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Abstract. Studying the evaporation process and its link to
the atmospheric circulation is central for a better under-
standing of the feedbacks between the surface water com-
ponents and the atmosphere. In this study, we use 5 months
of deuterium excess (d) measurements at the hourly to daily
timescale from a cavity ring-down laser spectrometer to char-
acterise the evaporation source of low-level continental wa-
ter vapour at the long-term hydrometeorological monitor-
ing site Rietholzbach in northeastern Switzerland. To recon-
struct the phase change history of the air masses in which
we measure thed signature and to diagnose its area of sur-
face evaporation we apply a Lagrangian moisture source di-
agnostic. With the help of a correlation analysis we inves-
tigate the strength of the relation betweend measurements
and the moisture source conditions. Temporal episodes with
a duration of a few days of strong anticorrelation betweend

and relative humidity as well as temperature are identified.
The role of plant transpiration, the large-scale advection of
remotely evaporated moisture, the local boundary layer dy-
namics at the measurement site and recent precipitation at
the site of evaporation are discussed as reasons for the exis-
tence of these modes of strong anticorrelation betweend and
moisture source conditions. We show that the importance of
continental moisture recycling and the contribution of plant
transpiration to the continental evaporation flux may be de-
duced from thed–relative humidity relation at the seasonal
timescale as well as for individual events. The methodol-
ogy and uncertainties associated with these estimates of the
transpiration fraction of evapotranspiration are presented and
the proposed novel framework is applied to individual events
from our data set. Over the whole analysis period (August to
December 2011) a transpiration fraction of the evapotranspi-
ration flux over the continental part of the moisture source

region of 62 % is found albeit with a large event-to-event
variability (0 % to 89 %) for continental Europe. During days
of strong local moisture recycling a higher overall transpira-
tion fraction of 76 % (varying between 65 % and 86 %) is
found. These estimates are affected by uncertainties in the
assumptions involved in our method as well as by parameter
uncertainties. An average uncertainty of 11 % results from
the strong dependency of the transpiration estimates on the
choice of the non-equilibrium fractionation factor. Other un-
certainty sources like the influence of boundary layer dynam-
ics are probably large but more difficult to quantify. Never-
theless, such Lagrangian estimates of the transpiration part
of continental evaporation could potentially be useful for
the verification of model estimates of this important land–
atmosphere coupling parameter.

1 Introduction

Evaporation of water from the earth surface is a key coupling
process in the hydrological cycle between the earth surface
and the atmosphere. The energy available from global radia-
tion for the phase change from liquid water in the land sur-
face reservoirs to water vapour in the atmosphere is modu-
lated by meteorological conditions. On continental surfaces,
the actual moisture flux from the land to the atmosphere is
further constrained by the available soil water and groundwa-
ter (e.g.Entekhabi and Eagleson, 1989; Koster et al., 2004;
Seneviratne et al., 2010). The evapotranspiration flux in turn
feeds back on the temperature and humidity conditions of
the lower atmosphere (e.g.Betts, 2004; Seneviratne et al.,
2006; Mueller and Seneviratne, 2012). Long-term changes
in spatial and seasonal evaporation patterns over land and
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ocean were identified in model simulations and observation-
based data sets for the twentieth century (e.g.Bosilovich
et al., 2005; Jung et al., 2010; Douville et al., 2013) and for
future climate projections (Held and Soden, 2006; Senevi-
ratne et al., 2006; Boé and Terray, 2008). Positive trends in
ocean evaporation in the last decade were diagnosed from
satellite observations (Schlosser and Houser, 2007; Yu and
Weller, 2007). Such changes in surface evaporation driven
by changes in atmospheric conditions have a strong impact
on the regional continental water cycle and the strength of
the coupling between the earth surface and the atmosphere
(Seneviratne et al., 2010). Studying the evaporation process
and its link to the atmospheric circulation is thus central for
a better understanding of the feedbacks between the earth
surface and the atmosphere.

To investigate the impact of atmospheric circulation on
surface evaporation and the subsequent transport of mois-
ture in the atmosphere, the use of stable water isotopologues
(1H2

16O, 2H1H16O and1H2
18O) as a proxy in combination

with Lagrangian modelling techniques is an established ap-
proach (see e.g.Gat et al., 2003; Pfahl and Wernli, 2008;
Sodemann et al., 2008b). In a Lagrangian framework the his-
tory of air parcels can be followed back in time using global
or regional (re-)analysis data of the three-dimensional atmo-
spheric wind fields. Such a modelling approach is appropri-
ate to relate the geographical location of the measurement of
stable water isotopes in atmospheric water vapour with the
location of surface evaporation of this moisture. The mois-
ture source can be local (i.e., close to the measurement site),
remote (e.g.>100 km away from the site), or a combination
of the two. The dependency of the isotope fractionation pro-
cesses during phase changes on environmental variables like
temperature, relative humidity and wind speed makes stable
water isotopes particularly suited for the study of the com-
plex atmospheric controls on evaporation.

The isotopic content of a water vapour sample is ex-
pressed in terms of the relative deviation of the iso-
topic mixing ratio from an internationally accepted stan-

dard
(
δ =

Rsample−Rstandard
Rstandard

)
and is indicated in permil (‰).

When thermodynamic equilibrium prevails (i.e., for satu-
rated conditions), the variability ofδ2H in natural waters
is approximately 8 times larger than the variability inδ18O.
This is due to the differences in the saturation vapour pres-
sure of the two heavy isotopologues2H1H16O and1H2

18O.
Equilibrium fractionation is theoretically well understood
(Bigleisen, 1961) and has been studied in laboratory experi-
ments (e.g.Horita and Wesolowski, 1994). The temperature-
dependent equilibrium fractionation factorα =

Rl
Rv

, relates
the isotope ratio of the condensateRl to the isotope ratio of
the vapour phaseRv. Non-equilibrium fractionation occur-
ring in unsaturated conditions, results from differences in the
diffusivity of the different isotopes. To quantify the deviation
from thermodynamic equilibrium during phase changes, the
second-order isotope parameter deuterium excessd has often

been used (e.g.Dansgaard, 1964; Merlivat and Jouzel, 1979;
Gat, 1996; Pfahl and Wernli, 2008; Welp et al., 2012):

d = δ2H − 8 · δ18O. (1)

Because equilibrium fractionation is temperature dependent,
the ratio of the two equilibrium fractionation factorss(T ) =
α2H−1
α18O−1 varies between 8.6 at 0◦C and 7.7 at 30◦C (Majoube,

1971). d can thus slightly change even under thermodynamic
equilibrium conditions. Since non-equilibrium fractionation
is intrinsically dominant during evaporation,d is an interest-
ing variable for the study of surface evaporation and the as-
sociated meteorological conditions.Craig (1961) found that
the global mean meteoric water has ad of 10 ‰, reflecting
the fact that the ocean is generally out of equilibrium with
the atmosphere and the mean relative humidity of air at the
evaporating ocean surface is<100%.

In the following we present a short review on the use ofd

as a proxy for ocean evaporation (Sect.1.1). In Sect.1.2we
summarise the findings from studies aimed at understanding
which processes controld in low-level continental moisture,
which is generally also affected by land surface evaporation
processes like soil evaporation and plant transpiration.

1.1 d as a proxy for ocean evaporation

Merlivat and Jouzel(1979) published one of the first studies
using thed signal in precipitation to derive global mean sea
surface temperatures and relative humidity above the ocean.
The relationship presented byMerlivat and Jouzel(1979) in-
volves the so-called closure assumption of a climate in steady
state, in which ocean evaporation is the only source of mois-
ture for the atmospheric boundary layer. Using theCraig and
Gordon(1965) linear resistance model for evaporation and
applying the closure assumption discussed inMerlivat and
Jouzel(1979), the following relationship can be obtained be-
tweend of the ocean evaporation flux, sea surface tempera-
ture (SST) in◦C and relative humidity with respect to sea sur-
face temperaturehs (s stands for surface) in % (see coloured
solid lines in Fig.1):

d = 0.33· SST− 0.44· hs+ 37. (2)

The d in the evaporation flux increases with decreasinghs
and increasing SST in accordance with the general physical
understanding of equilibrium and non-equilibrium fractiona-
tion.

