

Supplement of

Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions

Correspondence to: H. Herrmann (herrmann@tropos.de)

Supplement of

Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions

Correspondence to: H. Herrmann (herrmann@tropos.de)

- 1 Details on the capillary electrophorese detection system

3	As described by Scheinhardt et al. (2013), indirect UV detection was used with a
4	measurement wavelength of 260 nm and a reference wavelength of 208 nm. The applied
5	method was an indirect method, because instead of the absorbance of the investigated anions
6	(i.e. small organic mono- and dicarboxylic acids as well as inorganic ions) the absorbance of
7	the electrolyte was recorded. Sulfosalicylic acid was used as electrolyte that absorbs strongly
8	at 208 nm and less at 260 nm. In the presence of an analyte, the absorbance of the electrolyte
9	decreases because the non-absorbing analyte replaces the absorbing electrolyte. This decrease
10	results in a negative peak which can be used to quantify the concentration of the analyte after
11	calibration.
12	

1 Table A 1. Pseudo-first order rate constants dependent on the reactant concentration for the

2	investigated reactions.
---	-------------------------

	H ₂ O ₂		03	
Substance	c / M	$\mathbf{k}_{1st} / \mathbf{s}^{-1}$	c / M	k_{1st} / s^{-1}
Glyoxylic acid pH 1	0.50	$(1.95 \pm 0.30) \cdot 10^{-3}$	1.05.10-3	$(8.53\pm 0.04){\cdot}10^{-4}$
	0.75	$(3.41 \pm 0.45) \cdot 10^{-3}$	2.50.10-3	$(8.10 \pm 0.66) \cdot 10^{-4}$
	1.00	$(4.14 \pm 0.39) \cdot 10^{-3}$	5.00.10-3	$(1.16 \pm 0.06) \cdot 10^{-3}$
	1.25	$(4.92 \pm 0.85) \cdot 10^{-3}$	7.50·10 ⁻³	$(1.54 \pm 0.07) \cdot 10^{-3}$
	1.50	$(6.15 \pm 0.61) \cdot 10^{-3}$	1.00.10-3	$(2.04 \pm 0.01) \cdot 10^{-3}$
Glyoxylic acid /			1.00.10-3	$(1.77 \pm 0.01) \cdot 10^{-3}$
Glyoxylate pH 3			2.50.10-3	$(2.20 \pm 0.01) \cdot 10^{-3}$
			3.50.10-3	$(2.95 \pm 0.01) \cdot 10^{-3}$
			5.00.10-3	$(3.78 \pm 0.01) \cdot 10^{-3}$
			7.50.10-3	$(5.09 \pm 0.01) \cdot 10^{-3}$
Glyoxylate pH 7	0.03	$(4.22 \pm 1.07) \cdot 10^{-3}$	$1.00 \cdot 10^{-3}$	$(3.08 \pm 0.02) \cdot 10^{-3}$
	0.05	$(6.59 \pm 1.13) \cdot 10^{-3}$	1.75.10-3	$(5.01 \pm 0.01) \cdot 10^{-3}$
	0.07	$(8.75 \pm 1.59) \cdot 10^{-3}$	2.50.10-3	$(6.26 \pm 0.02) \cdot 10^{-3}$
	0.10	$(1.15 \pm 0.24) \cdot 10^{-2}$	3.50.10-3	$(9.80 \pm 0.04) \cdot 10^{-3}$
	0.12	$(1.38 \pm 0.26) \cdot 10^{-2}$	5.00.10-3	$(1.20 \pm 0.03) \cdot 10^{-2}$
Pyruvic acid pH 1	0.05	$(8.55 \pm 7.33) \cdot 10^{-4}$	1.00.10-3	$(5.98 \pm 0.02) \cdot 10^{-4}$
	0.10	$(5.01 \pm 4.94) \cdot 10^{-3}$	5.00.10-3	$(1.17 \pm 0.01) \cdot 10^{-3}$
	0.15	$(8.10 \pm 2.97) \cdot 10^{-3}$	7.50·10 ⁻³	$(1.43 \pm 0.01) \cdot 10^{-3}$
	0.20	$(1.60 \pm 1.01) \cdot 10^{-2}$	$1.00 \cdot 10^{-2}$	$(1.63 \pm 0.01) \cdot 10^{-3}$
	0.25	$(2.41 \pm 1.18) \cdot 10^{-2}$	1.25.10-2	$(2.16 \pm 0.03) \cdot 10^{-3}$
Pyruvate pH 7	8.00·10 ⁻³	$(1.16 \pm 0.08) \cdot 10^{-2}$	9.00.10-4	$(2.80 \pm 0.04) \cdot 10^{-3}$
	$1.20 \cdot 10^{-2}$	$(1.31 \pm 0.09) \cdot 10^{-2}$	$2.25 \cdot 10^{-3}$	$(7.62 \pm 0.23) \cdot 10^{-3}$
	1.60.10-2	$(1.69\pm 0.13){\cdot}10^{\text{-}2}$	3.50·10 ⁻³	$(8.36\pm 0.99){\cdot}10^{\text{-}3}$
	$2.00 \cdot 10^{-2}$	$(2.00 \pm 0.10) \cdot 10^{-2}$	6.00·10 ⁻³	$(1.53 \pm 0.10) \cdot 10^{-2}$
	2.40.10-2	$(2.32\pm 0.40){\cdot}10^{-2}$	7.00·10 ⁻³	$(1.62\pm0.07){\cdot}10^{\text{-2}}$
Glycolic acid pH 1			$1.00 \cdot 10^{-3}$	$(7.45\pm0.10){\cdot}10^{-4}$
			5.00·10 ⁻³	$(7.86 \pm 0.04) \cdot 10^{-4}$
			$1.00 \cdot 10^{-2}$	$(1.09 \pm 0.01) \cdot 10^{-3}$
			$1.75 \cdot 10^{-2}$	$(1.55\pm0.01){\cdot}10^{\text{-}3}$
			2.50.10-2	$(1.69 \pm 0.01) \cdot 10^{-3}$
			3.75.10-2	$(2.79 \pm 0.01) \cdot 10^{-3}$

