started at 14:00 LT,
similar to the measurement time of the single plume study
on 14 June 2007. During the plume evolution we consid-
ered the following processes: dilution with the background
air, coagulation of the particles, chemical transformations in
the aerosol and gas phase, and phase transitions.

Coagulation and condensation may physically or thermo-
dynamically change the particles’ composition and phase
state, and consequently alter the CCN activation properties.
To quantify the impact of coagulation and condensation, we
carried out two additional simulations, one where coagula-
tion was not simulated (referred to as “only cond.”), and one
where chemical transformations were not simulated (referred
to as “only coag.”).

We also simulated a sensitivity case by setting the model
starting time to 06:00 LT instead of 14:00 LT, to inves-
tigate conditions with a longer exposure to sunlight and
hence more opportunity for secondary aerosol mass forma-
tion. Analogous to the base case we performed three runs:
“cond.+ coag.”, “only cond.”, and “only coag.”.

To investigate the impact of new particle formation on
CCN properties in the ship plume, we additionally performed
simulations including nucleation as described in Sect.2.2,
and the simulation results will be discussed separately in the
Appendix.

Due to the stochastic nature of PartMC-MOSAIC, for each
simulation we conducted an ensemble of 10 runs and aver-
aged the results of these runs to obtain more robust statistics.

To quantify the variability within this ensemble, we show the
95 % confidence interval for the size distributions in Figs.4
and5 below.

4 Results and discussion

In this section we present the results of our base case simula-
tion of the ship plume (start at 14:00 LT), and contrast it with
the sensitivity case (start at 06:00 LT). To provide context,
we begin by discussing the simulated evolution of selected
trace gas species and bulk aerosol species. We then show the
comparison of measured and modeled total number concen-
trations from a single plume event, as well as the comparison
of measured and modeled size distributions from the ship-
ping corridor. Finally, we quantify the role of coagulation
and condensation for the evolution of aerosol mixing state
and their impacts on CCN properties.

4.1 Evolution of gas and bulk aerosol species

Figure2 shows the evolution of key trace gas mixing ratios
and bulk aerosol species concentrations in the ship plume
as it evolves for 14 h. For our base case (start at 14:00 LT),
dilution reduced the concentrations of the primary emitted
species by several orders of magnitude within the first 15–
20 min of simulation time. Ozone was diluted in from the
background air. For the base case the transition from day
to night occurred at about 6 h after the simulation started.
The NO2 mixing ratio was further decreased after 6 h. While
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Figure 2. Evolution of gas and bulk aerosol species in the ship plume over a period of 14 h for the base case starting from 14:00 LT (left
column panels) and sensitivity case starting from 06:00 LT (right column panels).

during nighttime the reaction of NO2 with OH ceases, N2O5
and NO3 are formed. In addition, reactions of NO3 with
volatile organic compounds deplete NOx further.

The OH mixing ratio reached about 0.03 ppt after 2 h of
simulation and decreased later in the afternoon. The HNO3
mixing ratio reached quickly its background value within the
first 10 min, then showed a slight increase during daytime as
a result of photochemical processes, and a subsequent de-
crease due to reaction with sea salt to form sodium nitrate.

Similar to the primary gaseous species, sulfate and BC
started out with high initial mass concentrations and their
concentrations decreased very quickly due to dilution. There
was no net formation of sulfate mass during plume aging
since dilution dominated the evolution of total sulfate mass
concentration. Note that our predicted sulfate concentration
may be underestimated since we did not include vanadium-
catalyzed sulfate production reactions in our model, as

proposed byAult et al. (2010). The SOA concentrations
increased only by about 0.01 µg m−3. The lack of production
of secondary aerosol mass was a result of the low mixing ra-
tios of oxidants (such as OH, O3 and NO3) in the plume, so
that oxidation reactions were largely limited. Our finding is
consistent with the results reported inHobbs et al.(2000),
where they did not observe any appreciable increase of the
aerosol mass concentration in the ship plume with similar
initial conditions and sun light exposure time.