The theoretical link betweend in atmospheric moisture
and hs as well as SST at the location of evaporation thus
provides a powerful framework to study remote evaporation
conditions usingd as a proxy. Many early model studies used
the Craig and Gordon(1965) model together with the clo-
sure assumption to relate initial isotope concentrations in the
air parcel to conditions at the evaporative source (e.g.Jouzel
and Merlivat, 1984; Johnsen et al., 1989; Petit et al., 1991).
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Fig. 1. The d in the evaporation flux as parameterised by the Craig–Gordon linear resistance model (Craig and Gordon, 1965) using the
closure assumption fromMerlivat and Jouzel(1979). Different non-equilibrium fractionation factors were used for the different lines. For
the solid coloured lines the non-equilibrium fractionation factors ofMerlivat and Jouzel(1979) were used withu10m= 5 ms−1. For the red
and the blue dash-dotted line the non-equilibrium fractionation factors ofMerlivat and Jouzel(1979) were used with 10 m wind speeds of
u10m= 10 ms−1. The black line shows the empirical relationship ofPfahl and Wernli(2008). The dashed red line represents the evaporation
flux d from the land surface in summer assuming 40 % fractionating bare soil evaporation with non-equilibrium factors ofαk

= 1.0039 for
δ2H andαk

= 1.0076 forδ18O (Pfahl and Wernli, 2009) and 60 % non fractionating transpiration (e.g.Yepez et al., 2005; Lawrence et al.,
2007; Sutanto et al., 2012). The soil moisture isotopic composition for the red dashed line was chosen to beδ2H = −88 ‰,δ18O = −12 ‰,
which results in a source vapourdr

s ath = 100 % and 27◦C ofdr
s = 10.8 ‰. The dashed blue line representsd of the evaporation flux from the

land surface in winter assuming 100 % bare soil evaporation with non-equilibrium factors ofαk
= 1.0039 forδ2H andαk

= 1.0076 forδ18O
(Pfahl and Wernli, 2009). The soil moisture isotopic composition for the blue dashed line was chosen to beδ2H = −200 ‰,δ18O = −24 ‰,
which results in a source moisturedr

s = 3.5 ‰ for Ts = 5◦C. The estimates for the soil moisture isotopic composition are best guesses of
typical values for winter and summer.

These studies showed that thed signature of the evapora-
tion conditions is at least partially conserved along the trajec-
tory of the advected vapour until rainout, for example, over
the Greenland ice sheet. General circulation models (GCMs)
equipped with stable water isotope physics (e.g.Joussaume
et al., 1984; Hoffmann et al., 1998) explicitly simulated evap-
oration using theCraig and Gordon(1965) model. These
models generally reproduced the climatological signals of
the individual isotopes in precipitation reasonably well. The
d signal as simulated by GCMs, however, suffers from large
biases (Jouzel et al., 2007; Yoshimura et al., 2008; Risi et al.,
2010, 2013b).

Jouzel and Koster(1996) showed that GCM-derivedd in
the evaporation flux over the ocean was strongly correlated
with hs and SST, when using the approach ofCraig and Gor-
don(1965) without the closure assumption. For this case they
deduced the relationshipd = 0.38· SST− 0.238· hs+ 23.1.
When assuming closure to compute the initial isotopic com-
position of water vapour over the ocean using the SST,hs and
δoceandata from the GCM,Jouzel and Koster(1996) found
a slightly different relationship:d = 0.598·SST−0.381·hs+

25.5. The feedback of the atmospheric moisture on the iso-
topic composition of the evaporation flux seems to weaken
the sensitivity ofd to changes in SST andhs in the GCM
used byJouzel and Koster(1996). The closure assumption

thus may lead to an overestimation of the slope of thed–hs
relationship.

In several recent studies,d samples obtained from the
oceanic boundary layer (Gat et al., 2003; Uemura et al.,
2008) or from a near-ocean site over land (Pfahl and Wernli,
2008) were shown to be a good proxy for the meteorolog-
ical conditions over the ocean at the point of evaporation.
Pfahl and Wernli(2008) showed that for isotope data mea-
sured in Rehovot (Israel) between 1998 and 2006 on short
timescales (8 h accumulation time on average)d was primar-
ily a proxy for hs at the point of evaporation of the probed
moisture and not for SST (see black line in Fig.1). Uemura
et al. (2008) performed ship measurements over the South-
ern Ocean and found a linear multivariate relationship be-
tweend, hs and SST. The slope of the linear dependency
betweend andhs, which is a central measure used in our
study, is very similar inUemura et al.(2008) andPfahl and
Wernli (2008) with −0.52 ‰%−1 and−0.53 ‰%−1 respec-
tively. Both studies analysed isotope data from moisture that
directly emanates from ocean evaporation without any rel-
evant influence of continental moisture recycling processes.
On a climatological timescaled is mainly used as a proxy for
SST (Johnsen et al., 1989; Vimeux et al., 1999) based on the
argument that GCM simulations show only small glacial-to-
interglacial changes inhs.
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In the present study, we investigate the isotopic composi-
tion of low-level continental moisture, which generally only
partly originates from ocean evaporation and is strongly af-
fected by continental evaporation processes. Thus in the fol-
lowing section the possible influence of continental evapo-
ration on water vapourd and particularly on the lineard–hs
relationship is discussed.

1.2 Thed in continental low-level moisture

Water isotopes have been used as tools to investigate conti-
nental moisture recycling in different studies in the past (e.g.
Salati et al., 1979; Gat and Matsui, 1991; Risi et al., 2013).
There are some indications from recent vapour measure-
ments at different continental locations in China and North
America that thed of continental surface air can be signifi-
cantly altered by local processes on the subdiurnal timescale
(Welp et al., 2012). These authors therefore cast some doubts
on whether continental water vapourd can be used as a con-
served tracer of environmental conditions during evapora-
tion at the moisture source location. Several processes affect
the isotopic composition of water vapour after its evapora-
tion from land or ocean, during its transport. Cloud and pre-
cipitation formation, partial below-cloud evaporation of rain
droplets, snow formation and mixing with water vapour from
other evaporative sources can affect the isotopic composition
of the water vapour transported in an air parcel (Ciais and
Jouzel, 1994; Field et al., 2010). To a first order, the micro-
physical processes in clouds can be assumed to occur in con-
ditions of equilibrium between the different phases. Thus,
these processes do not strongly affectd. Furthermore, it is
unclear whether a consistentd–hs relation as discussed above
for ocean evaporation exists for evapotranspiration which is
characterised by additional controls like soil moisture and
vegetation activity.

The relationship betweend and hs strongly depends on
the isotopic composition of the soil moisture and the contri-
bution of transpiration, which can be assumed in first order
to be non-fractionating over timescales of>1 day (Harwood
et al., 1999; Farquhar et al., 2007). The partitioning of the la-
tent heat flux between transpiration and evaporation is a cen-
tral parameter for its isotopic signature. Isotopes have been
used in several studies as a tool for the separation of the land
surface latent heat flux into evaporation and transpiration
(e.g.Moreira et al., 1997; Yakir and Sternberg, 2000; Yepez
et al., 2005; Robertson and Gazis, 2006; Sutanto et al., 2012;
Jasechko et al., 2013). The potential influence of land surface
processes on the isotopic composition of the evaporation flux
is shown in Fig.1 by the dashed lines. The slope of thed–
hs relation is expected to be smaller when transpiration plays
a dominant role in the evapotranspiration flux from the land
surface.Welp et al.(2012) indeed found smallerd–hs slopes
for isotope measurements in the continental boundary layer
and localhs measurements (−0.36 ‰%−1 in New Haven,
USA and−0.22 ‰%−1 in Borden, Canada) than the ones

mentioned above byJouzel and Koster(1996), Pfahl and
Wernli (2008) andUemura et al.(2008) (∼ −0.5 ‰%−1).

The ratio of diffusive to turbulent transport in evapora-
tive transition layers as well as the diffusivity of the heavy
water molecules in vapour represent further uncertainties in
the estimation of the isotopic composition of the evapotran-
spiration flux as well as for the ocean evaporation flux. As
shown in Table1 the spread of the non-equilibrium frac-
tionation factors for bare soil and ocean evaporation found
in the literature is large. Generally, a wind speed dependent
description of the non-equilibrium fractionation process is
used for ocean evaporation (Merlivat, 1978; Cappa et al.,
2003). For high wind speeds the water vapour transport is the
same for all the isotopes. For small wind speeds, molecular
diffusivity has a more pronounced impact on water vapour
transport, which leads to non-equilibrium isotopic fractiona-
tion. For continental evaporation, small-scale turbulence may
even enhance rather than suppress non-equilibrium fraction-
ation (Lee et al., 2009). Based on their Lagrangian anal-
ysis of isotope measurements in Israel,Pfahl and Wernli
(2009) suggested a wind speed independent formulation of
the non-equilibrium fractionation factor for wind speeds be-
low 15 ms−1. For soil evaporation from wet soils, the mois-
ture transfer is controlled by the atmospheric conditions and
the same non-equilibrium factors as for an open water surface
can be applied (Mathieu and Bariac, 1996). For dry soils, the
transfer is dominated by soil characteristics and the transport
of water vapour is primarily controlled by molecular diffu-
sivity in the soil. From cryogenically collected soil vapour
dataBraud et al.(2009a) find that the non-equilibrium frac-
tionation factor is not constant in time and seems to depend
on the shape of the vertical soil water isotopic profile.

