

Supplement of

Sulfur hexafluoride (SF $_{6}$) emissions in East Asia determined by inverse modeling

X. Fang et al.

Correspondence to: X. Fang (fangxuekun@gmail.com)

18 Table S1 Summary of specific a priori emissions (Mg/yr) for China mainland, Taiwan region, South

	Mainland China	Taiwan region	South Korea	Japan	Globe
2006	1299	125	669	205	6395
2007	1587	125	707	184	6965
2008	1695	119	728	159	7290
2009	1848	123	778	77	7657
2010	2091	123	692	78	8034
2011	2234	123	628	105	8412
2012	2470	123	628	105	8789

19 Korea, Japan and the entire Globe used in the reference inversion.

20 Table S2. Inversion performance for UC_adjust, UC and EDGAR inversions in 2008. The meanings of

		B _a	B_b	E _a	E_b	$1 - E_b E_a$	r_a^2	r_b^2	r_{ea}^2	r_{eb}^2
	UC_adjust	0.165	0.044	0.73	0.61	16%	0.26	0.45	0.26	0.41
Gosan	UC	0.413	0.098	0.88	0.66	25%	0.10	0.37	0.09	0.35
	EDGAR	0.342	0.084	0.83	0.65	23%	0.15	0.40	0.00	0.39
	UC_adjust	0.116	0.032	0.30	0.25	17%	0.47	0.58	0.36	0.48
Hateruma	UC	0.183	0.043	0.36	0.25	32%	0.34	0.59	0.29	0.51
	EDGAR	0.149	0.046	0.30	0.25	16%	0.55	0.59	0.48	0.50
	UC_adjust	0.068	0.003	0.16	0.12	26%	0.64	0.76	0.59	0.70
Cape Ochi-ishi	UC	0.104	0.006	0.21	0.12	42%	0.41	0.74	0.56	0.69
	EDGAR	0.089	0.007	0.19	0.12	35%	0.55	0.75	0.61	0.69

21 all statistical items are described in Table 2 in main text.

22	Table S3. National a	priori and a	posteriori emissions	(Mg/yr) from U	JC_adjust, U	C and EDGAR

23	inve	rsions	in	2008.

	UC_a	djust	U	С	EDGAR		
	A priori	A post	A priori	A post	A priori	A post	
Mongolia	2	3	3	3	0	0	
China	1702	2312	1473	2258	1876	2668	
Taiwan region	119	261	26	183	179	268	
North Korea	20	65	26	104	16	50	
South Korea	728	624	55	450	227	541	
Japan	159	302	159	328	183	292	
East Asia	2730	3567	1742	3326	2481	3819	

24 Table S4. Inversion performance from inversions using ECMWF, CFSR and FNL meteorological data

		B _a	B_b	E _a	E_b	$1 - E_b E_a$	r_a^2	r_b^2	r_{ea}^2	r_{eb}^2
	ECMWF	0.165	0.044	0.73	0.61	16%	0.26	0.45	0.26	0.41
Gosan	Nest_ECMWF	0.184	0.031	0.70	0.59	16%	0.32	0.49	0.33	0.46
	CFSR	0.143	0.040	0.74	0.62	17%	0.23	0.43	0.24	0.38
	FNL	0.190	0.057	0.75	0.67	11%	0.23	0.35	0.24	0.31
	ECMWF	0.116	0.032	0.30	0.25	17%	0.47	0.58	0.36	0.48
Hateruma	Nest_ECMWF	0.122	0.029	0.31	0.23	26%	0.45	0.65	0.35	0.57
	CFSR	0.139	0.060	0.33	0.28	14%	0.40	0.49	0.28	0.37
	FNL	0.117	0.038	0.30	0.24	19%	0.49	0.62	0.40	0.53
_	ECMWF	0.068	0.003	0.16	0.12	26%	0.64	0.76	0.59	0.70
Cape	Nest_ECMWF	0.069	0.005	0.16	0.12	27%	0.65	0.77	0.60	0.71
Ochi-ishi	CFSR	0.057	0.011	0.17	0.14	14%	0.57	0.64	0.49	0.55
	FNL	0.065	0.011	0.17	0.15	15%	0.56	0.63	0.48	0.54

25 for three stations in 2008. The symbols used are described in Table 2 in the main text.

26 Table S5. National a posteriori emissions (Mg/yr) from inversions using ECMWF, Nest_ECMWF,

	ECMWF	Nest_ECMWF	CFSR	FNL
Mongolia	3	5	20	19
China	2312	2355	2132	2204
Taiwan region	261	312	138	149
North Korea	65	100	37	124
South Korea	624	648	582	521
Japan	302	252	246	229
East Asia	3567	3672	3155	3246

27 CFSR or FNL meteorological data in 2008.

- Table S6. Inversion performance at Gosan, Hateruma and Cape Ochi-ishi for the 2006–2012 period. Mean and sd are the average observed mixing ratios and the corresponding standard deviation, respectively. N denotes the number of 3-hourly averaged observations. B_a and B_b denote the mean bias between the a priori concentrations and observations, and a posteriori concentrations and observations, respectively. E_a and E_b are the a priori and, a posteriori RMS errors for the full data set, respectively, including outliers. $1-E_b$ E_a represents the relative error reduction. E_b^n is the a posteriori error normalized with the standard deviation of the observed concentrations. r_a^2 and r_b^2 denote the squared Pearson correlation coefficients between the observations and the a priori baseline and, respectively, a posteriori model results. r_{ba}^2 and r_{bb}^2 are the squared Pearson correlation coefficients between the observations and the a priori baseline and, respectively, a posteriori baseline. r_{ea}^2 and r_{eb}^2 are the squared Pearson correlation coefficients between the observations and the a priori baseline and, respectively, all with
- 35 the a priori or a posteriori baseline subtracted.