	H ₂ O ₂		O 3	
Substance	c / M	k_{1st} / s^{-1}	c / M	k _{1st} / s ⁻¹
Glycolate pH 7			1.00.10-3	$(1.76 \pm 0.01) \cdot 10^{-3}$
			4.00.10-3	$(3.79 \pm 0.04) \cdot 10^{-3}$
			7.00.10-3	$(5.65 \pm 0.05) \cdot 10^{-3}$
			1.00.10-2	$(8.11 \pm 0.08) \cdot 10^{-3}$
			1.50.10-2	$(1.17 \pm 0.01) \cdot 10^{-2}$
Glycolaldehyde	0.02	$(4.88 \pm 0.04) \cdot 10^{-3}$	1.00.10-3	$(1.03 \pm 0.01) \cdot 10^{-3}$
	0.05	$(4.83 \pm 0.03) \cdot 10^{-3}$	4.00.10-3	$(2.29 \pm 0.01) \cdot 10^{-3}$
	0.10	$(6.05 \pm 0.05) \cdot 10^{-3}$	7.00.10-3	$(3.62 \pm 0.01) \cdot 10^{-3}$
	0.15	$(1.01 \pm 0.02) \cdot 10^{-2}$	1.00.10-2	$(5.14 \pm 0.02) \cdot 10^{-3}$
	0.20	$(1.15 \pm 0.06) \cdot 10^{-2}$	1.50.10-2	$(8.94 \pm 0.02) \cdot 10^{-3}$
Glyoxal	0.56	$(1.07 \pm 0.01) \cdot 10^{-4}$	9.00·10 ⁻⁴	$(1.89 \pm 0.01) \cdot 10^{-3}$
	0.84	$(1.58 \pm 0.01) \cdot 10^{-4}$	1.50·10 ⁻³	$(2.14 \pm 0.01) \cdot 10^{-3}$
	1.12	$(1.65 \pm 0.01) \cdot 10^{-4}$	2.10.10-3	$(2.87 \pm 0.01) \cdot 10^{-3}$
	1.40	$(2.29\pm 0.01){\cdot}10^{-4}$	2.40.10-3	$(3.08 \pm 0.01) \cdot 10^{-3}$
	1.68	$(3.06 \pm 0.01) \cdot 10^{-4}$	2.70.10-3	$(3.25 \pm 0.01) \cdot 10^{-3}$
Methylglyoxal			7.05.10-4	$(2.38 \pm 0.02) \cdot 10^{-3}$
			9.40.10-4	$(2.76 \pm 0.02) \cdot 10^{-3}$
			1.65.10-3	$(4.61 \pm 0.03) \cdot 10^{-3}$
			1.18.10-3	$(3.36 \pm 0.02) \cdot 10^{-3}$
			$2.12 \cdot 10^{-3}$	$(6.45 \pm 0.08) \cdot 10^{-3}$
Methacrolein	1	(0.25 ± 0.02)	6.00·10 ⁻⁵	1.71 ± 0.09
	1.5	(0.27 ± 0.06)	7.00.10-5	1.85 ± 0.08
	2	(0.34 ± 0.04)	8.00.10-5	2.06 ± 0.14
	2.5	(0.36 ± 0.04)	9.00.10-5	2.36 ± 0.07
	3	(0.38 ± 0.02)	$1.00 \cdot 10^{-4}$	2.58 ± 0.03
Methyl vinyl ketone			6.00.10-5	3.78 ± 0.09
			7.00.10-5	4.44 ± 0.02
			8.00.10-5	5.22 ± 0.04
			9.00.10-5	6.05 ± 0.15
			$1.00 \cdot 10^{-4}$	6.53 ± 0.11