In this paper we present a Lagrangian analysis of laser-
basedd measurements (Aemisegger et al., 2012) in conti-
nental boundary layer water vapour in northeastern Switzer-
land at the hydrometeorological measurement station Ri-
etholzbach (Seneviratne et al., 2012). Five months of hourly
d averages of 5 s measurements are analysed and interpreted
using the corresponding diagnosed remote moisture source
hr

s and skin temperature (T r
s ) as well as measured localh`

s
andT `

s (see Table2 for a summary of the variable names).
The goal of this study is to tackle the question whether the
isotopic composition of continental boundary layer moisture
can be considered as a tracer for the evaporation conditions
hr

s andT r
s .

More specifically, the three main aspects addressed are(1)
the impact of the boundary layer dynamics on the timescale
of low-level moisture memory of evaporation conditions; (2)
the influence of land surface processes like recycling and
evapotranspiration on thed–hr

s and thed–h`
s relations of con-

tinental boundary layer water vapour and (3) the use of the
d–hs relation for estimating the partitioning of continental
evapotranspiration in soil evaporation and plant transpiration.

In the following we present the measurement site as well
as the measurement techniques used in this study (Sect.2),
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Table 1. Comparison of kinetic fractionation factorsαk found in the literature, for 10 m wind velocities betweenu10m= 0 s andu10m=

12 ms−1 (values show the minimum to maximum value in this range of wind velocities).

Study Study Body (αk
− 1) · 1000 [‰]

δ2H δ18O

Merlivat and Jouzel(1979) lab open water 3.08–6.82 2.70–6.01
Cappa et al.(2003) lab open water 1.73–3.90 3.47–7.65
Pfahl and Wernli(2009) field open water 3.92 7.56
Mathieu and Bariac(1996) model bare soil 16.76 (wet), 25.12 (dry) 18.72 (wet), 28.07 (dry)

Table 2.Description of variable names used in the text.

Variable name Description

hs relative humidity with respect to skin temperature
hr

s remotehs diagnosed using the Lagrangian moisture source diagnostics
h`

s localhs measured at Rietholzbach
h`

2m h with respect to 2 m temperature measured at Rietholzbach
Ts skin temperature
T r

s remote skin temperature diagnosed
using the Lagrangian moisture source diagnostics

T `
s local skin temperature measured at Rietholzbach

T `
2m local 2 m air temperature measured at Rietholzbach

d deuterium excess measured at Rietholzbach
dr

s diagnosed deuterium excess of the remote moisture source
d`

s diagnosed deuterium excess of the local moisture source
do deuterium excess of ocean water
dc deuterium excess of continental surface water (soil moisture)
dp deuterium excess of precipitation

then we briefly introduce the applied moisture source identi-
fication method in Sect.3 and discuss the moisture sources
of water vapour at the Rietholzbach site between August and
December 2011 identified with our Lagrangian approach in
Sect.4. The timescale and modes of anticorrelation between
hs andd is discussed in Sect.5. The occurrence and charac-
teristics of events of high anticorrelation between localh`

s or
remotehr

s andd is analysed in Sect.6. From the analyses of
these events we deduce and present a method for quantifying
the transpiration fraction of the continental evaporation flux
using deuterium excess measurements and the Lagrangian
moisture source diagnostics (Sect.7).

2 Measurements from the site Rietholzbach

The isotopes and hydrometeorological measurements used in
this study were performed at the Rietholzbach site, situated in
the northeastern Swiss Prealps (Seneviratne et al., 2012). The
water vapour isotope measurement system was set up during
5 consecutive months (1 August 2011 to 31 December 2011)
for hourly measurements at the Rietholzbach site in a lysime-
ter cellar. The instrument used is a Picarro L1115-i cavity
ring-down laser spectrometer. For hourly measurements, the

precision of the measurement system ford is 0.3‰ and the
accuracy is 3.1‰ (seeAemisegger et al., 2012, for techni-
cal details). The inlet on the measurement field is at∼1.5 m
height and consists of a rain protection and a 5 mm stain-
less steel filter (Fig.2a). A heated PTFE tubing at 70◦C (6 m
long with an inner diameter of 10 mm) leads to the instru-
ment in the cellar. Figure2c shows a schematic of the flow of
ambient air through the measurement system. The main 6 m
tubing is flushed by a membrane pump with a throughflow of
9 Lmin−1. The internal pump of the laser instrument induces
a flow of 25 mLmin−1 through the instrument. The typical
travel time of a water molecule from the inlet to the outflow
of the measurement system is∼1 min.

Calibration was done two times a day with each time
two standards at 03:00 UTC and 15:00 UTC. During the
night calibration period, four calibration runs with two stan-
dards and two different water vapour mixing ratios were
performed. The water vapour mixing ratios were chosen at
3000 ppmv above and 3000 ppmv below the ambient water
vapour mixing ratio of the previous 15 min of ambient air
measurements. During the daytime calibration period only
two calibration runs were performed at the ambient water
vapour mixing ratio with the two standards. If variations in
water vapour mixing ratios during the day were>1000 ppmv,
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Table 3. Isotopic composition of the standards used for calibration
of the laser water vapour isotope measurements for 1 August 2011
to 18 November 2011 (period 1) and 18 November 2011 to 31 De-
cember 2011 (period 2).

Standard 1 Standard 2
period 1 period 2 period 1 period 2

δ2H −78.68 ‰ −78.68 ‰ −153.90 ‰ −256.11 ‰
δ18O −10.99 ‰ −10.99 ‰ −24.89 ‰ −46.02 ‰

the measurements were corrected for water vapour mixing
ratio dependency (seeAemisegger et al., 2012). The wa-
ter vapour mixing ratio correctedδ18O andδ2H measure-
ments were then normalised to the international VSMOW2–
VSLAP2 scale (IAEA, 2009) using the known reference
standards with a linear relation between the measured stan-
dardδ values and their reference value (Table3). The d =

δ2H − 8 · δ18O was obtained from the calibratedδ measure-
ments. The 5 s calibrated water vapour measurements were
averaged to hourly isotope and water vapour mixing ratio
data.

Bi-weekly accumulated water samples from the lysimeter
outflow were measured by IRMS on a DeltaPLUSXP mass
spectrometer (Thermo Fisher Scientific Inc., Germany) for
the whole measurement period.

3 Lagrangian moisture source diagnostic

An established moisture source diagnostic (Sodemann et al.,
2008a) is used in this paper to identify thehr

s andT r
s condi-

tions at the evaporative sources of atmospheric water vapour
analysed for its isotopic composition at the Rietholzbach site.
This Lagrangian tool is based on the diagnosis of changes in
specific humidity along backward trajectories started at the
location of measurement. Lagrangian techniques have been
used in previous studies for the interpretation of stable wa-
ter isotope measurements especially in precipitation (Rinds-
berger et al., 1983; Anker et al., 2007; Barras and Simmonds,
2008; Sodemann et al., 2008b) but also in water vapour (Gat
et al., 2003; Lawrence et al., 2004; Strong et al., 2007; Pfahl
and Wernli, 2008).

The first step in the identification procedure of moisture
sources is the trajectory calculation as described in Sect.3.1.
Then the moisture source diagnostic tool to identify the mois-
ture sources (uptake points) and the meteorological con-
ditions at the source locations is applied as presented in
Sect.3.2.

3.1 Trajectory calculations

Two different model data sets have been used in this paper
to compute kinematic three-dimensional backward trajecto-
ries using the method ofWernli and Davies(1997). On the

global scale we used 6-hourly data from the ERA-Interim
reanalyses (Dee et al., 2011) interpolated on a horizontal
grid with a grid spacing of 1◦. On the regional scale we
used hourly analysis data of the limited-area model COSMO
(Doms and Schättler, 2002; Steppeler et al., 2003) provided
operationally by MeteoSwiss with 7 km horizontal grid spac-
ing.

