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Abstract. Large-eddy simulations of stably stratified flows
are carried out and analyzed using the mesoscale atmo-
spheric model Méso-NH for applications to kilometer-
and subkilometer-scale turbulence in the in the upper
troposphere–lower stratosphere. Different levels of turbu-
lence are generated using a large-scale stochastic forcing
technique that was especially devised to treat atmospheric
stratified flows. The study focuses on the analysis of turbu-
lence statistics, including mean quantities and energy spec-
tra, as well as on a detailed description of flow topology. The
impact of resolution is also discussed by decreasing the grid
spacing to 2 m and increasing the number of grid points to
8× 109. Because of atmospheric stratification, turbulence is
substantially anisotropic, and large elongated structures form
in the horizontal directions, in accordance with theoretical
analysis and spectral, direct numerical simulations of stably
stratified flows. It is also found that the inertial range of hor-
izontal kinetic energy spectrum, generally observed at scales
larger than a few kilometers, is prolonged into the subkilo-
metric range, down to the Ozmidov scales that obey isotropic
Kolmogorov turbulence. This study shows the capability of
atmospheric models like Méso-NH to represent the turbu-
lence at subkilometer scales.

1 Introduction

The environmental impact of aviation is a problem of in-
creasing concern among scientists and policymakers as com-
mercial air traffic continues to grow (IPCC, 1999; Lee et al.,
2009). Because of long residence time, low-background con-
centrations and large radiative sensitivity at cruise altitude,
aircraft emissions can influence the chemical and physical
state of the atmosphere and affect the radiative budget of
Earth. According to recent evaluations, the induced cloudi-
ness produced by aircraft emissions in the form of contrails
and induced cirrus is among the most uncertain contributors
to the global radiative forcing (Sausen et al., 2005; Lee et al.,
2009). One important reason for this uncertainty is that, al-
though aircraft emissions are (generally) known at the noz-
zle exit, their impact depends on their interactions with the
atmosphere and should be evaluated at the scales resolved
by general circulation models or chemistry transport models,
i.e., 100 km or more for grids that cover the entire globe. Pre-
dicting the evolution of emissions during all their lifetime is
then a crucial step to evaluate their environmental impact and
to produce parameterizations for large-scale models. This re-
quires the use of atmospheric models to represent the small-
scale motions and the physicochemical processes occurring
in the free atmosphere. In particular, the dispersion of air-
craft plumes and the mixing of exhausts with ambient air de-
pend on the properties of atmospheric turbulence in the upper
troposphere–lower stratosphere (UTLS) where most of flight
time is spent during cruise (Gerz et al., 1998).
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Reproducing the effects on aircraft plumes of atmospheric
turbulence in the UTLS using computational tools remains
a challenging problem (Sharman et al., 2012). The usual
approach employed in the literature is to represent aircraft
plumes by Gaussian plumes and to initialize turbulence us-
ing idealized flow fields satisfying the given model spectra
(Dürbeck and Gerz, 1995, 1996; Gerz et al., 1998). This pro-
cedure imposes a limitation on the duration of the simula-
tion since turbulence is not sustained and eventually decays.
However, the vast majority of direct numerical simulations
(DNS) and large-eddy simulations (LES) of forced stratified
turbulence reported in the literature are based on nondimen-
sional spectral formulations of Navier–Stokes equations un-
der the Boussinesq approximation. While this allows for a
fine description of turbulent structures and statistics against
which mesoscale models can be validated, the inclusion of
atmospheric processes like microphysics or radiation can be
more problematic in these formulations. By contrast, in the
present work, the properties of turbulence in the UTLS at
the subkilometer scale are studied using a mesoscale atmo-
spheric model formulated in physical space and coupled to
a stochastic forcing technique that allows the nonlinear cas-
cade to develop fluctuations at smaller scales. The choices
of the model are motivated by the necessity of dealing with
a model that contains all the physics (microphysics, radia-
tive transfer, etc.) needed for studying environmental prob-
lems that are relevant to aviation and that will be addressed
in follow-up studies.

The statistical properties of turbulence in the UTLS were
first studied in the seminal paper byNastrom and Gage
(1985), who analyzed observational data from instrumented
commercial aircraft during the GASP (Global Atmospheric
Sampling Program) campaign. They observed the kinetic en-
ergy spectra vary with wave numberk as k−5/3 for scales
of a few kilometers to a few hundred kilometers, and as
k−3 for larger scales. Similar results were obtained byLind-
borg (1999), who analyzed data from the MOZAIC (Mea-
surements of Ozone Water Vapor by Airbus Aircraft) cam-
paign. Ideal turbulent, stratified flows, which have charac-
teristics similar to those encountered in the UTLS, have
been reproduced since then by means of DNS at different
Reynolds numbers with or without the inclusion of hypervis-
cosity (Métais and Lesieur, 1992; Kaltenbach et al., 1994;
Riley and Lelong, 2000; Riley and de Bruyn Kops, 2003;
Waite and Bartello, 2004; Lindborg, 2006; Brethouwer et al.,
2007; Riley and Lindborg, 2008). The picture emerging from
these studies is that an inertial range exists in the horizon-
tal energy spectrum, which is an indication of a downscale
transfer of energy from large to small eddies as in clas-
sical Kolmogorov turbulence. However, because of atmo-
spheric stratification, turbulence differs from isotropic turbu-
lence, which reflects for example in the presence of large,
elongated horizontal flow structures. Indeed, the competi-
tion between turbulence and stable stratification that tends
to compress eddies vertically is the clue that makes the sim-

ulation of strongly stratified flows challenging as turbulence
can be three-dimensional yet substantially anistropic (Waite
and Bartello, 2004; Lindborg, 2006; Brethouwer et al., 2007;
Waite, 2011; Kimura and Herring, 2012). The intermediate
range of scales between a few kilometers down to a few tens
of meters of the Ozmidov scale where turbulence can be con-
sidered isotropic, is more difficult to observe and to predict
numerically because of the high resolutions required to cap-
ture the small-scale dynamics. While some recent measure-
ments (Wroblewski et al., 2010) seem to support a prolonga-
tion of thek−5/3 slope, no definitive answer has been found
so far to elucidate the characteristics of this range of the spec-
trum. This is particularly important for the dispersion of air-
craft emissions because the transition from the aircraft wake-
controlled to the atmosphere-controlled dynamics occurs ex-
actly at these scales (Dürbeck and Gerz, 1996; Paugam et al.,
2010).

The objective of the present study is to analyze the accu-
racy of the proposed method and LES models based on ex-
plicit transport of turbulent kinetic energy to reproduce the
properties of turbulence in the UTLS described above. To
that end, LES of stably stratified flows are performed in an
idealized atmosphere using computational grids with up to
2 m resolution and up to 20483 grid points, one of the largest
LES attempted in this area. The paper is organized as follows.
Section2 describes the governing equations of the model,
with emphasis on the forcing methodology used to force tur-
bulence at larger scales. The results of the simulations are
discussed in Sect.3 including the flow statistics, flow topol-
ogy and energy spectra for different levels of atmospheric
turbulence, and some elements of comparison with observa-
tional analysis. Conclusions are drawn in Sect.4.