The sensitivity case (start at 06:00 LT) shows a maximum
OH mixing ratio to be 15 times higher than in the original
run, and the corresponding SOA mass concentration was en-
hanced by a similar magnitude. An increase of sulfate mass
concentration was observed after 4 h of simulation, leading to
a net production of sulfate mass concentration in the plume
of about 2 µg m−3. Likewise, the nitrate mass concentration
increased to about 6 µg m−3. This shows, as expected, that
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Table 4. Error metrics for comparison of measured and simulated aerosol number concentrations. The “only cond.”, “only coag.” and
“cond.+coag.” entries correspond to simulated number concentrations.

only cond. only coag. cond.+ coag.

Mean bias 2.77× 1011m−3 1.41× 1010m−3 1.87× 1010m−3

Mean error 2.77× 1011m−3 1.58× 1010m−3 1.96× 1010m−3

Mean normalized bias 1096.44 % 41.38 % 59.55 %
Mean normalized error 1096.44 % 51.81 % 65.11 %
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Figure 3. Comparison of modeled number concentrations from the
base case with the measured data obtained during the single plume
study on 14 June 2007 during the QUANTIFY campaign (size range
of 10 to 2000 nm). The red dot indicates the initial aerosol num-
ber concentration. The horizontal error bars represent the estimated
errors in determining plume ages. The four broken lines represent
results from sensitivity runs with different sets of values forα andβ

the production of secondary aerosol species is largely deter-
mined by the exposure time to sunlight during daytime.

No observations are available that followed the evolution
of a particular plume for several hours, hence a quantitative
comparison to our simulation results is not possible. How-
ever, mixing ratios of NO, NOy, O3, SO2, and CO were mea-
sured in the shipping corridor on 11 June 2007. These can
be used for qualitative comparison with our model results.
Observed peak values of NO, NOy, and SO2 mixing ratios
were 4, 12, and 4 ppb, respectively. Observed mixing ratios
for O3 and CO were approximately 35 and 105 ppb, respec-
tively. These values are comparable with the model results
after approximately 7 h of simulation time of the sensitivity
run (right column in Fig.2). The mixing ratios of NO and
O3 of the base case are somewhat lower because this case
extends into the nighttime.

4.2 Evolution of total number concentration in a single
plume

Figure3 compares our predicted particle number concentra-
tions to those measured in a ship plume during the single
plume study on 14 June 2007. For this figure, only particles

in the 10–2000 nm size range were considered to be consis-
tent with the size range observed by the SMPS (Scanning
Mobility Particle Sizer) instrument.

Due to the short encounter time with the ship plume, we
assumed that the measurements were conducted at the ship
plume center line. The measurements were taken within the
first hour after the ship emissions entered the atmosphere,
representing a relatively fresh plume. The horizontal error
bars on the measured values show the estimated errors in de-
termining plume ages. The estimated relative errors in num-
ber concentration are less than 8 %, and are not visible in this
graph due to the logarithmic scaling of the ordinate. As de-
scribed in Sect.3.3we initialized the model simulations with
data from the HERCULES study, indicated here with the red
dot.

The modeled time series of number concentration shows
a sharp decrease at the beginning due to dilution and coag-
ulation, and then the model results approach the measure-
ments well when coagulation is included (solid red line).
When coagulation was not simulated, the total particle num-
ber concentration was overestimated by a factor of ten (blue
line). A list of error metrics, including mean bias, mean er-
ror, mean normalized bias and mean normalized error, is pro-
vided in Table4 for the comparison of simulated and ob-
served number concentrations. Note that since the plume en-
counter times during the measurements were very short, nei-
ther size distribution nor chemical composition data could be
obtained from the single plume study.

To explore the sensitivity to the choice of the dispersion
parametersα andβ, we conducted four sensitivity runs: two
sensitivity runs use the base case value ofα = 0.75, but com-
bine it with β = 0.7 (lower end from the range inPetzold
et al., 2008) and β = 0.5, respectively. Two additional sen-
sitivity runs use the base case value ofβ = 0.6, combined
with α = 0.87 andα = 0.62, respectively (same range of val-
ues used invon Glasow et al., 2003). The simulated num-
ber concentration from the sensitivity runs were added to
Fig. 3 as broken lines. The parameter combination (α = 0.62,
β = 0.6) results in a consistent overprediction of the number
concentration by a factor of about 3, while the combination
(α = 0.87, β = 0.6) underpredicts the number concentration
after a plume age of 30 min. Differences due to variations
of β are most noticable during the first 20 min of the plume.
Given the simplicity of the model assumptions, we do not
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attempt to perform a fitting procedure, but conclude from this
exercise that using parameter set of our base case (α = 0.75,
β = 0.6) captures the observed data reasonably well. Impor-
tantly, the spread caused by varyingα and β is less than
the difference between the base case runs with and without
coagulation.