The measurement site Rietholzbach is situated in north-
eastern Switzerland (47.38◦ N, 8.99◦ E) at an elevation of
755 ma.s.l. (Seneviratne et al., 2012). Five horizontal starting
points were selected for the trajectories in a cross arrange-
ment with the location of the isotope measurement station
Rietholzbach in the centre of the cross. The four points defin-
ing the cross edges were shifted by 0.2◦ in the meridional and
zonal direction from the measurement site, respectively.

A constant maximum starting height of 1800 ma.s.l. was
set to cover a representative part of the lower troposphere,
where the water vapour isotope measurements were con-
ducted. Seven vertical levels were thus selected as start-
ing points for the COSMO trajectories, corresponding to
every second model level between levels 1 and 13 (be-
tween 780 ma.s.l. and 1800 ma.s.l. every ∼ 150 m). With
this setting, in total 35 trajectories were computed five days
backward in time for every hour in the period August to
December 2011 using COSMO analysis fields. With the
ERA-Interim analysis data every second model level was
chosen between levels 1 and 11 (between 780 ma.s.l. and
1800 ma.s.l. every∼ 200 m) leading to 25 trajectories that
were computed ten days backwards in time every six hours
for the same time period. Several meteorological variables
including specific humidity, 2 m temperature, 2 m dew point
temperature, skin temperature, and boundary layer height,
were interpolated along the backward trajectories from both
models for the Lagrangian diagnostic and further analysis. In
general, ERA-Interim surface conditions and observational
data sets have been shown to be in good agreement (Sim-
mons, et al., 2010; Pfahl and Niedermann, 2011).

3.2 Moisture source diagnostic

The Lagrangian moisture source analysis used in this study
was developed bySodemann et al.(2008a) for identifying
moisture sources of precipitation. The same diagnostic tool
was applied inPfahl and Wernli(2008) for the interpretation
of water vapour isotope data. With this technique, evapora-
tion sites of the moisture can be identified by following the
air parcels back in time and registering changes in specific
humidity along the trajectories. Positive increments in spe-
cific humidity along trajectories for a given time increment
(1 h for COSMO and 6 h for ERA-Interim) are regarded as
moisture uptakes from the underlying surface at the centre
of the corresponding trajectory segment. Each uptake loca-
tion is weighted according to its contribution to the final hu-
midity of the trajectory. If a decrease in specific humidity
(i.e., precipitation) occurs along a trajectory after one or more
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Fig. 2.Setup of the laser spectrometer at the Büel measurement site of the research catchment Rietholzbach.(a) Inlet of the sampling system.
(b) Setup of the Picarro L1115-i cavity ring-down laser spectrometer in the cellar of the measurement field.(c) Flow diagram of the setup
including the inlet and the laser spectroscopic measurement system.

uptakes, the weights of the previous uptakes are discounted
(seeSodemann et al., 2008a, for a detailed description). For
each backward trajectory, the meteorological conditions at
the uptake points are averaged over all identified uptakes us-
ing the weights determined from the specific humidity con-
tribution. For a given measurement, the moisture source in-
formation from all 35 (COSMO) or 25 (ERA-Interim) trajec-
tories is averaged, weighted by the specific humidity at each
trajectory’s starting point.

The moisture source diagnostic was used for both sets of
trajectories calculated with the COSMO analyses and the
ERA-Interim reanalysis data. Moisture sources were thus ob-
tained every hour using COSMO analysis fields and every
6 h using ERA-Interim. The sensitivity of our results to the
choice of the analysis data is discussed in AppendixD1. Esti-
mates of water residence time in the atmosphere from global
model simulations are∼8 days (Trenberth, 1998). Thus the
moisture sources identified with the 10-day backward trajec-
tories calculated with ERA-Interim should largely cover the
sources of the moisture sampled at the Rietholzbach site.

An important parameter in the moisture source diagnos-
tic is the maximum altitude at which we consider an uptake

to be vertically linked to surface evaporation. Originally this
parameter was chosen to be dependent on the boundary layer
height (Sodemann et al., 2008a). Detailed inspection of in-
dividual cases along our trajectories however show that due
to shallow convection air parcels can experience uptakes with
a clear vertical link with ground evaporation, even though oc-
curring well above the boundary layer (Aemisegger, 2013).
In these cases, the vertical link is due to convective mixing of
boundary layer air upward in the atmospheric column. Thus
no use of a maximum uptake height for the present study is
applied. As shown in AppendixD2, the impact of the choice
of the maximum uptake height on our analysis is very small
and does not change the interpretation of our results.

4 Moisture sources and source conditions of the water
vapour analysed in Rietholzbach between August and
December 2011

4.1 Geographical distribution of moisture sources

In this section, the moisture sources obtained from trajec-
tories calculated with COSMO analyses and ERA-Interim
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Fig. 3. Monthly average moisture sources between August and December 2011 identified using ERA-Interim (left) and COSMO analyses
(right). Colour coding indicates percental contributions to the final specific humidity per km2 (w). The integral over the entire moisture
source region sums up to 100 % of the explained moisture at the Rietholzbach site. The white cross indicates the location of the isotope
measurement site Rietholzbach. The COSMO domain is indicated by a curved black frame.

reanalyses for thed measurements between August and De-
cember 2011 are presented and compared. Figure3shows the
monthly average moisture sources identified for the measure-
ment period using ERA-Interim (left column) and COSMO
analysis data (right column). The panels show the percental
contribution per km2 of the moisture sources to the specific
humidity at the measurement site. With COSMO, the “ex-
plained fraction”, i.e., the part of the moisture for which
our diagnostic can identify the sources, amounts to 71 %.
Because of the global domain, this fraction increases when

using ERA-Interim data to 88 %. When considering only
the domain of the regional model, the integrated monthly
moisture source distributions between August and Decem-
ber 2011 obtained with ERA-Interim agree very well with
those identified with the COSMO analyses. When looking
at the global picture, the limitation of the COSMO domain
has its largest impact in September, November and December
(Fig.3c versus d, g versus h and i versus k). In September and
December the moisture source analysis using the regional
model data misses parts of the moisture sources over the
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Fig. 4. Distributions ofh`
2 m measurements at the Rietholzbach site

with respect to 2 m temperature in blue,h`
s measurements with re-

spect to soil temperature 5 cm below ground in red. The distribu-
tion of diagnosed moisture sourcehr

s using COSMO analyses is
shown by the black solid line, the diagnosed moisture sourcehr

s us-
ing ERA-Interim data is shown by the black dashed line. All the
distributions are shown for the complete data set from August to
December 2011.

western Atlantic just outside the model domain. In November
(Fig.3d) the sources in the eastern Mediterranean are outside
of the regional model domain. The average distance to the
moisture source diagnosed with COSMO for the whole pe-
riod is∼500 km, whereas this quantity obtained for the same
period using ERA-Interim is more than three times larger.

Contributions from ocean evaporation are estimated in the
range 10–30 % using COSMO and 35–55 % using ERA-
Interim. The correlation between the time series of the
ocean evaporation contribution based on COSMO and ERA-
Interim is 0.77, indicating that even if the exact amplitude is
different, the temporal variability of the ocean contribution is
similar in the two data sets.

The moisture sources obtained for vapour at the mea-
surement station Rietholzbach between August and Decem-
ber 2011 compare very well in terms of general patterns with
the 7 yr climatology of precipitation moisture sources for
the Alpine region from January 1995 to August 2002 com-
piled by Sodemann and Zubler(2010). We also find strong
regional moisture recycling over the Alpine region in sum-
mer, an important contribution of the Eastern Mediterranean
during autumn and predominantly North Atlantic moisture
sources in winter. However, the importance of land surface
evaporation seems to be much larger in the present study than
expected from the climatology. The main reason for this dis-
crepancy might be that precipitation forms at higher altitudes
where the remote moisture sources certainly become more
important than for the near-ground moisture.

Moisture sources identified with COSMO analyses under-
estimate the ocean contribution (mainly due to the limited
domain), whereas it is possible that the moisture source di-
agnostics applied to ERA-Interim data overestimates it due to
the relatively low temporal and spatial resolution of the data.
The interaction between the continental near-surface vapour
and the air parcels in ERA-Interim is treated in a coarser way
due to the 6 h temporal and∼1◦ spatial resolution.