2 Governing equations and numerical model

The simulations were carried out using Méso-NH (mesoscale
non-hydrostatic), the atmospheric research model developed
by Météo France and the Laboratoire d’Aérologie. The
model is built around a dynamical core that is capable of sim-
ulating atmospheric motions ranging from the meso-alpha
scales down to the micrometer scales; an ensemble of pack-
ages treating different physical processes in the atmosphere;
a flexible file manager, and an ensemble of preprocessing
tools to set up the initial conditions, either idealized or in-
terpolated from meteorological analysis or forecasts (for de-
tails, see the online scientific documentation:http://mesonh.
aero.obs-mip.fr/mesonh). Briefly, the model solves Navier–
Stokes equations in the anelastic approximation (Lipps and
Hemler, 1982). The “reference” thermodynamic state is a
function of the altitude (the vertical coordinatez). The ba-
sic prognostic variables are momentumu = [u,v,w] and po-
tential temperatureθ = T/5 whereT denotes temperature
and5 ≡ (p00/p)Rd/Cpd the Exner function wherep andp00
are the local and a reference ground level pressure, while
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Rd and Cpd are the gas constant and specific heat of dry
air, respectively (Lafore et al., 1998). Additional prognos-
tic variables include mixing ratios of chemical species and
water substances limited to water vapor mixing ratiorv in
this study. The virtual potential temperature is then defined as

θv = θ

(
Rd + rvRv

Rd + rvRd

)
, whereRv is the gas constant of water

vapor. Coriolis forces are not important at the scales of inter-
est for this study. Phase changes and microphysical processes
are not activated. In the LES approach, each variableφ is de-
composed into a resolved or filtered partφ and an unresolved
or subgrid-scale partφ′ with φ ≡ φ +φ′. This procedure can
be obtained by a convolution integral of the variable with fil-
ter functions that depend on filter widths. In the present LES
formulation, the filter widths correspond to the grid spacings
1x,1y, and1z, so that filtering is equivalent to grid averag-
ing. With these hypotheses and neglecting third-order turbu-
lent fluxes, the governing equations read (Lafore et al., 1998;
Cuxart et al., 2000):

∇ · (ρ0u) = 0, (1)

∂ (ρ0u)

∂t
+ ∇ · (ρ0u ⊗ u) = ρ0

θv − θv0

θv0

g + ρ0F5 + ρ0 f

− ∇ ·

(
ρ0u′ ⊗ u′

)
, (2)

∂
(
ρ0θ

)
∂t

+ ∇ ·
(
ρ0u θ

)
= ρ0G5 − ∇ ·

(
ρ0u′θ ′

)
, (3)

∂ (ρ0rv)

∂t
+ ∇ · (ρ0u rv) = −∇ ·

(
ρ0u′r ′

v

)
, (4)

where the subscript 0 denotes the reference state;g is the
acceleration due to gravity,F5 = ∇

(
Cpdθv0(5 − 50)

)
is the (filtered) modified pressure, andG5 =(

Rd + rvRv

Rd

Cpd

Cph

− 1

)
wθ

50

d50

dz
with Cph = Cpd + rvCpv

the specific heat of moist air. The termf denotes a generic
body force, which corresponds to the stochastic forcing in
this study and is discussed in the next section. All Reynolds
stressesu′ ⊗ u′, subgrid-scale fluxesu′θ ′, u′r ′

v, and subgrid-

scale correlationsr ′
vθ

′, θ ′2, are modeled using a closure
based on mixing lengthL = (1x1y1z)1/3 (Deardorff,
1972; Redelsperger and Sommeria, 1981) and a prognostic
equation for the turbulent kinetic energy, which represents
the isotropic part of Reynolds stress tensor,

ek ≡
1

2
tr

(
u′ ⊗ u′

)
=

1

2
u′ · u′, (5)

as explained byCuxart et al.(2000):

∂ (ρ0ek)

∂t
+ ∇ · (ρ0uek) = ρ0g ·

u′θ ′
v

θv0

− ρ0u′ ⊗ u′ · ∇u

+ ∇ ·

(
C2mρ0Le

1/2
k ∇ek

)
− ρ0εk, (6)

whereC2m = 0.2 andCε = 0.7 are model constants while
the last term in the rhs (right-hand side) is the turbulent dis-
sipation rate of kinetic energy,

εk = Cε

e
3/2
k

L
. (7)

The subgrid-scale correlations involving potential tempera-
ture are also reported for the sake of completeness:

u′θ ′ = −
2

3

1

Cs

Le
1/2
k 8∇θ, (8)

θ ′2 =
2

3

1

CsCθ

L2
∇θ · 8∇θ, (9)

whereCs = 4 andCθ = 1.2 are model constants, while8 is
a diagonal matrix defined as inRedelsperger and Sommeria
(1981) andCuxart et al.(2000).

Finally, it is worth noticing that the present formulation of
the model does not account for the contribution of molecular
viscosity to the shear stress tensor. This is justified for atmo-
spheric high Reynolds numbers if the cutoff length (propor-
tional to the grid size) is much larger than the Kolmogorov

dissipative scaleη ∼
(
ν3/εk

)1/4
. For air molecular viscos-

ity ν ∼ 10−5m2s−1 and turbulence dissipation rates at the
tropopauseεk ∼ 10−6

− 10−5m2s−3 (Lindborg, 1999), the
Kolmogorov scaleη ∼ 10−3 m, which is much smaller than
the grid sizes employed in this study.

2.1 Turbulence forcing

In order to obtain a statistically stationary velocity field, a
low wave number body force is applied to the momentum
equations using the method originally developed byEswaran
and Pope(1988) in spectral space and reformulated byPaoli
and Shariff (2009) in physical space. In this method, all
modes with wave numbers within a sphere of radiuskf are
forced using stochastic processes that mimic the turbulence
production at scales larger than the computational domain
and allow the nonlinear cascade to determine fluctuations at
smaller scales. Denoting byR {·} andI {·} the real and imag-
inary part of a complex number, the body force is represented
as a finite Fourier series,

f(x, t) =

∑
|k|≤kf

R
{
eik·x f̂(k, t)

}
, (10)

where i=
√

−1, k is the three-dimensional wave number,
and f̂(k, t) is the amplitude of the complex Fourier mode,
which is obtained from the divergence-free projection,

f̂(k, t) = ĝ(k, t) −
k · ĝ(k, t)

|k|2
k, (11)

of the complex vectorĝ(k, t) ≡ R{ĝ(k, t)} + i I{ĝ(k, t)}.
The latter is composed of six independent Uhlenbeck–
Ornstein processes corresponding to the real and imaginary
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parts ofĝ(k, t):

d R{ĝ(k, t)} = −
R{ĝ(k, t)}

τf
dt + σf

√
2dt

τf
N |

t+dt
t , (12)

d I{ĝ(k, t)} = −
I{ĝ(k, t)}

τf
dt + σf

√
2dt

τf
M|

t+dt
t , (13)

whereτf and σf are, respectively, the autocorrelation time
and the standard deviation of the process, whileN |

t+dt
t and

M|
t+dt
t are vector-valued normally distributed random pro-

cesses with zero mean and unit variance over the time in-
terval [t, t + dt]. The mode corresponding tok = 0 is not
forced, so from Eq. (10) the net force acting on the flow
is zero and no mean motion is created. Furthermore, in the
present implementation of the method, both vortical and di-
vergent modes are excited, and the vertical component of the
forcing is set to zero. This implies that vertical motions can
be attributed to the nonlinear interactions between horizon-
tal and vertical momentum rather than to the direct effect
of forcing. As discussed byEswaran and Pope(1988), in
the isotropic turbulence case the kinetic energy dissipation
rate resulting from the forcing scales as the productσ 2

f τf .
This relation has been verified for anisotropic turbulence (not
shown). Hence, in this study, the sensitivity of turbulence
to the forcing scheme has been analyzed by varyingσf and
keepingτf fixed.