4.3 Evolution of particle size distributions in the
shipping corridor

The aerosol population measured in the shipping corridor
can be thought of as the superposition of many ship plumes
of different, albeit unknown, ages. This makes it difficult to
compare the size distribution measurements quantitatively to
the model results, which simulate only one specific plume.
Here we attempt to use the observations for a qualitative
comparison to see if the PartMC-MOSAIC results are con-
sistent with the observations.

Figure 4 displays the in-plume aerosol number distribu-
tions for the base case. The red, green and blue curves rep-
resent the measured aerosol distributions for initial, back-
ground and ship corridor conditions, while the five black
curves are the predicted distributions at plume ages of 100 s,
1200 s, 1 h, 5 h, and 14 h, respectively. All model results are
the averages of an ensemble of 10 runs. The error bars rep-
resent the 95 % confidence intervals, only shown for the size
distribution at 100 s as an example. These are vanishingly
small for small particle sizes and are somewhat larger for the
size range above 500 nm. This is a result of the fact that fewer
computational particles are used to represent the population
at larger sizes (even though we used the weighted particle
algorithm as described in Sect.3).

To distinguish the effects of coagulation and condensation
on particle size distributions, we show the results without
simulating coagulation (Fig.4a, “only cond.”), without sim-
ulating condensation (Fig.4b, “only coag”), and the case in-
cluding all processes (Fig.4c, “cond.+ coag.”).

Figure 4a shows that particle number concentration was
significantly reduced due to dilution within the first 100 s,
and simultaneously large particles from background were di-
luted into the plume so that an accumulation and a coarse
mode in the size distributions were formed. However, it is
obvious that the shape of the size distribution observed in
the shipping corridor could not be reproduced when coag-
ulation was neglected. The predicted number concentration
of small particles was overestimated compared to the ship
corridor measurement. For example, at 14 h, the model re-
sult overpredicted the number concentration of particles with
sizes 30 nm by at least one order of magnitude compared to
the observed value. When coagulation was additionally in-
cluded (Fig.4c), the depletion of the small particles in the
volatile mode was captured and the modeled and observed
size distributions agreed qualitatively better.

Figure4b (condensation not simulated) shows a very sim-
ilar pattern compared to Fig.4c, which confirms that the
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Figure 4. Measured aerosol number distributions for background,
initial and ship corridor and modeled results for(a) neglecting co-
agulation,(b) neglecting condensation and(c) including condensa-
tion and coagulation at plume ages of 100 s, 1200 s, 1 h, 5 h, and
14 h for base case (starting from 14:00 LT). The error bars represent
95 % confidence intervals from 10 ensemble runs (only shown for
size distribution at 100 s as an example).

impact of condensation on the size distributions was small for
this case due to the short daylight exposure time and conse-
quently limited amount of photochemical production of sec-
ondary aerosol mass, as already pointed out in the discussion
of Fig. 2. Therefore, in this case, coagulation and dilution
were the driving processes that shaped the size distributions.

To investigate the impact of daylight exposure time fur-
ther, Fig.5 shows the in-plume particle size distributions for
the simulation of the sensitivity case, with a simulation start
of 06:00 LT. The size distributions of plume ages smaller
than 1 h were similar to those for the base case. However
in the more aged plume (at 5 and 14 h), condensation of sec-
ondary aerosol set in, which shifted the particles to larger
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sizes. Condensation in this case greatly altered the size dis-
tribution, as shown in Fig.5a and c. As in Fig.4, we see that
including coagulation led to particle size distributions that
are qualitatively in better agreement with the observations.