4.2 Conditions at the moisture sources

The conditions at the moisture source were obtained as de-
scribed in Sect.3.2 by weighting the individual moisture
sources depending on their contribution to the specific hu-
midity of the air parcel at the point of measurement. The sta-
tistical properties ofhr

s at the moisture source differ from
point measurements ofh`

s.
Thehr

s conditions derived from the moisture source diag-
nostics (Sect.3.2) are characterised by lower variability than
the locally measuredh`

s conditions (Fig.4). The variability in
the diagnosed sourcehr

s is also smaller than what has previ-
ously been found for water vapour sources in Rehovot, Israel
(Pfahl and Wernli, 2008). Due to the mixing of different air
masses during transport and the spatial extent of the mois-
ture origin, the diagnosed source signals are expected to be
smoother than local humidity signals. The distributions ofhr

s
at the moisture sources as identified by COSMO and ERA-
Interim are however very similar.

The distribution of the measuredh`
s with respect toT `

s (red
curve in Fig.4) is shifted towards lower relative humidities
compared to the distribution of measuredh`

2 m normalised to
T `

2 m (blue curve in Fig.4). This is especially the case in win-
ter and during the night in summer, when the soil is warmer
than the air. The regular occurrence of fog leads to very high
values ofh`

2 m and somewhat lower values ofh`
s. We can ex-

clude any effect of snow cover on the observed difference
betweenh`

s andh`
2m, as only a short period with snowfall not

resulting in lasting snow cover occurred in December 2011.
The relative humidity driving soil evaporation is probablyh`

s.
However, for transpirationh`

2 m may better describe the con-
trolling humidity gradient. Since at the daily timescale tran-
spiration does not fractionate, we focus onhs here to study
the effects of soil evaporation ond of continental boundary
layer water vapour.

In the following,d measurements in water vapour are in-
terpreted with the diagnosed moisture source conditions from
trajectories calculated using COSMO analysis data. The fo-
cus of our interest in interpretingd measurements in bound-
ary layer water vapour is on the effects of continental mois-
ture recycling, which justifies the use of the higher-resolution
regional model rather than the global model as a basis for the
analysis. The sensitivity of our results to the choice of the
analysis data set is discussed in AppendixD1.
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Fig. 5. (a) Time series of hourly averages ofd measured in Ri-
etholzbach in violet, moving average over 5 days in dark blue, lo-
cally measuredh`

s, T `
s and latent heat fluxFLH . h`

s for the local
measurements is computed from 2 m dew point measurements and
normalised with respect toT `

s , whereT `
s is the soil temperature

5 cm below ground.(b) Time series ofhr
s andT r

s diagnosed at the
moisture source.

5 Modes of anticorrelation betweenhs, Ts and d

5.1 Anticorrelation timescale betweend and moisture
sourcehr

s and T r
s

The hourlyd measurement series between August and De-
cember 2011 in Fig.5 shows strong variability between 0 ‰
and 30 ‰. In summer, fairly clear daily cycles can be dis-
tinguished (Fig.6a). Local processes such as boundary layer
mixing, entrainment of free atmospheric air and evapotran-
spiration (see local latent heat flux in Fig.5) dominate the
variability at the subdaily timescale in the warm season as
well as in certain periods of high pressure influence and weak
horizontal pressure gradients in autumn (e.g. in late Novem-
ber). The drivers of these local processes have also been dis-
cussed inLai and Ehleringer(2011) andWelp et al.(2012).
A second variability component with a timescale of a few
days, associated mainly with changing large-scale weather
conditions, is indicated by the dark moving averaged line
in Fig. 5a. This synoptic-scale variability component acts as
a low-frequency modulator of the dailyd cycle in the warm
season and appears to dominate thed signal in autumn and
winter (Fig.6b), when the diurnal variability is reduced. This
d variability component is dominated by processes at the
remote moisture source (Pfahl and Wernli, 2008; Pfahl and
Sodemann, 2014).

When analysing the whole time period at the hourly
timescale,d and h`

s are not correlated (0.02). In contrast,

Fig. 6. Close-up of thed time series of Fig.5a measured at
Rietholzbach in violet andh`

s (a) respectivelyhr
s (b) in blue

for (a) summer (28.08.2011 to 07.09.2011) and(b) late autumn
(02.12.2011 to 10.12.2011).

a weak anticorrelation (−0.34) is found betweend andhr
s

as predicted by theory (see Sect.1 and Fig.1). This suggests
that the average evaporation conditions of the advected mois-
ture have been identified reasonably well using the COSMO
trajectories and that remotehr

s conditions at the moisture
sources are more important than localh`

s variations to ex-
plain the variability ofd. Thus, this result shows that overall
at the hourly timescale the effect of the large-scale moisture
sources is more important for thed signal than the effect of
local evapotranspiration.

Daily boundary layer mixing processes and local evapo-
transpiration however affect the strength of thed–hr

s relation-
ship. The influence of local boundary layer processes, which
are essentially regulated by the incoming solar energy and
the energy budget at the surface, can be filtered out by using
a uniform averaging timescale of 24 h ford. A 5-day moving
window correlation betweend andhr

s was computed over the
5 months of 24 h filteredd data. A window of 5 days for the
computation of the moving correlation is regarded as rep-
resentative for two reasons. On the one hand it reflects the
timescale of typical weather situations. On the other hand
it makes it possible to treat the data robustly in a statisti-
cal sense, which involves keeping a representative number
of data points. Slightly shorter and longer time windows for
the computation of the moving correlation yield qualitatively
similar results.

The 24 h filteredd andhr
s for the whole 5-month period are

more strongly anticorrelated (−0.47, Fig.7) than the hourly
data (−0.34). In the warm season (T r

s > 10◦C), linear regres-
sion of the 24 h filtered signals ofd andhr

s yields a slope
of −0.17 ‰%−1, which is flatter than the slopes found in
the literature and discussed in Sect.1. In the cold season
(T r

s < 10◦C) thed sensitivity onhr
s is much stronger than

in summer with−0.57 ‰%−1, which is slightly larger than
what Pfahl and Wernli(2008) (−0.53 ‰%−1) andUemura
et al. (2008) (−0.52 ‰%−1) found for the eastern Mediter-
ranean and the Southern Ocean, respectively.
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Fig. 7. (a) Time series of 24 h moving average filteredd sig-
nal (blue) measured between August and December 2011 at Ri-
etholzbach and the 24 h filtered diagnosed sourcehr

s using COSMO
trajectories (red).(b) Scatter plot for thed andhr

s signals from panel
a. The colour coding indicates skin temperature at the moisture
source. The correlation betweend andhr

s is−0.47. For the cold sea-
son (T r

s < 10◦C) linear regression yieldsd = −0.57·hr
s+61 (blue

line), which implies an average sourcedr
s of 4 ‰. For the warm sea-

son (T r
s ≥ 10◦C) the linear regression yieldsd = −0.19· hr

s+ 30
with an average sourcedr

s of 11 ‰ (red line).

The intersection of the linear regression ofhr
s on d with

hr
s = 100% provides information on the averagedr

s of the
moisture source, as equilibrium fractionation does not alter
d (see AppendixA). The average sourcedr

s(h
r
s = 100%) di-

agnosed from linear regression in Fig.7 is smaller in the
cold season (4 ‰) than in the warm season (11 ‰). In winter
large-scale advection dominates thed variability and conti-
nental moisture recycling is weak. In the warm season, the
largerdr

s points towards much stronger continental moisture
recycling and less large-scale advection of water vapour di-
rectly evaporated from the ocean (for whichdr

s = do ≈ 0 ‰).
Continental recycling increasesd as the soil moisturedc is
generally higher than oceando if at least part of the con-
tinental evaporation occurs in the form of soil evaporation
and if there is loss of soil water by drainage. Otherwise,d

for ocean evaporation and evapotranspiration are globally
approximately the same. Monthly precipitation samples at
the Global Network for Isotopes in Precipitation Network

(GNIP) stations show adp of on average around 10 ‰ (Dans-
gaard, 1964). Knowing that precipitation forms the soil mois-
ture implies higherd`

s for the moisture source of land evapo-
ration than for ocean evaporation.

Figure7 clearly shows that during certain periods the an-
ticorrelation betweend andhr

s is stronger than during other
periods. To investigate the effects of moisture advection and
recycling on the 24 h filteredd–hr

s andd–h`
s relationships at

the synoptic timescale in more detail, we identified periods
which are more strongly affected by remote or local evapora-
tion using the 5-day moving window correlation time series
betweend andhr

s respectivelyh`
s. This aspect will be anal-

ysed and discussed in the next section.