2.2 Numerics

For the momentum components, the spatial discretization re-
lies on a fourth-order finite differences staggered scheme,
while time discretization is based on a leapfrog scheme, ex-
cept for the stochastic body force that is advanced in time
using a first-order Euler scheme. The piecewise parabolic
method (PPM) (Colella and Woodward, 1984) advection
scheme is used for all scalar variables. Pressure is obtained
by solving a Poisson equation that enforces the incompress-
ibility condition Eq. (1) by means of a FFT algorithm, which
was specially devised for treating domain decomposition in
massively parallel architectures. The code uses MPI as the
basic network communication protocol and has proven good
scalability on up to 100,000 parallel cores during various
benchmark tests of extreme-scale computing in Europe and
in the US (Pantillon et al., 2011). For this study, the simula-
tions were run on 4096 cores of a BullX supercomputer for
an overall cost of 7 million CPU hours.

3 Results

3.1 Computational details

The computational domain is a cubic box with side lengths,
L= 4 km, representing a portion of an idealized atmosphere
(see Fig.1). The reference altitude is 11 km, which is typical

x

y

z

4 km

4 km

4 km

11 km

Figure 1. Sketch of the computational domain.

of long-haul flights operated by commercial airlines. Values
of temperature, pressure and density at this altitude are set to
T∞ = 218K, ρ∞ = 0.388 kg m−3, andp∞ = 24286Pa, re-
spectively, and the corresponding potential temperature is
θ∞ = 326.6K. The background atmospheric fieldsρ0(z) and
θ0(z) are obtained from the hydrostatic and thermodynamic
relations with the Brunt Väisälä frequency set to

N =

√
g

θ0

dθ0

dz
= 0.012s−1. (14)

The background vapor-mixing ratio is obtained from cli-
matology of a midlatitude summer standard atmosphere
(Clatchey et al., 1972) with rv∞

= 0.001. The flow is initially
at rest, and the spectral shell of the forcing (highest forced
wave number) iskf = 2

√
2k0, where

k0 =
2π

L
(15)

is the fundamental wave number. Periodic boundary con-
ditions are imposed in the horizontal directionsx and y,
whereas open boundary conditions are used in the vertical
direction z in combination with two buffer zones of size
δ = 200m at the top and bottom of the computational domain
where the velocity is smoothed down to zero. This boundary
condition indirectly leads to the periodicity of velocity and
temperature fluctuations in thez direction. However, data in
the buffer zones are excluded from post-processing analysis.

3.2 Flow statistics

In order to characterize the flow statistics, the volume aver-
age〈φ〉 of a generic quantityφ is defined as

〈φ〉(t) =
1

LxLyLz

Lx∫
0

Ly∫
0

Lz∫
0

φ(x,y,z, t) dx dy dz, (16)
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whereLx = Ly = L, andLz = L− 2δ. Note that by defini-
tion of grid-averaging it follows that〈φ〉 ≡

〈
φ
〉
. The horizon-

tal average〈φ〉h is defined in a similarly way as

〈φ〉h (z, t) =
1

LxLy

Lx∫
0

Ly∫
0

φ(x,y,z, t) dx dy. (17)

In the following analysis, the explicit dependence of〈φ〉 and
〈φ〉h on t andz will be omitted for notational ease.

3.2.1 Velocity and kinetic energy

Settingφ = u in Eq. (16), observing that the flow is initially
at rest and the forcing produces zero net acceleration of the
flow, yields

〈u〉 =
1

LxLyLz

Lx∫
0

Ly∫
0

Lz∫
0

u dx dy dz = 0, (18)

while settingφ = u ⊗ u yields

〈
u ⊗ u

〉
=

1

LxLyLz

Lx∫
0

Ly∫
0

Lz∫
0

u ⊗ u dx dy dz =

= 〈u ⊗ u〉 +

〈
u′ ⊗ u′

〉
(19)

where the last two terms of Eq. (19) represent, respectively,
the resolved and subgrid-scale contributions to the second-
order moment of the velocity field. Settingφ = ek and using
Eq. (5) yields the volume average of the subgrid-scale turbu-
lent kinetic energy,

〈ek〉 =
1

LxLyLz

Lx∫
0

Ly∫
0

Lz∫
0

ek dx dy dz =

tr
〈
u′ ⊗ u′

〉
2

, (20)

while settingφ = Ek ≡
u · u

2
and using Eqs. (19)–(20) yields

〈Ek〉 =
1

LxLyLz

Lx∫
0

Ly∫
0

Lz∫
0

Ek dx dy dz =
〈u · u〉

2
+ 〈ek〉 , (21)

which represents the total kinetic energy of the flow. In
strongly stratified flows, where large anisotropy exists be-
tween horizontal and vertical directions, the resolved veloc-
ity u is further decomposed using Eq. (17) into a horizontal
mean:

〈u〉h ≡
1

LxLy

Lx∫
0

Ly∫
0

u dx dy, (22)

and a perturbation with respect to this mean:

ut ≡ u − 〈u〉h , (23)

with 〈u〉h andut satisfying the identity〈ut〉 ≡ 〈u − 〈u〉h〉 =

〈u〉 − 〈u〉 = 0. Usingut instead ofu allows for a more natu-
ral interpretation of turbulence statistics that pertain to scales
smaller than those that are directly forced. As observed by
Chung and Matheou(2012), this decomposition discounts
the energy of the larger horizontal modes from the total ki-
netic energy budget, and is particularly useful in the present
simulations where the forcing produces local distortions of
the flow that can be assimilated to nonuniform shear in the
vertical direction. These motions correspond to the vertically
sheared horizontal flow (VSHF) modes that were first identi-
fied bySmith and Waleffe(2002).

Settingφ = Ekt ≡
ut · ut

2
in Eq. (16) yields

〈Ekt〉 =
1

LxLyLz

Lx∫
0

Ly∫
0

Lz∫
0

Ekt dx dy dz =
〈ut · ut〉

2
, (24)

which represents the mean kinetic energy associated tout.
It is interesting to observe that applying the volume-average
operator tout · ut and using Eq. (23) yields

〈ut · ut〉 = 〈u · u〉 −
1

Lz

Lz∫
0

〈u〉h · 〈u〉hdz, (25)

which shows that the second-order moments ofu andut coin-
cide only if the horizontal mean is zero at each vertical level
– a condition that is strictly verified for an infinite domain in
the horizontal direction. Substituting Eq. (25) into Eq. (21)
and using Eq. (24), the mean kinetic energy〈Ek〉 can be re-
cast as

〈Ek〉 = 〈Ekt〉 + 〈ek〉 +
1

Lz

Lz∫
0

〈u〉h · 〈u〉h

2
dz, (26)

where the first two terms in the rhs represent the (resolved
and subgrid-scale) kinetic energy of “genuine” fine-scale tur-
bulence, while the last term represents the energy of shear-
like motions (Smith and Waleffe, 2002; Lindborg, 2006). In-
troducing the variances of the velocity components ofut,

σ 2
u ≡

〈
u2

t

〉
, σ 2

v ≡

〈
v2

t

〉
, σ 2

w ≡

〈
w2

t

〉
, (27)

the resolved turbulent kinetic energy can be recast as

〈Ekt〉 =
σ 2

u + σ 2
v + σ 2

w

2
(28)

while the root-mean square of horizontal turbulent fluctua-
tions is defined by

U =

√
σ 2

u + σ 2
v , (29)
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which corresponds to the large-scale (horizontal) vortices
(Waite, 2011). Finally, the horizontal Froude number is de-
fined as inBrethouwer et al.(2007):