Table A 1 - continued. Pseudo-first order rate constants dependent on the reactant
 concentration for the investigated reactions.

- 4 Glyoxylate was quanified by CE.

Figure A 3. First-order rate constants plotted over the concentration for the reaction of glycolaldehyde with H_2O_2 at pH 5. The initial concentration of hydrogen peroxide was $1 \cdot 10^{-3}$ M. The decay of hydrogen peroxide was monitored at 229 nm.

3 with H_2O_2 at pH 5. The initial concentration of hydrogen peroxide was 2.8 $\cdot 10^{-2}$ M. The decay

- 4 of hydrogen peroxide was monitored at 233 nm.

Figure A 6. First-order rate constants plotted over the concentration for the reaction of
glyoxylic acid with ozone at pH 1. The initial concentration of ozone was 5·10⁻⁵ M.

Figure A 7. First-order rate constants plotted over the concentration for the reaction of
glyoxylic acid/glyoxylate with ozone at pH 3. The initial concentration of ozone was
5 10⁻⁵ M.

Figure A 8. First-order rate constants plotted over the concentration for the reaction of
pyruvic acid with ozone at pH 1. The initial concentration of ozone was 5.10⁻⁵ M.

Figure A 9. First-order rate constants plotted over the concentration for the reaction of
pyruvate with ozone at pH 7. The initial concentration of ozone was 3.10⁻⁵ M.

Figure A 10. First-order rate constants plotted over the concentration for the reaction of
glycolic acid with ozone at pH 1. The initial concentration of ozone was 5.10⁻⁵ M.

Figure A 11. First-order rate constants plotted over the concentration for the reaction of
glycolate with ozone at pH 7. The initial concentration of ozone was 5.10⁻⁵ M.

Figure A 13. First-order rate constants plotted over the concentration for the reaction of
methylglyoxal with ozone. The initial concentration of ozone was 3.10⁻⁵ M.

2 Figure A 16. UV/Vis-spectra of hydrogen peroxide and the aldehydes and ketone that were

3 investigated.

4

- 1 **References**
- 2 Scheinhardt, S., Müller, K., Spindler, G., and Herrmann, H.: Complexation of trace metals in
- 3 size-segregated aerosol particles at nine sites in Germany, Atmospheric Environment, 74,
- 4 102-109, 2013.