5.2 Moving window anticorrelations: identification of
time periods affected by remote and local
evaporation

The influence of moisture advection ond at the daily
timescale is investigated by performing a correlation analy-
sis ofd measurements with the diagnosed remotehr

s andT r
s .

The three data seriesd, hr
s andT r

s were uniformly smoothed
with a 24 h filter. The influence of local moisture recycling
on d at the daily timescale is analysed using the measured
local h`

s andT `
s . In the moisture source diagnostics the con-

tribution of evaporation sites are weighted depending on their
contribution to the final humidity of the air parcel. To be con-
sistent with this weighting scheme for the remote sources,
we weighted the localh`

s andT `
s data with the latent heat

flux measurements at Rietholzbach when computing the 24 h
moving averages. The results are qualitatively the same as if
no such weighting were performed.

In Fig. 8 the 5-day moving window correlations between
d andhs as well asd andTs are shown. In Fig.8a, 5-day
time periods with corr5 d(h

r
s,d) ≤ −0.5 are identified and re-

ferred to as high remote anticorrelation (HRA) events. In
these cases, the local water vapour carries a distinguish-
able imprint of the evaporation conditions at remote mois-
ture source locations. In Fig.8b, 5-day time periods with
corr5 d(h

`
s,d) ≤ −0.5 are identified as high local anticorrela-

tion (HLA) events, because the humidity carries thed signal
of local to regional evaporation. During HLA periods, the
local measurements ofh`

s andT `
s are representative for the

conditions of evaporation at the moisture source. The tempo-
ral correlation structure of locally measured and diagnosed
remoteTs with d as well ashs with Ts are also shown in
Fig. 8a and b to investigate the role ofTs for d and to allow
the detection of potential cross-correlation effects.

The anticorrelation betweend and diagnosedhr
s at the

source identified in Fig.8a (uppermost axes) strengthens
towards autumn and winter. The increasing importance of
large-scale moisture advection towards winter and the lower
contribution of local evaporation to the regional moisture
budget probably explains this strengthening. However, the
influence of local evaporation is probably not negligible even
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Fig. 8. (a)Five-day moving window correlation between 24 h filteredd measurements and moisture sourcehr
s andT r

s conditions. The orange
band in the corr5 day(h

r
s,d) plot identifies HRA events. Time periods with 0.5 > corr5 day(h

r
s,d) > −0.5 are identified as NRA events. The

black solid line in the corr5 day(h
r
s,d) plot represents a linear fit to the moving window correlation curve. The straight blue and red lines show

corr5 day(T
r
s ,d) = 0 and corr5 day(h

r
s,T

r
s) = 0. (b) As in (a) but moving window correlations are shown for local conditions. A few selected

HRA and HLA events in(a) and(b) are marked by orange vertical lines (see text for details). The grey vertical line (N) indicates a 5-day
period in which we find no anticorrelation ofd either with locally measuredh`

s or with remotehr
s. The dates for the HRA and HLA events

are given in Tables5 and6, respectively.

in winter (Fig.5). The same strengthening tendency but with
a weaker trend as for the anticorrelation betweend andhr

s is
found for the anticorrelation betweend and localh`

s (Fig.8b,
uppermost axes). This can be explained by the weakening
effect of transpiration, which can be assumed to be non-
fractionating at the timescale of 1 day (Harwood et al., 1999).
Furthermore, the fact that the anticorrelation between local
h`

s andd is also strong in winter may indicate more homo-
geneous temperature and humidity conditions over western
Europe and the North Atlantic than in the warm season. In-
deed the correlation of localh`

s and diagnosed remotehr
s is

generally low (0.04) from August to November and some-
what higher (0.3) in December during the concurrent HRA
and HLA periods.

During HRA and HLA events,Ts andd are mostly either
strongly correlated or anticorrelated (high|corr5 d(Ts,d)|).
The fact that the sign of corr5 d(Ts,d) is changing how-
ever shows that there is no consistent relation betweenTs
andd. Furthermore, during HRA or HLA events with high

|corr5 d(Ts,d)| there is often a strong correlation or anticorre-
lation signal betweenhs andTs (high|corr5 d(hs,Ts)|). Cross-
correlation effects withhs thus probably affect the correla-
tion structure ofTs with d. The first and the second HRA
events in August (events 1 and 2 in Fig.8a, see Fig.9a and
b for the corresponding moisture sources) occur in combi-
nation with high corr5 d(T

r
s ,d) and anticorrelatedT r

s andhr
s,

which could be related to shallow convection and precipita-
tion at the moisture source locations. In the 10 days preced-
ing HRA events 1 and 2 rain occurred at the moisture source
sites according to the European daily precipitation data set
(E-OBS; Haylock et al., 2008, not shown). Clouds and pre-
cipitation cool the surface and moisten the boundary layer
leading to highhs. After the precipitation event, clouds clear
up, the ground heats up again and the relative humidity de-
creases, partly due to the warming, partly due to the reduced
humidity input. In winter, in contrast, HRA events occur in
combination with highly anticorrelatedT r

s andd and highly
correlatedhr

s andT r
s . This pattern is typical over mid-latitude
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Fig. 9. Integrated moisture sources diagnosed for the HRA events 1 to 5, 15, 19 and 20 discussed in the text. The colour coding indicates
percental contribution to the final specific humidity per km2 (w). The integral over the entire moisture source region sums up to 100 % of the
explained moisture at the Rietholzbach site (white cross).

ocean regions (Pfahl and Niedermann, 2011) due to the con-
currence of cold air advection and subsidence bringing dry
air into the boundary layer (HRA events 19 and 20, see
Fig.9g,h for the corresponding moisture source distribution).
Warm and moist air advection from the Mediterranean (HRA
events 3, 4 and 15, see Fig.9c,d,g) can also result in high
corr5 d(h

r
s,Ts). Strong changes in the geographical location

of the moisture sources over the time frame of a HRA event
can be a further cause of high corr5 d(h

r
s,Ts) if the large-

scale advection pattern changes from a cold dry region to
advection from a warm moist region. Occasionally, when the
temperature variability is very small, HRA events occur with
no concurrent correlation betweenT r

s andd (HRA event 5,
Fig. 9).

A further confirmation thatTs may not be a very good
proxy for d in our study is the fact that the overall cor-
relation between hourly changes ind and hourly changes

in δ2H is very small (corr(1d
1t

, 1δ2H
1t

) = 0.01 for 1t = 1 h).
The correlation between hourly changes ind and δ18O is

corr(1d
1t

, 1δ18O
1t

) = −0.3. The temperature-dependent effect
of equilibrium fractionation onδ2H is 8 times stronger
than that onδ18O. For δ18O the variables controlling the
non-equilibrium effect are important, whereas the non-
equilibrium effect onδ2H is relatively smaller. Thus, vari-
ations ind that are mainly driven by large changes inδ2H
will have a stronger temperature dependency than variations
in d that are mainly driven byhs-induced changes inδ18O.
However, variations ind that are mainly driven by changes in
δ18O should rather reflecthr

s changes at the moisture source.
The higher correlation between the temporal changes inδ18O
andd than forδ2H andd found in our data indicates thatd

should rather be interpreted as a proxy forhr
s in this study,

which is consistent with the more detailed analysis above.
As shown in AppendixD1, the majority of the HRA events

are found both when using COSMO or ERA-Interim data
to compute the backward trajectories. The reasons for the
identification of a few HRA events only if using COSMO
as well as the identification of additional HRA events with
ERA-Interim are discussed in AppendixD1.
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Table 4. Median values of the conditions during HRA and NRA events(a) and during HLA and NLA events(b). The ocean moisture
source contribution, the source distance, the explained fraction and the specific humidity at the source are properties of the moisture source
diagnostics (MSD in the Type column, see Sect.3.2). The boundary layer height (BLH) was interpolated to the Rietholzbach site from the
COSMO model. LH denotes the latent heat flux measured locally at Rietholzbach (indicated by RHB in the Type column). Negative CO2
fluxes are downward. Numbers in bold indicate statistically significant differences between the median of the HRA and NRA distributions
in (a) and between HLA and NLA distributions in(b) according to a Wilcoxon rank sum test (Gibbons and Chakraborti, 2011). For the
ocean contribution and the source distance the difference is shown only for the cold season as for the whole time period the difference is not
significant.