Fr =
〈εk〉

N U2
. (30)

3.2.2 Potential temperature and potential energy

As for Eq. (22), potential temperature can be split into a hor-
izontal mean,

〈
θ
〉
h ≡

1

LxLy

Lx∫
0

Ly∫
0

θ dx dy ' θ0, (31)

where the last equality is due to the smooth gradient of back-
ground temperature, and a perturbation with respect to this
mean,

θ t ≡ θ −
〈
θ
〉
h = θ − θ0 (32)

with
〈
θ t

〉
=

〈
θ −

〈
θ
〉
h

〉
=

〈
θ
〉
−

〈
θ
〉
= 0. Following the same pro-

cedure used for kinetic energy, the variance of potential tem-
perature can be split as

〈
θ2

〉
=

〈
θ

2
t

〉
+

〈
θ ′2

〉
+

1

Lz

Lz∫
0

〈
θ
〉2
hdz, (33)

where again the first two terms in the rhs represent the con-
tributions due to the resolved and subgrid-scale fluctuations,
respectively, while the last term represents the contribution
of the mean gradient of background temperature. The poten-
tial energyEp is related to the potential temperature variance
through

Ep =
1

2

(
θ − θ0

θref

g

N

)2

=
1

2

(
θ − θ0

〈θ0〉

g

N

)2

, (34)

whereθref ≡ 〈θ0〉 has been used as a reference temperature
(Lindborg, 2006). It is known (see for exampleKurien et al.
(2006) that the sum of total kinetic and potential energy is
conserved in the Boussinesq approximation so thatEp is in
general a more useful quantity for the analysis of flow en-
ergetics. Using Eqs. (31) and (32) and integrating over the
domain yields with the usual notations:

〈
Ep

〉
=

1

2

g2

N2

〈
θ

2
t

〉
〈θ0〉

2
+

1

2

g2

N2

〈
θ ′2

〉
〈θ0〉

2
≡

〈
Ept

〉
+

〈
ep

〉
, (35)

where the last two terms represent the potential energy of
resolved and subgrid-scale motions, respectively.

3.3 Evolution of turbulent statistics

Three levels of turbulence, denoted by labels “S”, “M” and
“W” for strong, moderate and weak turbulence, were ana-
lyzed by varying the forcing parameterσf in Eqs. (12) and
(13). The timescale of forcing isτf = 33.6s. For numerical
integration of Uhlenbeck–Ornstein processτf has to be larger
than the time step1t of the simulation to avoid excessive
random noise, and smaller than the largest timescale of the
flow that can be estimated here asτlarge= U2/ 〈εk〉 to avoid
large-scale drift of the flow. In all cases considered here1t

ranges between 0.3 and 1s whileτlarge is on the order of 104s
so that both conditions are satisfied. The effects of resolution
on turbulence characteristics were also analyzed by varying
1 from 10 to 2 m, with the corresponding number of grid
points varying from 4003 to 20483. The nomenclature used
for the different runs and values of the main statistical prop-
erties are documented in Table1. Figure2 shows the mecha-
nism of turbulence generation through the stochastic forcing
method for all the simulated cases. The evolution of the re-
solved turbulent kinetic energy〈Ekt〉 is characterized by an
initial rapid increase of 0< t < t1 with t1 on the order of 2
to 3 hours. This is followed by a transient phase,t1 < t < t2
with t2 generally lesser than 5 hours, until the energy reaches
statistically stationary conditions in the sense that it does
not increase or decrease monotonically but oscillates around
a steady value. This value increases with the forcing level
but is roughly independent on the resolution, which confirms
that the turbulence model has no or limited impact on the
mean resolved turbulence. The evolution of turbulent poten-
tial energy

〈
Ept

〉
follows trends similar to the those of ki-

netic energy with the ratio
〈
Ept

〉
/ 〈Ekt〉 varying between 0.12

and 0.18, in the same range observed in previous DNS, e.g.,
Lindborg (2006). The ratioR= 〈ek〉/(〈Ekt〉 + 〈ek〉) of the
subgrid-scale to the total turbulent kinetic energy is shown
in Fig. 3. As expected, this ratio increases when decreasing
the resolution and the turbulence forcing, which reflects the
fact that the contribution of the subgrid-scale stress to the to-
tal Reynolds stress increases. However, in all casesR< 0.1,
which meets the classical requirement proposed byPope
(2000) for “well resolved” LES that the resolved turbulent
kinetic energy should be at least 80% of the total energy. The
evolution of the mean dissipation rate is shown in Fig.4. The
initial condition for 〈ek〉 corresponds to the threshold value
that is initially assigned to the subgrid-scale energy to trig-
ger grid-scale perturbations and initiate the process of energy
transfer from the large, forced scales to the small, dissipative
scales. Once the transfer is fully sustained by the forcing, the
turbulence model should be able to create its proper dynam-
ics and〈ek〉 should increase, indicating that energy is cor-
rectly dissipated at the grid-scale level. This condition is ver-
ified for all cases except at the lowest resolution for low and
moderate turbulence (run W10 where〈εk〉 ' 〈εk〉(0) during
all the simulation time), which indicates a slightly inaccurate
representation of turbulence at the smallest resolved scales
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Table 1.Overview of numerical simulations and principal statistics properties of the flow: run identifier; total number of grid pointsNgrid;

resolution1(m); forcing intensityσf(ms−2); turbulent fluctuationsσu,σv, andσw(ms−1); resolved turbulent potential to kinetic energy
ratio

〈
Ept

〉
/〈Ekt〉; subgrid-scale to resolved turbulent kinetic energy ratio〈ek〉/ 〈Ekt〉; kinetic energy dissipation rate〈εk〉(m2s−3); potential

energy dissipation rate
〈
εp

〉
(m2s−3); buoyancy scaleLb(m); Ozmidov scaleLO(m), horizontal Froude number Fr. For definitions, see

Sects.2.1, 3.2, and3.4. Data are averaged over the last hour of simulation time during which turbulence is fully sustained by the forcing.

run Ngrid 1 σf σu σv σw

〈
Ept

〉
〈Ekt〉

〈ek〉

〈Ekt〉
〈εk〉

〈
εp

〉
Lb LO Fr

S10 4003 10 1.6× 10−4 0.498 0.500 0.134 0.15 0.021 5.77× 10−5 1.07× 10−5 370 36.2 0.0069
M10 4003 10 1.2× 10−4 0.382 0.402 0.095 0.14 0.032 5.43× 10−5 9.29× 10−6 297 35.2 0.0084
W10 4003 10 0.8× 10−4 0.323 0.332 0.063 0.11 0.046 5.39× 10−5 8.30× 10−6 246 35.1 0.0102
M04 10243 4 1.2× 10−4 0.400 0.406 0.117 0.17 0.007 1.64× 10−5 2.90× 10−6 300 19.4 0.0023
W04 10243 4 0.8× 10−4 0.374 0.342 0.076 0.14 0.006 8.49× 10−6 1.53× 10−6 253 13.9 0.0102
M02 20483 2 1.2× 10−4 0.445 0.461 0.120 0.17 0.005 1.84× 10−5 3.35× 10−6 341 20.5 0.0025
W02 20483 2 0.8× 10−4 0.363 0.409 0.084 0.14 0.004 8.14× 10−6 1.31× 10−6 303 13.6 0.0012
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Figure 2. Temporal evolution of resolved〈Ekt〉 (upper curves) and〈
Ept

〉
(lower curves) for the weak forcing case (red lines), moderate

forcing case (green lines), and strong forcing case (blue line). Solid
lines:1 = 2 m; dashed lines:1 = 4 m; dotted lines:1 = 10 m.

for these cases. This point is further discussed in the next
sections. It can be observed that〈εk〉 starts to increases at
t ' t1, corresponding to the effective activation of the turbu-
lence model, and then attains a statistically steady value. Fig-
ure5shows the rms (root mean square) of turbulent velocities
for the selected case M04. The figure provides a first indica-
tion of the anisotropic character of stratified turbulence, with
horizontal fluctuationsσu andσv much larger than vertical
fluctuationsσw (the same behavior is observed for all other
cases). The anisotropy ratio isσu/σw ' 0.3–0.4 depending
on the cases and is in the range of available observational
data (Nastrom and Gage, 1985).