Overall, Figs.4 and5 demonstrate that dilution and coag-
ulation were two major processes dominating the evolution
of particles in ship plumes. While dilution significantly re-
duced the overall in-plume number concentrations, coagula-
tion reduced the number concentrations of the small volatile
particles. Moreover, the condensational growth of particles
was sensitive to the start of the simulation time. An earlier
starting time with a longer, and more intense sun exposure
enhanced the production of secondary aerosol mass. Gener-
ally, our model results are qualitatively consistent with the
observations in the shipping corridor.

4.4 Impact of coagulation and condensation on particle
mixing state

To elucidate how the mixing state evolved over the course of
the simulation of the base case, we show the two-dimensional
number distribution as a function of dry diameter and dry-
mass fraction of BC and sulfate in Figs.6 and 7 at plume
ages of 100 s, 1 h, and 5 h. The simulation results for the
three cases “only cond.”, “only coag”, and “cond+ coag” are
placed next to each other for comparison. The definition of
the two-dimensional number distribution function is given in
Sect.3.1.

BC initially resided in the two combustion aerosol modes
and also to a small extent in the background aerosol mode.
Without coagulation (“only cond.”, Fig.6a, d, and g), the
three particle source types were at all times distinctly sep-
arated shown as horizontal bands in the two-dimensional
number distribution plot. However, when coagulation was in-
cluded (Fig.6b, c, e, f, h and i), a continuum of internal mix-
ing states was established very quickly with BC dry-mass
fraction ranging from 0 to 12 %.

When condensation was not simulated (“only coag.”), the
initial range of BC mass fractions from 0 to 12 % was main-
tained (Fig.6b, e, and h). When condensation was simulated,
the maximum BC mass fraction decreased over time to val-
ues as low as 9 % after 5 h of simulation, as seen in Fig.6i.
For the sensitivity case (not shown) this is even more pro-
nounced, and the maximum BC mass fraction decreased to
values as low as 5 %.

An analogous evolution of the sulfate mixing state was ob-
served. A continuum of internal mixtures from 0 to 100 % of
sulfate dry-mass fraction formed due to coagulation (Fig.7b,
e, h and c, f, i), while for the simulation without coagula-
tion the particles from different sources remained externally
mixed (Fig.7a, d, and g). When condensation was not sim-
ulated, (“only coag.”, Fig.7b, e, and h), the range of sulfate
mass fractions completely filled the range from 0 to 100 % as
the population evolved.
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Figure 5. Measured aerosol number distributions for background,
initial and ship corridor and modeled results for(a) neglecting coag-
ulation,(b) neglecting condensation and(c) including condensation
and coagulation at plume ages of 100 s, 1200 s, 1 h, 5 h, and 14 h for
sensitivity case (starting from 06:00 LT). The error bars represent
95 % confidence intervals from 10 ensemble runs (only shown for
size distribution at 100 s as an example).

An interesting feature of the sulfate mixing state is that
after 1 h, the previously horizontal lines representing the
particles from various sources became “tilted” (Fig.7d, f,
g and i). This tilt formed because secondary aerosol mass
condensed on the particles, and the resulting change in sul-
fate dry-mass fraction was relatively larger for small parti-
cles compared to large particles. For the volatile-mode par-
ticles the tilt was the result of ammonia partitioning into the
aerosol phase and thereby reducing the sulfate dry-mass frac-
tion. In our simulation ammonia originated from the evapo-
ration of ammonium nitrate present in the background par-
ticles. For the combustion-mode particles the tilt was due to
the condensation of sulfuric acid, thereby increasing the sul-
fate dry-mass fraction. This two-way condensation effect on
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Figure 6.Two-dimensional number distributionsnBC,dry(D, w) after 100 s, 1 h, and 5 h of simulation for the base case. The two-dimensional
number distribution is defined in Eq. (12).

sulfate mixing state was observed for both cases when con-
densation was included. A similar behavior could also be ob-
served for the BC mixing state (e.g., Fig.6d and g). Note that
other secondary aerosol species form, as well as contribute to
a change in mixing state, such as secondary organic aerosol
and aerosol nitrate, however for the sake of brevity we do not
include these results as figures.