(a)
HRA NRA Type

Ocean contribution for 1 Nov to 31 Dec 28 % 23 % MSD
Source distance for 1 Nov to 31 Dec 644 km 413 km MSD
Soil moisture anomaly 5 cm −0.7 % −4.2 % RHB
Specific humidity at the source 9.4 gkg−1 6.0 gkg−1 MSD
Local LH at 11:00–13:00 UTC 98 Wm−2 108 Wm−2 RHB
Local BLH at 11:00–13:00 UTC 709 m 1500 m COSMO

(b)
HLA NLA Type

Soil moisture anomaly 5 cm 3.1 % −4.2 % RHB
Cumulative precipitation 453 mm 312 mm RHB
10 m wind 1.4 ms−1 0.9 ms−1 RHB
CO2 flux for 1.8 to 30.9 at 11:00–13:00 UTC −0.75 mgm−2s−1

−0.81 mgm−2s−1 RHB
BLH at 11:00–13:00 UTC 818 m 620 m COSMO

5.3 Differences between anticorrelation and
no-anticorrelation events

HRA and HLA events can occur simultaneously in some
cases (e.g. HRA event 4 and HLA event 7 in Fig.8a and
b) if the localh`

s variations are representative for the mois-
ture source region. HLA event 1 occurs during a period with
no correlation between the diagnosed moisture sourcehr

s and
the measuredd. Periods such as HLA event 1 can clearly be
identified as being influenced by local processes.

Periods without anticorrelation ofd with locally measured
h`

s (referred to as no local anticorrelation, NLA, events) or
with remotehr

s (no remote anticorrelation events, NRA) can
be found over several successive 5-day periods (see e.g. grey
line in Fig. 8). In summer and early autumn, these periods
may be associated with a very high transpiration contribution
to the land surface latent heat flux, which lowers the sensi-
tivity of d to hs as it can be assumed to be non-fractionating
over the timescale of 1 day (see also Sect.6). In November
such periods of concurrent NLA and NRA could be associ-
ated with shorter typical correlation time periods than 5 days
or strongly changing day-to-day moisture sourcedr

s, which
alters the characteristics of thed–hs relation. In principle,
periods of no correlation betweend and remotehr

s may also
occur due to errors in the Lagrangian moisture source analy-
sis or due to additional influences ond such as strong below-
cloud evaporation of precipitation.

During HRA events, the dominance of large-scale advec-
tion to the site of isotope measurements over local bound-
ary layer processes and local recycling is also reflected by
smaller latent heat flux as well as a smaller boundary layer
height at the measurement site compared to NRA events (Ta-
ble 4a). Furthermore, local soil moisture at the Rietholzbach
measurement site during HRA events indicates much dryer
conditions than during HLA events. During the cold season,
HRA events are connected to more distant moisture sources
and higher ocean contribution.

Specific humidity at the evaporation site (Table4a) indi-
cates wetter conditions during uptake for HRA periods than
during NRA periods. In summer and over land, recent rainfall
can lead to a temporal reduction of transpiration and stronger
contribution of soil evaporation (Yepez et al., 2005; Shim
et al., 2013). This aspect is confirmed by the analysis of the
characteristics of the HLA events. The 5 cm soil moisture and
local precipitation during HLA events is higher than in the
case of NLA events (Table4b). Moist soil conditions at the
measurement site thus strengthen thed–h`

s relation, due to
stronger bare soil evaporation and weaker transpiration. This
hypothesis is underlined by the lower local downward CO2
flux in summer and early autumn (reflecting reduced transpi-
ration) during HLA events than during NLA events. Further-
more, during HLA events, the local boundary layer dynamics
seems to be stronger than during NLA or HRA events with
higher boundary layer heights and stronger winds pointing
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towards an enhanced atmospheric forcing of local evapora-
tion (Table4b).

At our site, moisture sourcehr
s, local boundary layer dy-

namics, the partitioning of the latent heat flux over land into
soil evaporation and plant transpiration as well as precipita-
tion seem to play a key role in determining thed signal of
continental water vapour at the daily timescale. The role of
precipitation in influencing the strength and properties of the
d–hs relationship is fourfold:

1. In a quantitative sense, the amount and frequency of
occurrence of precipitation determines the wetness of
the soil.Mathieu and Bariac(1996) suggested the use
of larger non-equilibrium fractionation factors (αk

c) for
dry than for wet soils (see also Table1). Differences in
soil wetness and thus in the non-equilibrium fraction-
ation factor can lead to differences in the properties of
thed–hs relationship as will be discussed in Sect.6.

2. The occurrence of precipitation may play an impor-
tant role for HRA and HLA events in summer as men-
tioned above in the discussion of Table4a and b, due to
its momentary effect of reducing transpiration (Yepez
et al., 2005; Shim et al., 2013).

3. Precipitationd determinesdc of the soil moisture.
The global averagedp of precipitation is about 10 ‰
(Dansgaard, 1964). Recycled moisture from continen-
tal origin can produce precipitation samples withd >

10 ‰. This can affect the intercept of thed–hs rela-
tionship, as will be discussed in Sect.6.

4. The type of weather system producing precipitation is
relevant in determining thed signature of precipita-
tion. The moisture source area of moisture uptakes is
very different for frontal or cyclonic precipitation than
for purely convective or orographic precipitation sys-
tems (Barras and Simmonds, 2009; Guan et al., 2013).
This is an interesting topic for future research.

6 Thed–hs relation for moisture affected by continental
recycling

The d–hr
s scatter plot for all HRA events shown in Fig.10

reveals 5 to 10 ‰ higherd values for the samehr
s than in

the relation found byPfahl and Wernli(2008) in a region
with a dominant ocean evaporation contribution. The gener-
ally higherd values can be attributed to continental moisture
recycling, which increases thed of moisture by repeated bare
soil evaporation from soil water that typically has higherd

compared to ocean water (see also Sect.5.1).
A clear seasonal tendency can be identified in the proper-

ties of thed–hr
s relationship in Fig.10 (see also Table5).

In the warm season the slope is smaller with values be-
tween−0.16 ‰%−1 and−0.58 ‰%−1 (Table5), compared

Fig. 10. The d–hr
s relations for HRA events. The colour bar indi-

cates diagnosed ground temperatureT r
s at the point of evaporation.

The solid coloured and black lines are as in Fig.1. The dashed or-
ange line represents the linear regression of thed measurements
against the moisture sourcehr

s for T r
s ≥ 10◦C: d = −0.22·hr

s+ 33
and thus a sourcedr

s of 11 ‰. The dashed blue line represents the
linear regression of thed measurements using the moisture source
hr

s in winter forT r
s < 10◦C: d = −0.56· hr

s+ 60 and thus a source
dr

s of 4 ‰.

to −0.19 ‰%−1 for T r
s > 10◦C for the overall data series

of 24 h filtered data. In the cold season the slope is be-
tween−0.25 ‰%−1 and−1.10 ‰%−1 (Table5), compared
to −0.57 ‰%−1 for T r

s < 10◦C for the overall data series of
24 h filtered data. The extrapolated sourcedr

s (athr
s = 100%)

for HRA events is on average around 7 ‰ in summer and
around 2 ‰ in winter (Fig.10 and Table5). In summer and
fall the d–hr

s relation of continental moisture strongly de-
pends on the contribution of transpiration. For an increas-
ing fraction of transpiration to the total evapotranspiration
flux, assuming transpiration to be non-fractionating, thed–
hr

s slope becomes flatter (compare the orange and light blue
dashed lines in Fig.10). In the cold season transpiration is re-
duced and the evapotranspiration flux largely consists of soil
evaporation. The intra-seasonal variability in thed–hr

s slopes
and intercept is probably due to the variable contributions of
transpiration and the changing soil moisture properties im-
pacting the moisture sourcedr

s and the non-equilibrium frac-
tionation factors, which differ for wet and dry soils (Mathieu
and Bariac, 1996). Below-cloud interaction of precipitation
with ambient water vapour is another process that can influ-
ence thed–hr

s slopes and intercept by depleting the surround-
ing water vapour of heavy isotopes. Post-condensational ex-
change can thus lead to an increase ofd in vapour during
light rainfall ath < 100 % (Field et al., 2010).
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Table 5. Slope and intercept ofd–hr
s for HRA events. The whole HRA data set is shown in Fig.10 in a d–hr

s scatter plot. The columns
show the date of the events, the slope, the diagnosed sourcedr

s, the mean ground temperature and the ocean contributionfo during the events
(obtained from the moisture source diagnostic).ft shows the transpiration fraction of the evapotranspiration flux over the continental part
of the moisture source region (see Sect.7 for more details). The statistical significance level for the slope obtained by linear regression was
checked using at test with a 98 % confidence interval. Thep value for the regressions of all the events is smaller than 0.001.