3.4 Turbulent structures

The turbulent structures of the flow are visualized in Fig.6
by means of snapshots of potential temperature fluctuations
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Figure 3. Temporal evolution of the ratio of subgrid-scale to to-
tal turbulent kinetic energyR= 〈ek〉/(〈Ekt〉 + 〈ek〉) for the weak
forcing case (red lines), moderate forcing (green lines) case, and
strong forcing case (blue line). Solid lines:1 = 2 m; dashed lines:
1 = 4 m; dotted lines:1 = 10 m.

θ t, and Eq. (32) at selected vertical (xz) and horizontal (xy)
planes for three levels of forcing (runs W02, M02, and S10).
The horizontally layered structures (“pancakes”) typical of
stably stratified flows are visible inxz planes, whereas in
the xy planes the dominant structures resemble the large-
scale turbulent eddies of classical Kolmogorov turbulence.
It is also interesting to observe that, as forcing is increased,
the initially thin and patchy layers become ticker and more
chaotic, as the consequence of the increase in potential of tur-
bulent eddies to overturn against background stratification.
These flow characteristics can be quantified by monitoring
the evolution of the buoyancy scale,

Lb = 2π
U

N
, (36)
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Figure 5.Temporal evolution of velocity fluctuationsσu (red lines),
σv (green lines), andσw (blue lines) for the moderate forcing case
and1 = 4 m (run M04).

that is reported in Fig.7 for all the simulated cases (note the
factor 2π accounts for the transformation from wave num-
bers to wavelengths, seeWaite and Bartello, 2004; Waite,
2011). The buoyancy scales characterizes the thickness of
the shear layers in stratified turbulence (Waite, 2011) and is
also associated with the zigzag instability of columnar vor-
tices (Billant and Chomaz, 2000) and overturning of inter-
nal gravity waves (Waite and Bartello, 2006). As shown in
Fig. 7, Lb varies between 250 and 300 m depending on the
cases, which is well above the grid sizes used for the sim-
ulations. This guarantees that the largest vertical structures
of the flow are resolved. The ratioLb/Lz < 0.1, which also
guarantees that the flow is not vertically confined. In addi-

tion to the buoyancy scale, in LES of stratified turbulence it
would be beneficial to resolve the Ozmidov scale,

LO = 2π
( εk

N3

)1/2
, (37)

which represents the largest scale turbulent eddies can over-
turn without being sensibly affected by stratification. As in-
dicated in Table1, in the strongest forcing caseLO = 35 m,
which can be resolved even with the largest grid size1 =

10 m. For the low- and moderate-forcing cases,LO = 15 and
20 m, respectively, so that, again, the Ozmidov scale can be
resolved using1 = 2 m or 1 = 4 m. However, with a grid
size1 = 10 m,Lb is (very) barely resolved in the moderate
forcing case and is definitely unresolved for the weak forcing
case. If the very smallest scales of the flow are not properly
resolved, the subgrid-scale model tends to slightly over dis-
sipate at those scales, which affects the kinetic energy spec-
trum as discussed in Sect.3.5.

The effects of resolution on the flow can be also appre-
ciated by analyzing the gradient Richardson number, which
is a measure of the relative strength between buoyancy and

shear. Denoting byS2
≡

(
∂u

∂z

)2

+

(
∂v

∂z

)2

the local vertical

shear, one can define the horizontally averaged Richardson
number

Ri ≡

g〈
θ
〉
h

d
〈
θ
〉
h

dz〈
S2

〉
h

, (38)

where the horizontal average
〈
S2

〉
h is obtained by setting

φ = S2 in Eq. (17). The Richardson number is often asso-
ciated to the stability of stratified shear flows: for example, it
is known from linear stability analysis (Miles, 1961; Howard,
1961) that an initially laminar flow becomes unstable (even-
tually evolving into a turbulent flow) below the critical value
Ric = 0.25; furthermore, values of Ri< 1 have been consis-
tently measured in experimental observations and numerical
simulations (Riley and de Bruyn Kops, 2003; Brethouwer
et al., 2007). This picture is consistent with the vertical pro-
files and the probability density function (PDF) of Ri that are
reported in Figs.8 and9, respectively. As a general trend,
the Richardson number decreases when increasing turbu-
lence forcing as this can produce locally stronger shear (Ri-
ley and de Bruyn Kops, 2003; Kimura and Herring, 2012). In
the high-resolution cases,1 = 2 m, Ri fluctuates around 0.1
and 0.15 for the weak and moderate forcing, respectively.
However, in the low-resolution cases,1 = 10 m, these val-
ues fluctuate around Ri> 1 for the weak forcing, Ri. 1 for
the moderate forcing, and Ri' 0.5, well above 1, for the
strongest turbulence. This again suggests that with a reso-
lution of 1 = 10 m the strongest turbulence is well resolved,
the moderate turbulence is barely resolved and the weak tur-
bulence is not resolved. To further verify this point, we com-
pared the Ri profiles obtained from the 10 m resolution LES
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Figure 6. Snapshots of potential temperature fluctuationsθt for the weak forcing case, run S02 (left); moderate forcing case, run M02
(center); and strong forcing case, run S10 (right). The top panels show vertical slides taken aty = Ly/2, while the bottom panels show
horizontal slides taken atz = Lz/2.

data with those obtained by filtering the 2 m resolution data
over 5 cells in all directions so that the support of the fil-
tered data is also 10 m. Interestingly, in the moderate turbu-
lence case the profiles of the filtered data and unfiltered data
are very similar, which is somehow an a posteriori verifica-
tion that the cutoff lengths associated to the grid-sizes1 = 2
and 1 = 10 are both situated below the Ozmidov scale in
the inertial range of isotropic turbulence. In the weak turbu-
lence, the filtered profiles are still apart and sensibly lower
than the corresponding data from the unfiltered data, as the
cutoff length of1 = 10 m is larger than the Ozmidov scale.