4.5 Cloud condensation nuclei activity

We will now address the question to what extent the changes
in aerosol mixing state translated into changes in CCN ac-
tivity. For this purpose it is convenient to display the num-
ber distributionnκ(D, κ) based on Eq. (13), as established
in Fierce et al.(2013). Also shown in these graphs are the
lines of constant critical supersaturation, which are a function
of particle size and hygroscopicity parameter. For a given
environmental supersaturation threshold, the particles with
critical supersaturations equal to or smaller than the thresh-
old will activate, i.e., these are the particles to the right of the

corresponding critical supersaturation line. Figure8 shows
these number distributions for 0 s, 100 s, 1 h and 5 h for the
base case simulation, including condensation and coagula-
tion. Initially (t = 0 s), three distinct bands represented the
volatile and the two combustion modes. The position of each
band was determined by the initial size distribution and com-
position of each mode determining the overall hygroscop-
icity. The volatile-mode particles, which contained 100 %
sulfate, had the largest hygroscopicity, while hydrophobic
combustion-1-mode particles, consisting of POC and BC,
were most difficult to activate initially.

At t = 100 s, the space between the three bands had begun
to fill out due to coagulation and the associated change of
mixing state. As a result, for a subset of the combustion mode
particles the hygroscopicity parameter increased. After 1 and
5 h, the averageκ values of the aerosol population increased
further, indicating that a larger fraction of the particles had
the potential to become a CCN for a certain supersaturation
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Figure 7.Two-dimensional number distributionsnSO4,dry(D, w) after 100 s, 1 h and 5 h of simulation for the base case. The two-dimensional
number distribution is defined in Eq. (12).

threshold. Note that particles larger than 0.2 µm represented
mainly the background particles, as shown in Fig.4.

Figure9 shows the CCN concentration versus critical su-
persaturationS ranging from 0.01 to 1 % for 0 s, 1 h, 5 h,
and 14 h for the base case. The three different curves at each
time represent the cases where coagulation was not simulated
(“only cond.”, blue), where condensation was not simulated
(“only coag.”, green) and where both condensation and co-
agulation was simulated (“cond.+ coag.”, red). As the simu-
lation time progressed, the “cond.+ coag.” case showed con-
sistently larger CCN concentrations than the “only coag.”
case, but only for supersaturations above a certain threshold
(e.g.,S = 0.4 % fort = 1 h). This is due to the fact that more
particles are closer to the activation threshold in the case of
higher supersaturations, so adding some hygroscopic mate-
rial by condensation can have an impact on CCN concentra-
tion. Note that this threshold changed with time. Att = 1 h it
wasS = 0.4 %, while fort = 5 h andt = 14 h it was lowered to
S = 0.2 %. This is consistent with Fig.8, which shows that the

overall population moved up (i.e., reached higherκ-values)
in the diagram over time.

The total number concentrations for the “only cond.” case
were about one order of magnitude larger than for the cases
that included coagulation. This means that there were more
particles available that could act as CCN, but at the same
time they all competed for condensable material. The “only
cond.” case resulted in smaller CCN concentrations than the
other two cases forS less than about 0.7 %. This is because
most of the combustion particles remained too hydrophobic
in the absence of coagulation, and also because there was
not enough condensable material available to render these
particles hygroscopic enough to activate at supersaturations
below 0.7 %. However, the CCN concentration of the “only
cond.” case exceeded the other two cases forS larger than
0.7 % when the growth due to condensation was sufficient to
enable activation. We conclude from Fig.9, that coagulation
increased the particle hygroscopicity of initially hydropho-
bic particles. Coagulation therefore may enhance the CCN
number concentrations, while decreasing the total particle
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Figure 8. Two-dimensional number distributionnκ (D, κ) (base case, condensation and coagulation included) at 0 s, 100 s, 1 h, and 5 h. The
2-D distribution is defined in Eq. (13).

number concentration. Condensation can further enhance the
hygroscopicity of particles, leading to an increase of total
CCN number concentration if those particles are near the ac-
tivation threshold.