Voor Station	Mean	sd	Ν	B _a	B_b	E _a	E _b	$1 - E_b E_a$	E_b^n	r_a^2	r_b^2	r_{ea}^2	r_{eb}^2	r_{ba}^2	r_{bb}^2	
rear	Station	ppt	ppt		ppt	ppt	ppt	ppt	%	%						
2006	Hateruma	5.94	0.48	2146	0.081	0.045	0.43	0.42	2	87	0.24	0.26	0.13	0.14	0.14	0.14
2006	Cape Ochi-ishi	5.93	0.11	649	0.036	0.003	0.09	0.07	23	63	0.46	0.61	0.47	0.62	0.00	0.00
2007	Hateruma	6.41	0.34	2640	0.106	0.035	0.29	0.23	20	69	0.38	0.54	0.29	0.47	0.15	0.15
2007	Cape Ochi-ishi	6.10	0.16	2061	0.036	0.005	0.14	0.12	15	74	0.35	0.45	0.26	0.35	0.16	0.17
	Gosan	7.12	0.82	1655	0.165	0.044	0.73	0.61	16	75	0.26	0.45	0.26	0.41	0.00	0.08
2008	Hateruma	6.73	0.38	2611	0.116	0.032	0.30	0.25	17	66	0.47	0.58	0.36	0.48	0.16	0.18
	Cape Ochi-ishi	6.47	0.24	1829	0.068	0.003	0.16	0.12	26	50	0.64	0.76	0.59	0.70	0.23	0.26
	Gosan	7.45	1.17	1762	0.177	0.069	1.10	1.03	6	88	0.15	0.24	0.14	0.20	0.04	0.06
2009	Hateruma	7.09	0.39	2615	0.138	0.039	0.29	0.23	22	59	0.55	0.66	0.43	0.54	0.23	0.26
	Cape Ochi-ishi	6.75	0.18	2159	0.064	0.004	0.15	0.12	18	68	0.46	0.55	0.35	0.47	0.18	0.17
	Gosan	7.74	0.95	1938	0.220	0.058	0.72	0.62	14	66	0.49	0.58	0.48	0.57	0.01	0.04
2010	Hateruma	7.31	0.45	2588	0.169	0.060	0.40	0.33	18	72	0.39	0.50	0.35	0.44	0.07	0.12
	Cape Ochi-ishi	7.02	0.18	2464	0.062	0.001	0.16	0.14	11	78	0.38	0.43	0.27	0.32	0.19	0.20
	Gosan	8.06	1.27	1614	0.296	0.153	1.08	0.95	12	75	0.34	0.47	0.31	0.43	0.06	0.09
2011	Hateruma	7.58	0.32	2732	0.126	0.033	0.26	0.20	23	63	0.51	0.61	0.45	0.56	0.12	0.14
	Cape Ochi-ishi	7.45	0.26	2436	0.080	0.003	0.17	0.14	17	52	0.70	0.73	0.40	0.47	0.50	0.50
	Gosan	8.37	0.87	1742	0.222	0.040	0.72	0.64	10	74	0.39	0.45	0.38	0.45	0.01	0.01
2012	Hateruma	7.88	0.41	1989	0.137	0.032	0.33	0.25	24	60	0.49	0.65	0.36	0.54	0.24	0.24
	Cape Ochi-ishi	7.86	0.19	2379	0.082	0.010	0.16	0.13	15	70	0.51	0.52	0.34	0.36	0.25	0.25

37

38 Figure S1. Maps of the a posteriori emissions from UC_adjust inversion (a), EDGAR inversion (b),

and difference between two inversions (EDGAR minus UC_adjust; c) for 2008. Black dots denote the

40 measurement stations.

Figure S2. Dependence of a posteriori RMSE and squared correlation coefficients (r_b^2, r_{eb}^2) on the a priori emission uncertainty scale factor p for Gosan (a), Hateruma (b) and Cape Ochi-shi (c).

45

Figure S3. Maps of a posteriori emissions from inversions using 0.5°×0.5° grid cells (a), 1°×1° grid
cells (b) and difference between these two inversions (c) for the year 2008. Black dots denote the

48 measurement stations.

Figure S4. Maps of 546 (top panel) and 5323 (bottom panel) variable-resolution grid cells with
highest resolution of 0.5°× 0.5° used in the inversion. The red dots denote the measurement
stations. Gray boxes are considered in the inversion process and white boxes are not.

55 Figure S5. Emission sensitivity at 15:00 UTC on 8 May 2008 from simulation using ECMWF (top

Figure S6. SF₆ time series for (a) Gosan, (b) Hateruma, and (c) Cape Ochi-ishi for the year 2011.
For every station, the lower panels show the observed and modeled mixing ratios. Modeled
mixing ratios are shown when using a priori (green line) and a posteriori emissions (red line).
Corresponding a priori (cyan line) and a posteriori (blue line) baselines are also shown. The upper
panels show the model errors when using the a priori emissions (green lines) and the a posteriori
emissions (red lines).