3.5 Kinetic energy spectra

Given the discretization of physical space, the (discrete)
three-dimensional wave numbers in spectral space are

kn ≡ [knx ,kny ,knz ] (39)

where integersnx , varying between 1−Nx/2 andNx/2, both
inclusive, identify modes number in the directionx, while kx

are the corresponding wave numbers:

knx = 1kxnx =
2π

Lx

nx, (40)

where1kx is the wave number spacing. Similar relations
hold fory andz directions. The velocity field can be analyzed
in spectral space by operating a three-dimensional Fourier
transform to the resolved velocity field,

û(kn) =
1

LxLyLz

Lx∫
0

Ly∫
0

Lz∫
0

u exp(−i kn · x)dx dy dz, (41)

where

û(kn) ≡ ûn = û(knx ,kny ,knz) (42)

are the coefficients of the Fourier modes that can be calcu-
lated by applying a FFT algorithm to Eq. (41). Note that
in the present approach, periodic boundary conditions are
strictly enforced in the two horizontal directions of the com-
putational domain while in the vertical direction, it is the

www.atmos-chem-phys.net/14/5037/2014/ Atmos. Chem. Phys., 14, 5037–5055, 2014



5046 R. Paoli et al.: LES of stratified turbulence

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  1  2  3  4  5  6

L
b

(m
)

t (h)

Figure 7. Temporal evolution of the buoyancy length〈Lb〉 for the
weak forcing cases (red lines), moderate forcing cases (green lines),
and strong forcing case (blue line). Solid lines:1 = 2 m; dashed
lines:1 = 4 m; dotted lines:1 = 10 m.
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Figure 8.PDF of Ri for the weak forcing cases (red lines); moderate
forcing cases (green lines); and strong forcing case (blue line). Solid
lines:1 = 2 m; dotted lines:1 = 10 m.

presence of the top and bottom buffer layers that drives the
velocity to zero and implicitly insures the periodicity. The
energy of the Fourier modes are defined as

Êk(kn) ≡
1

2
ûn · û∗

n, (43)

where the symbol∗ indicates complex conjugate. The one-
dimensional spectra of kinetic energy (density of energy per
unit wave number) in each of three coordinate directions
are obtained by summing up the energy contribution of all
Fourier modes that have the same (absolute) mode number
in that direction:
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Figure 9. Vertical distribution of Ri for the weak forcing cases (red
lines); moderate forcing cases (green lines); and strong forcing case
(blue line). Solid lines:1 = 2 m; dotted lines:1 = 10 m.
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Figure 10. Effect of filtering on vertical distribution of Ri for the
weak forcing cases (red lines) and moderate forcing cases (green
lines). Solid lines:1 = 2 m data filtered over1 = 10 m support;
dotted lines:1 = 10 m.

Ek(kx) =
1

1kx

Ny/2∑
ny=1−Ny/2

Nz/2∑
nz=1−Nz/2

Êk(knx ,kny ,knz)

+ Êk(k−nx ,kny ,knz), nx = 1, ..,Nx/2, (44)

Ek(ky) =
1

1ky

Nx/2∑
nx=1−Nx/2

Nz/2∑
nz=1−Nz/2

Êk(knx ,kny ,knz)

+ Êk(knx ,k−ny ,knz), ny = 1, ..,Ny/2, (45)
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Figure 11. Horizontal turbulent kinetic energy spectra (left panels) and compensated spectra (right panels). From top to bottom: strong
forcing, moderate forcing, and weak forcing case. Red lines:1 = 2 m; green lines:1 = 4 m; blue lines:1 = 10 m.

Ek(kz) =
1

1kz

Nx/2∑
nx=1−Nx/2

Ny/2∑
ny=1−Ny/2

Êk(knx ,kny ,knz)

+ Êk(knx ,kny ,k−nz), nz = 1, ..,Nz/2, (46)

so that for the reality condition, the spectral energy is stored
in only half of the modes in each direction. We also define
horizontal mode numbersnh, varying between 1 andNh ≡

Nx = Ny , and vertical mode numbersnv, varying between
1 andNv ≡ Nz. The corresponding horizontal and vertical
wave numbers (kh,kv) and wavelengths (λh,λv) are

kh = 1khnh and λh =
2π

kh
, nh = 1, ..,Nh , (47)

kv = 1kvnv and λv =
2π

kv
, nv = 1, ..,Nv, (48)

with 1kh ≡ 1kx = 1ky and 1kv ≡ 1kz The horizontal
energy spectrum is defined as the average of the one-
dimensional energy spectra in thex andy directions while
the vertical spectrum is simply the one-dimensional energy
spectrum in thez direction (Lindborg, 2006):
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Table 2. Definitions of the inertial ranges expressed in wavelengths,λh = 2π/kh (m), and scaling factors for kinetic energy spectra
[khk1,khk2]; potential energy spectra[khp1

,khp2
]; and combined kinetic and potential energy spectra[khp1

,khk2]. The very last column
displays the average potential-to-kinetic energy ratioRkp in the range[khp1

,khk2], Eq. (58). N.A. means that no inertial range could be
identified.

run 2π [k−1
hk1

,k−1
hk2

] Chk 2π [k−1
hp1

,k−1
hp2

] Chp 2π [k−1
hp1

,k−1
hk2

] Chk Chp Rkp

S10 [100,200] 0.19 [260,660] 0.41 [100,660] 0.20 0.34 0.34
M10 [100,130] 0.10 N.A. N.A. [100,130] 0.10 0.16 0.28
W10 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
M04 [16,100] 0.43 [114,400] 0.73 [16,400] 0.41 0.38 0.17
W04 [13,100] 0.34 [100,400] 0.60 [13,400] 0.32 0.27 0.15
M02 [13,50] 0.47 [130,400] 0.74 [13,400] 0.44 0.49 0.20
W02 [10,50] 0.44 [80,400] 0.75 [10,400] 0.42 0.44 0.19

Ek(kh) =
1

2

[
Ek(kx) + Ek(ky)

]
, (49)

Ek(kv) = Ek(kz). (50)

Based on dimensional arguments similar to those employed
for classical Kolmogorov turbulence,Lindborg (2006) ar-
gued that in strongly stratified flowsEk(kh) should scale as
k
−5/3
h in the inertial range – even though this scaling is asso-

ciated to the existence of horizontal turbulence cascade rather
than to fully developed three-dimensional turbulence. In the
inertial range, the theoretical horizontal spectrum then takes
the form

Ek(kh) = Chk 〈εk〉
2/3k

−5/3
h , (51)

whereChk is a constant. Figure11reports the computed hor-
izontal spectraEk(kh) for all considered cases along with
the corresponding spectra compensated using Eq. (51). The
range of scales[khk1,khk2] used to define the inertial range

and the scaling factorsChk = Ek(kh)/ 〈εk〉
2/3k

−5/3
h were de-

termined with a linear regression method and are reported
in Table 2. It can be noticed that in the simulations with
highest resolutions,1 = 2 and 4 m, the spectra do show an
inertial range approximately constant in the subkilometer-
scales range, which is of interest to this study, down to the
scales on the order of 10 m and below where energy is dissi-
pated by the turbulence model; in particular, for the highest-
resolution cases,Chk ∼ 0.4− 0.5, which is on the order of
Kolmogorov constant for isotropic turbulenceCkol ' 0.49
(Pope, 2000) starting at scales of around 50m. The present
results are also in line with previous spectral DNS (Lindborg,
2006; Brethouwer et al., 2007; Kimura and Herring, 2012)
that considered atmospheric scales larger than the present
study. When the forcing is increased, the portion of the spec-
trum with −5/3 slope tends to increase, which is consistent
with the fact that the strength of the turbulence increases rel-
ative to the buoyancy force. This tendency can be best ap-
preciated by looking at the compensated spectra in Fig.11.
In the case of weak forcing (and partially for the moderate
forcing), when the grid size is decreased to1 = 10 m, the

spectra start to depart from the inertial range at scales much
larger than the cutoff length of 21, which is a marker of
excessive dissipation produced by the subgrid-scale model.
For stratified flows, this is can be explained by the fact that
when turbulence is decreased (or stratification is increased)
the thickness of vertical layers also reduces so that finer grid
resolution is needed to resolve smaller and smaller struc-
tures. In particular,Waite (2011) showed that the buoyancy
scale has to be well resolved both in the horizontal and ver-
tical directions. The figure also indicates that the spectra for
the highest-resolution cases are slightly shallower than−5/3
with a spectral slope of about−1.45 from scales on the order
of 200 m up to 1 km. This tendency was observed for exam-
ple in DNS byBrethouwer et al.(2007); Kimura and Herring
(2012) andAugier et al.(2012) and could be related to the
appearance of a spectral bump around the buoyancy wave
number (Waite, 2011). To complete the analysis of kinetic
energy spectra, Figure12 shows the evolution of energy in
the VSHF modes withkh = 0 (Smith and Waleffe, 2002). In
all cases, the energy grows in time at a rate that depends on
the resolution and the forcing but in general the tendency is
similar to what has been observed in previous DNS (Lind-
borg, 2006; Smith and Waleffe, 2002).