Interestingly, the three cases resulted in the same CCN
concentration for supersaturation thresholds below 0.2 %.
The particles that formed CCN at these low supersaturations
were mostly background particles from the accumulation and
coarse mode, which have already low critical supersatura-
tions when they enter the simulation. For the base case, the
aging of combustion particles by coagulation or condensa-
tion was not sufficient to increase their hygroscopicity to the
extent that they could activate at such low supersaturation
levels.

Similar CCN spectra resulted for the sensitivity case
(Fig. 10). However, condensation had a larger impact in this
case due to the increased formation of secondary aerosol
mass compared to the base case. This can be seen most
clearly for low supersaturation thresholds (lower than 0.2 %)
after 14 h of simulation. For example, atS = 0.2 %, the CCN
concentration for the “cond.+ coag.” case was six times that
of the “only coag.” case, and 3.5 times that of the “only
cond.” case.

It has been reported that the typical supersaturation for
marine stratocumulus is around 0.1 % (Hoppel et al., 1996;
Martucci and O’Dowd, 2011). Our results suggest that the
impact of ship-emitted particles on marine cloud formation
will significantly depend on the time of the day that these
particles are exposed to the marine boundary layer.
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Figure 9. CCN number concentrations as the function of critical
supersaturation at 0 s, 1 h, 5 h and 14 h for the base case.

5 Conclusions

In this paper we presented the application of the stochastic
aerosol model PartMC-MOSAIC to investigate the evolution
of aerosol mixing state and associated changes of CCN prop-
erties in a ship plume. This work provides the first valida-
tion study of PartMC, and we showed that the model results
agreed well with observed particle number concentrations.

From our process analysis we conclude that for our base
case dilution and coagulation were the two major processes
influencing the particle distribution and the resulting CCN
activation properties. Dilution reduced the in-plume total
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Figure 10. CCN number concentrations as the function of critical
supersaturation at 0 s, 1 h, 5 h and 14 h for the sensitivity case.

particle number concentration by about four orders of magni-
tude within 15 min from simulation start. Coagulation further
reduced the particle number concentration by another order
of magnitude and preferentially depleted small volatile parti-
cles. To adequately capture the evolution of the size distribu-
tion, it was essential to include coagulation.

Moreover, coagulation amongst the particles and conden-
sation of secondary aerosol material altered the particle mix-
ing state in the fresh plume, leading to internally mixed
aerosols containing BC and sulfate within the first 1–2 min
after emission, which evolved further over the course of the
simulation. This impacted the CCN properties even for con-
ditions when only small amounts of hygroscopic secondary
aerosol mass were formed, as it applied for our base case
simulation. However, the impact depended on the supersatu-
ration threshold. For the base case, at the end of the 14-h sim-
ulation neglecting coagulation (but simulating condensation)
did not have any impact of the CCN concentration below su-
persaturation values of 0.2 %. For supersaturations between
S = 0.2 % andS = 0.7 % neglecting coagulation resulted in a
reduction of the CCN concentration, for example by 37 and
28 % for supersaturation thresholds of 0.3 and 0.6 %, respec-
tively. For supersaturations larger than 0.7 % neglecting co-
agulation resulted in an overestimation of CCN concentra-
tion, about 75 % forS = 1 %. On the other hand, neglecting
condensation, but simulating coagulation, also did not im-
pact the CCN concentrations below 0.2 %. It resulted in an
underestimation of CCN concentrations for larger supersatu-
rations, e.g., 18 % forS = 0.6%. From this we conclude that,
for the base case conditions, coagulation had a larger impact
on CCN concentrations than condensation.

This picture changed somewhat for conditions with higher
formation rates of secondary aerosol mass. This can be seen
for low supersaturation thresholds (lower than about 0.3 %)
after 14 h of simulation. For example, atS = 0.2%, neglect-
ing coagulation resulted in a 70 % decrease of CCN concen-
trations, whereas neglecting condensation resulted in a 83 %
decrease. While neglecting condensation resulted in lower
CCN concentrations over the whole range of supersatura-
tions, neglecting coagulation led to a large increase in CCN
concentrations for supersaturations larger than 0.3 %. For ex-
ample, forS = 0.6 % the CCN concentration for the “only
cond.” case is seven times that of the “coag.+ cond.” case.