As for horizontal spectra, it is possible to derive a theoret-
ical expression for the kinetic energy vertical spectra based
on dimensional arguments that are valid between buoyancy
and the Ozmidov length scales (Billant and Chomaz, 2001;
Lindborg, 2006):

Ek(kv) = CvpN2k−3
v , (52)

where Cvp is a constant. As noted byBrethouwer et al.
(2007), the range of scales where Eq. (52) holds is much
narrower than the−5/3 inertial range. The vertical spectra
Ek(kv) and the compensated spectraEk(kv)/N

2k−3
v are plot-

ted in Fig.13 for all the simulated cases. It can be observed
that the scaling is pretty well satisfied in the range of wave-
lengths 50m< λv < 200 m.
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Figure 12. Temporal evolution of the kinetic energy in the shear
modesEk(kh = 0) for the weak forcing cases (red lines), moderate
forcing cases (green lines), and strong forcing case (blue line). Solid
lines:1 = 2 m; dashed lines:1 = 4 m; dotted lines:1 = 10 m.

3.6 Potential energy spectra

The spectra of (available) potential energy are obtained from
the Fourier transform of the resolved potential temperature
deviation from the background state:

θ̂ (kn) =
1

LxLyLz

Lx∫
0

Ly∫
0

Lz∫
0

θ t exp(−i kn · x)dx dy dz, (53)

where the Fourier coefficients

θ̂ (kn) ≡ θ̂n = θ̂ (knx ,kny ,knz) (54)

are computed using an FFT ofθ t. From Eqs. (32), (35) and
(53), the energy of Fourier mode is given by

Êp(kn) =
1

2

θ̂n θ̂∗
n

〈θ0〉
2

g2

N2
(55)

and the horizontal and vertical spectra spectra,Ep(kh) and
Ep(kv), are constructed using the same relations as Eqs. (44)–
(46) and Eqs. (49) and (50) with the formal substitution of
Ek by Ep. Following similar dimensional arguments used for
kinetic energy, the horizontal spectrum of potential energy
should scale in the inertial range as (Lindborg, 2006)

Ep(kh) = Chp
〈
εp

〉
〈εk〉

−1/3k
−5/3
h , (56)

whereChp is a constant and
〈
εp

〉
is the dissipation rate of po-

tential energy. In the present formulation of the model, the
subgrid-scale variance of potential temperatureθ ′2 is param-
eterized using Eq. (9) rather than being obtained from a ded-
icated transport equation as it is the case for the subgrid-
scale kinetic energy, Eq. (6). Hence, the (local) dissipation

εp cannot be deduced explicitly from resolved quantities as
the dissipation rate of kinetic energyεk in Eq. (7). The grid-
averaged dissipation

〈
εp

〉
is then estimated from the transport

equation of potential energy in the Boussinesq approxima-
tion, which in statistically steady conditions reads:

d
〈
Ep

〉
dt

= −g

〈
θ twt

〉
+

〈
θ ′w′

〉
〈θ0〉

−
〈
εp

〉
= 0. (57)

The horizontal and vertical spectra of potential energy,
Ep(kh) andEp(kv), are reported in Figs.14 and15, respec-
tively. The slope of the vertical spectra is slightly shallower
than−3 between the buoyancy and Ozmidov scales, which
is related to the appearance of the spectral bump as discussed
in Sect.3.5. For the horizontal spectra, the figure also shows
similar trends observed for the kinetic energy spectra when
varying the intensity of forcing except that the inertial range
extends over scales larger than the inertial scales ofEk(kh).
This difference can be attributed to the fact that potential tem-
perature is not directly forced in these simulations, indeed the
depletion ofEp(kh) at very large scales is lower than the cor-
responding depletion ofEk(kh). The scaling factorsChp of
Eq. (56) are reported Table2. Denoting by[khp1

,khp2
] the

inertial range of potential energy spectra,Chp in this range
varies between 0.7 and 0.8 for the high-resolution cases,
which is higher than the valueChk ∼0.4–0.5 in Eq. (51), ob-
served in the inertial range of kinetic energy[khk1,khk2]. The
difference in the location of the inertial range in the kinetic
and potential energy spectra can also be attributed to the fact
that in the present LES model subgrid-scale energy and tem-
perature are modeled differently, which affects differently
the distribution of energy in the resolved scales close to the
cutoff. Results from DNS in the literature show that, for a
sufficiently high Reynolds number,Chp ∼ Chk over approxi-
mately the same inertial range of scales for both kinetic and
potential energy spectra (Lindborg, 2006; Brethouwer et al.,
2007). In an attempt of comparing the scaling factors in the
same way, we calculated the mean value of the compensated
spectra ofEp(kh) andEk(kh) over the same range of scales,
i.e., [khp1

,khk2], which covers both the kinetic and potential
inertial range. When doing so, the resulting average scaling
factors within this range are very close,Chk ' Chp, and this is
for all cases considered. This suggests that,on average, over
this range of scales, kinetic and potential energy are trans-
ferred down to smaller scales at the same rate although lo-
cally the transfer mechanism is different: for kinetic energy
it is entirely the result of the turbulent cascade of resolved
motions with a constant energy transfer rate (somehow im-
properly denoted dissipation rate) while for temperature this
is due partly to the inertial transfer of resolved motions and
partly to the effects of subgrid-scale motions (which act as
“viscous” dissipation). To conclude the analysis, the average
potential-to-kinetic energy ratio in the range[khp1

,khk2],
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Figure 13.Vertical turbulent kinetic energy spectra (left panels) and compensated spectra (right panels). From top to bottom: strong forcing,
moderate forcing, and weak forcing case. Red lines:1 = 2 m; green lines:1 = 4 m; blue lines:1 = 10 m.

Rkp =
1

khk2 − khp1

khk2∫
khp1

Ep(kh)

Ek(kh)
dkh (58)

is computed. According to the scaling laws, Eqs. (51) and
(56), Ep(kh)/Ek(kh) is exactly equivalent to

〈
εp

〉
/ 〈εk〉 if the

kinetic and potential energy have the same inertial range and
scaling factors. In the well-resolved cases,Rpk varies be-
tween 0.15–0.20 (see Table2), which is close to

〈
εp

〉
/ 〈εk〉 ∼

0.16–0.18, obtained from the values listed in Table1. The
fact that these two ratios are close supports the idea that in the
present simulations, the ratioRpk can then be assimilated to

the ratio between the potential and kinetic dissipation rates in
the range[khp1

,khk2] whereChk ' Chp. This confirms a pos-
teriori that the choice of the range[khp1

,khk2] is appropriate
to represent the average energy transferred in the combined
inertial ranges of kinetic and potential energy spectra.

3.7 Comparison with observations

To the authors’ knowledge there is a lack of observational
data of turbulence at the subkilometer scale considered in this
study so that a thorough validation is difficult. Despite this,
some elements of comparison with observational analysis at
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Figure 14. Horizontal turbulent potential energy spectra (left panels) and compensated spectra (right panels). From top to bottom: strong
forcing, moderate forcing, and weak forcing cases. Red lines:1 = 2 m; green lines:1 = 4 m; blue lines:1 = 10 m.

larger scales are provided in order to verify if the results are
in an acceptable range of values. The comparison is mainly
based on data sets from the GASP and MOZAIC programs
collected from commercial routes. The focus is laid on three
aspects of validation: the slope of (horizontal) kinetic energy
spectra, the value of turbulence dissipation rate〈εk〉 and (to
a limited extent) the variances of turbulent fluctuations.

Lindborg (1999) computed the longitudinal and transver-
sal structure functions of the velocity field using MOZAIC
data and derived a semi-empirical relation that best fit the
data. This analysis showed that for separation distances in
the range 100km . r . 102 km, the structure functions scale

as r2/3, which corresponds to thek−5/3
h scaling of kinetic

energy spectra obtained byNastrom and Gage(1985) using
GASP data. Assuming that the spectrum can be extrapolated
down to the subkilometer scales, this is in good agreement
with the spectra shown in Fig.11. Some existing observa-
tions based on individual flights (Wroblewski et al., 2010),
in situ measurements with balloons (Dewan, 1997) and radar
measurements (Fukao et al., 1994) also support this scaling
in the subkilometer scales.

The average dissipation rate based on all MOZAIC data
was〈εk〉 ∼ 6×10−5 m2 s−3 with some minor variations with
respect to the latitude (Lindborg, 1999; Lindborg and Cho,
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Figure 15.Vertical turbulent potential energy spectra (left panels) and compensated spectra (right panels). From top to bottom: strong forcing,
moderate forcing, and weak forcing cases. Red lines:1 = 2 m; green lines:1 = 4 m; blue lines:1 = 10 m.

2001). Similar values were reported byFrehlich and Shar-
man (2010) from detailed climatology analysis of rawin-
sonde data and byFukao et al.(1994) based on routine me-
teorological observations, and were also reproduced by nu-
merical weather prediction model outputs at scales of 50 km
and above (Frehlich and Sharman, 2004). All these data
seem to support the results shown in Fig.4 showing that
〈εk〉 =O(10−5) m2 s−3. As observed byLindborg and Cho
(2001), these values should not be interpreted as accurate or
universal given the intermittent distribution ofεk in the atmo-
sphere. Indeed, the variance increases when decreasing the
averaging length used to calculate from NWP model outputs

(Frehlich and Sharman, 2004). Nevertheless, these numbers
are useful in that they give an order of magnitude for model
comparison.

Finally, the variances of turbulent fluctuations were ob-
tained byNastrom and Gage(1985) by integrating the en-
ergy spectrum for different ranges of wavelengths and aver-
aging for different scenarios (season, latitude, land/see, etc.).
As shown, in Table3, for wavelengths 12.5km< λh < 25 km
they reportedU2

= 0.388 when averaging all flights, which
is in the range of values obtained in the present study.
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Table 3. Comparison with data from observational analysis. Variances fromNastrom and Gage(1985) data are obtained by integrating the
portion of energy spectrum in the range of wavelengths 12.5km< λh < 25 km, and are reconstructed by summing up the variances in the
north–south and east–west directions.

Reference Method / Source 〈εk〉 (m2s−3) U2 (m2s−2)

Nastrom and Gage(1985) Aircraft / GASP (average all flights) N.A. 0.388
Aircraft / GASP (average 15◦ − 30◦ N) N.A. 0.297
Aircraft / GASP (average 30◦ − 45◦ N) N.A. 0.426
Aircraft / GASP (average 45◦ − 60◦ N) N.A. 0.370
Aircraft / GASP (average> 60◦ N) N.A. 0.234

Lindborg(1999) Aircraft / MOZAIC (average all flights) 6.0× 10−5 N.A.
Lindborg and Cho(2001) Aircraft / MOZAIC (average 30◦ − 40◦ N) 9.6× 10−5 N.A.

Aircraft / MOZAIC (average 40◦ − 50◦ N) 7.4× 10−5 N.A.
Aircraft / MOZAIC (average 50◦ − 60◦ N) 5.7× 10−5 N.A.
Aircraft / MOZAIC (average 60◦ − 70◦ N) 4.5× 10−5 N.A.

Frehlich and Sharman(2010) Aircraft / AMDAR (average 40◦ − 50◦ N) 5.2× 10−5 N.A.
Wroblewski et al.(2010) Aircraft / Individual flights 1.99× 10−6

− 9.02× 10−4 N.A.
Fukao et al.(1994) Radar / GRATMAC 5× 10−5

− 1× 10−4 N.A.
This study LES (all runs) 8.14× 10−6

− 5.77× 10−5 0.215− 0.498

4 Conclusions and perspectives

High-resolution large-eddy simulations of subkilometer-
scale turbulence in the upper troposphere–lower stratosphere
were carried out with the atmospheric model Méso-NH on
computational meshes of up to 8× 109 grid points. Turbu-
lence was sustained by means of a low wave number stochas-
tic forcing method, which allows the flow to reach statisti-
cally steady conditions. Turbulence fluctuations and dissipa-
tion rates increase with the forcing. In accordance to pre-
vious DNS of stably stratified flows, atmospheric stratifi-
cation leads to a substantially anisotropy of the flow field,
which manifests with the presence of elongated horizontal
structures. The competition between turbulence and stratifi-
cation controls the degree of the anisotropy, which increases
when forcing is reduced. This was quantified in terms of
a local Richardson number, which decreases with the forc-
ing intensity. When forcing is decreased, buoyancy forces
tend to overwhelm turbulence, which results in smaller gra-
dients requiring a smaller grid size to be resolved. This im-
pacts the slope of the kinetic and potential energy spectra:
for low and moderate forcing, the resolutions of 2 and 4m
are needed to have a correct inertial range with slope close
to −5/3 in accordance with theoretical analysis whereas, for
strong forcing, 10m resolution is sufficient. Nevertheless, for
strong forcing, the dissipation rate seems too large compared
to the DNS results. The vertical energy spectra has a nar-
row −3 slope between the buoyancy and Ozmidov scales,
in accordance with scaling arguments. Considering the scat-
tered and intermittent nature of turbulence in the UTLS, the
present results agree reasonably well with available observa-
tional analysis. The slope of kinetic energy spectrum, the dis-
sipation rate, and velocity variances are in the range of val-

ues obtained from measurements, despite that the available
observations are at scales slightly larger than those consid-
ered here. This study demonstrated the capability of atmo-
spheric models to reproduce turbulence in the UTLS in the
critical subkilometer-scale range. This is also a first step of
a more ambitious project that aims at modeling the environ-
mental impact of aviation. In particular, the generated turbu-
lence serves as a background flow-field in follow-up studies
addressing the problem of atmospheric dispersion of aircraft
emissions and their chemical and microphysical transforma-
tions in the free atmosphere, such as the transition of con-
trails into cirrus clouds.
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