We also explored the role of new particle formation for
the evolution of the ship plume aerosol population using
the nucleation parameterization byKuang et al.(2008). For
the base case the influence of nucleation on CCN concen-
tration was limited because there was not enough condens-
able material available to grow the particles formed by nu-
cleation to CCN-relevant sizes. For the sensitivity case, af-
ter the newly-formed particles were exposed to about 10 h of
growth, the CCN concentration was increased by about one
order of magnitude when nucleation was included as long
as the supersaturation threshold was sufficiently high, in our
case higher than 0.3 %.
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Fig. A1. (a) Comparison of simulated number concentrations from
the base case with nucleation to the observed data obtained during
the single plume study on 14 June 2007 during the QUANTIFY
SHIPS campaign. The red dot indicates the initial aerosol number
concentration. The horizontal error bars represent the estimated er-
rors in determining plume ages.(b) Simulated number concentra-
tions from the base case during the entire simulation period with nu-
cleation for particles in the range of 10–2000 nm and below 10 nm.

Appendix A

Simulations including nucleation

Here we describe the results for the base case and for the
sensitivity case when nucleation was included. As before we
first present the results for the number concentrations, then
the size distributions, and finally the resulting CCN spectra.

On a process level, a nucleation event can impact CCN
concentration in several ways: (1) nucleation produces a
large number of additional particles, which can grow into
CCN directly if enough condensable material is present;
(2) if the condensable material is limited, then the competi-
tion for this material between the large near-CCN-active par-
ticles and the nucleated small particles could actually lead to
less CCN; and (3) the nucleated particles can coagulate with
other particles, which could potentially render them CCN-
active, increasing the CCN concentration. When including
the treatment of nucleation as described in Sect.2.2, we
found that nucleation did occur in the ship plume, but that
the newly formed particles did not contribute significantly
to CCN except in particular situations when condensational
growth was prevalent for several hours.
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Fig. A2. Measured aerosol number distributions for background,
initial and ship corridor and modeled results with nucleation for
(a) base case (from 2 pm)(b) sensitivity case (from 06:00TS8) at
plume ages of 100, 1200 s, 1, 5 and 14 h. The error bars represent
95 % confidence intervals from 5 ensemble runs (only shown for
size distribution at 100 s as an example).

Figure A1 shows the evolution of the base-case num-
ber concentration when nucleation was simulated. When in-
cluding only the particles from the observed 10–2000 nm
size range, the results are the same as for the correspond-
ing case without nucleation (Fig.A1a). However, nucleation
did affect the number concentration of particles smaller than
10 nm. FigureA1b shows the evolution of number concen-
tration for particles in the 10–2000 nm range, as well as for
those below 10 nm, for the entire 14 h of simulation period.
The concentration of nucleated particles (which are assigned
the size of 1 nm when they enter the simulation) reached
the maximum of 1012 m−3 at 16:00 LT (2 h after simulation),
then gradually decreased to around 1010 cm−3 at 08:00 LT.
The concentration of 10–2000 nm particles, however, did not
increase, which indicated that the nucleated particles did not
grow to sizes larger than 10 nm during the plume evolution.

The evolution of the size distributions is shown in Fig.8
for both the base case (Fig.8a) and the sensitivity case
(Fig. 8b). Note that we extended the diameter axis down to
1 nm to capture the full range of sizes. In both cases, nucle-
ated particles formed a distinct mode below 10 nm, and the
number concentrations in this mode gradually decreased due
to coagulation and dilution, and moved to larger sizes due
to condensation during the plume evolution. While for the
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Figure A1. (a) Comparison of simulated number concentrations
from the base case with nucleation to the observed data obtained
during the single plume study on 14 June 2007 during the QUAN-
TIFY campaign. The red dot indicates the initial aerosol number
concentration. The horizontal error bars represent the estimated er-
rors in determining plume ages.(b) Simulated number concentra-
tions from the base case during the entire simulation period with nu-
cleation for particles in the range of 10–2000 nm and below 10 nm.

Appendix A: Simulations including nucleation

Here we describe the results for the base case and for the
sensitivity case when nucleation was included. As before we
first present the results for the number concentrations, then
the size distributions, and finally the resulting CCN spectra.

On a process level, a nucleation event can impact CCN
concentration in several ways: (1) nucleation produces a
large number of additional particles, which can grow into
CCN directly if enough condensable material is present;
(2) if the condensable material is limited, then the competi-
tion for this material between the large near-CCN-active par-
ticles and the nucleated small particles could actually lead to
less CCN; and (3) the nucleated particles can coagulate with
other particles, which could potentially render them CCN-
active, increasing the CCN concentration. When including
the treatment of nucleation as described in Sect.2.2, we
found that nucleation did occur in the ship plume, but that
the newly formed particles did not contribute significantly
to CCN except in particular situations when condensational
growth was prevalent for several hours.

Figure A1 shows the evolution of the base-case num-
ber concentration when nucleation was simulated. When
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Figure A2. Measured aerosol number distributions for background,
initial and ship corridor and modeled results with nucleation for
(a) base case (from 14:00 LT)(b) sensitivity case (from 06:00 LT) at
plume ages of 100 s, 1200 s, 1 h, 5 h and 14 h. The error bars repre-
sent 95 % confidence intervals from five ensemble runs (only shown
for size distribution at 100 s as an example).

including only the particles from the observed 10–2000 nm
size range, the results are the same as for the correspond-
ing case without nucleation (Fig.A1a). However, nucleation
did affect the number concentration of particles smaller than
10 nm. FigureA1b shows the evolution of number concen-
tration for particles in the 10–2000 nm range, as well as for
those below 10 nm, for the entire 14 h of simulation period.
The concentration of nucleated particles (which are assigned
the size of 1 nm when they enter the simulation) reached
the maximum of 1012 m−3 at 16:00 LT (2 h after simulation),
then gradually decreased to around 1010 cm−3 at 20:00 LT.
The concentration of 10–2000 nm particles, however, did not
increase, which indicated that the nucleated particles did not
grow to sizes larger than 10 nm during the plume evolution.

The evolution of the size distributions is shown in Fig.A2
for both the base case (Fig.A2a) and the sensitivity case
(Fig. A2b). Note that we extended the diameter axis down
to 1 nm to capture the full range of sizes. In both cases, nu-
cleated particles formed a distinct mode below 10 nm, and
the number concentrations in this mode gradually decreased
due to coagulation and dilution, and moved to larger sizes
due to condensation during the plume evolution. While for
the base case the nucleated particles form a distinct mode
that remains below 10 nm in size, for the sensitivity case they
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Figure A3. CCN number concentrations as the function of critical
supersaturation at 0 s, 1 h, 5 h and 14 h for the base case, compar-
ing the simulation with nucleation enabled to the simulation with
nucleation disabled.

grow beyond this size, which has an appreciable impact on
CCN concentrations as shown below.

Figure A3 shows the comparison of the CCN spectrum
with and without nucleation for the base case. Coagulation
and condensation were included for these simulations. When
nucleation is included, the CCN concentration remains un-
changed for supersaturations below 0.6 %. For higher super-
saturations, the simulation with nucleation yields somewhat
higher CCN concentrations. For example, at 5 h, nucleation
increased the CCN concentration atS = 0.6 % from 2422 to
2496 cm−3 for the base case, and from 3053 to 3200 cm−3

for the sensitivity case. This is consistent with the findings
described above.
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Figure A4. CCN number concentrations as the function of critical
supersaturation at 0 s, 1 h, 5 h and 14 h for the sensitivity case, com-
paring the simulation with nucleation enabled to the simulation with
nucleation disabled.

For the sensitivity case, including nucleation led to much
larger differences after several hours of simulation. This can
be seen in Fig.A4d (t = 14 h), where the CCN concentra-
tion for supersaturations above 0.3 % increased by about one
order of magnitude when nucleation was included. Interest-
ingly, for this time, we also observe that for supersaturation
lower than 0.3 % the CCN concentration decreased when nu-
cleation was included. This counterintuitive result is a re-
flection of competition for condensable material between the
larger near-CCN-active particles and the nucleated particles.
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