HRA event Date Slope [‰%−1] dr
s [‰] T r

s [◦C] fo [%] ft [%]

1 14 Aug to 19 Aug −0.16± 0.01 11± 1 19.5 16 89
2 19 Aug to 24 Aug −0.35± 0.01 6± 1 23.2 13 68
3 29 Aug to 03 Sep −0.36± 0.06 5± 4 18.1 17 70
4 03 Sep to 08 Sep −0.51± 0.07 3± 5 18.6 21 57
5 09 Sep to 14 Sep −0.37± 0.06 5± 4 18.4 19 69
6 15 Sep to 20 Sep −0.26± 0.04 10± 3 15.2 15 78
7 20 Sep to 25 Sep −0.35± 0.06 9± 4 13.5 7 67
8 25 Sep to 30 Sep −0.58± 0.10 3± 8 13.7 4 49
9 01 Oct to 06 Oct −0.19± 0.01 11± 1 13.5 6 79
10 06 Oct to 11 Oct −0.31± 0.02 8± 2 12.1 28 81
11 11 Oct to 16 Oct −0.34± 0.05 11± 5 10.8 26 77
12 21 Oct to 26 Oct −0.25± 0.04 14± 3 6.0 18 83
13 27 Oct to 01 Nov −0.45± 0.08 5± 6 7.5 12 61
14 02 Nov to 07 Nov −0.76± 0.08 −2± 6 12.9 39 30
15 10 Nov to 15 Nov −0.44± 0.05 8± 4 4.1 8 60
16 18 Nov to 23 Nov −0.25± 0.03 15± 3 3.7 20 85
17 24 Nov to 29 Nov −0.67± 0.11 1± 9 2.1 15 43
18 02 Dec to 07 Dec −0.30± 0.05 7± 4 7.8 36 87
19 07 Dec to 12 Dec −0.83± 0.07 −7± 6 7.7 40 21
20 13 Dec to 18 Dec −0.60± 0.10 1± 7 5.4 33 50
21 18 Dec to 23 Dec −1.1± 0.05 −5± 5 2.3 27 0

When selecting only HRA data with a direct contribution
of ocean evaporation of more than 50 % the sensitivity of
d to changes inhr

s is −0.28 ‰%−1. The continental mois-
ture contribution for these events is still between 20 % and
50 %, which explains the weaker slope and the larger off-
set (dr

s = 36 ‰) than in the study ofPfahl and Wernli(2008)
(−0.52 ‰%−1).

The relationship betweend and locally measuredh`
s for

HLA events shown in Fig.11 also exhibits a seasonal cy-
cle in thed–h`

s slopes (see also Table6). In summer thed–h`
s

slopes of the HLA events are similar to the HRAd–hr
s slopes

(around−0.15 ‰%−1). However, for the HLA events asso-
ciated with cold temperatures thed–h`

s slopes remain rather
small, with a maximum negative value of−0.35 ‰%−1 in
December. The smallerd–h`

s slopes for HLA events (com-
pared tod–hr

s slopes for HRA events) may be explained
by higher local non-equilibrium fractionation factors (i.e.,
αk

c values), by a non-negligible contribution of transpiration
even in winter and the intense recycling process of moisture
condensing and freezing on the grass and soil during night
and evaporating again during daytime. In the cold season, the
sourced`

s for HLA events are higher than for HRA events.
The 2-weekly measurements ofd in the soil moisture (out-
flow of the lysimeter, TableA1) are comparable to thed`

s
diagnosed here for HLA events (Table6), even though the
2-weekly samples of course show a smoothed signal.

7 Estimates of the transpiration fraction of continental
evaporation from the d–hs relation

The d–hs relation obtained from boundary layerd mea-
surements and the Lagrangian moisture source identification
scheme provides a novel and useful framework to partition
the continental evaporation flux into transpiration and soil
evaporation. As already discussed, the slope of thed–hs re-
lation depends on the contribution of transpiration, soil evap-
oration and ocean evaporation. The theoretical slope of the
d–hs relation of continental evaporation (Fig.12a) can be
computed using theCraig and Gordon(1965) model under
the following assumptions:

1. The only source for boundary layer water vapour
is surface evaporation (closure assumption, see Ap-
pendixA for more details;Merlivat and Jouzel, 1979)
A sensitivity study on how the closure assumption is
applied (on each evaporation flux separately or glob-
ally) is given in AppendixC. Furthermore, as men-
tioned in Sect.1, the d–hs slope may be overesti-
mated when applying the closure assumption (Jouzel
and Koster, 1996). This implies that we may in turn
slightly underestimate the transpiration fraction with
our approach.
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Table 6. Slope and intercept ofd–h`
s relation for HLA events. The whole HLA data set is shown in Fig.11 in a d–h`

s scatter plot. The
columns show the date of the events, the slope, the diagnosed sourced`

s (local soil moistured signature) and the mean ground temperature.
ft shows the transpiration fraction of the evapotranspiration flux at the Rietholzbach measurement site (see Sect.7 for more details). The
ocean contribution for HLA events is set tofo = 0 as the moisture source is assumed to be local. The statistical significance level for the
slope obtained by linear regression was checked using at test with a 98 % confidence interval. Thep value for the regressions of all the
events is smaller than 0.001.

Event Date Slope [‰%−1] d`
s [‰] T `

s [◦C] ft [%]

1 03 Aug to 08 Aug −0.06± 0.01 14± 1 18.9 86
2 08 Aug to 13 Aug −0.19± 0.03 6± 2 18.0 75
3 16 Aug to 21 Aug −0.20± 0.03 12± 2 19.7 74
4 21 Aug to 26 Aug −0.06± 0.01 18± 1 20.4 86
5 26 Aug to 31 Aug −0.25± 0.03 9± 2 17.5 71
6 31 Aug to 05 Sep −0.07± 0.01 15± 1 18.3 84
7 05 Sep to 10 Sep −0.14± 0.02 8± 1 17.7 70
8 14 Sep to 19 Sep −0.07± 0.01 16± 1 17.1 85
9 30 Sep to 05 Oct −0.14± 0.02 13± 2 15.3 79
10 05 Oct to 10 Oct −0.16± 0.02 10± 1 13.1 78
11 10 Oct to 15 Oct −0.21± 0.01 10± 1 13.1 74
12 21 Oct to 26 Oct −0.14± 0.02 15± 2 8.8 80
13 26 Oct to 31 Oct −0.18± 0.03 12± 2 9.1 77
14 05 Nov to 10 Nov −0.29± 0.05 8± 4 10.0 68
15 10 Nov to 15 Nov −0.21± 0.02 10± 1 8.5 75
16 04 Dec to 09 Dec −0.08± 0.02 5± 2 5.5 84
17 09 Dec to 14 Dec −0.32± 0.02 2± 2 5.3 67
18 14 Dec to 19 Dec −0.35± 0.03 8± 2 4.8 65
19 19 Dec to 24 Dec −0.24± 0.01 5± 1 3.7 73
20 24 Dec to 29 Dec −0.18± 0.02 6± 1 2.1 77

2. Transpiration is assumed to directly transmit the signa-
ture of the soil moisture, which is assumed to be con-
stant over the 5-day time period of a HRA or HLA
event.

3. hs and the isotope ratio of liquid soil water (Rc) repre-
sent average conditions at the moisture source for each
time step.

Using these assumptions the18O/16O and the2H/1H ratio of
boundary layer water vapour can be expressed as (see Ap-
pendixB for the derivation)

Rv =

fo
Ro

αk
oα(1−hs)

+ (1− fo)
[
ftRc + (1− ft)

Rc
αk

cα(1−hs)

]
1+ fo

hs
αk

o(1−hs)
+ (1− fo)(1− ft)

hs
αk

c(1−hs)

, (3)

whereRv is the isotope ratio of boundary layer water vapour,
Ro the isotope ratio of ocean water,Rc the isotope ratio of
continental surface water,fo the contribution of ocean evap-
oration to the continental low-level moisture,ft the tran-
spiration fraction of continental evaporation,α the equilib-
rium fractionation factor,αk

o the non-equilibrium fractiona-
tion factor for ocean water,αk

c the non-equilibrium fraction-
ation factor for soil evaporation andhs the relative humidity
at the moisture source. Thefo is known from the moisture
source diagnostics. Transpiration is assumed to be the only
non-fractionating evaporation flux at the timescale of 1 day.

The linear relation between thed–hs slope and the transpira-
tion fraction obtained in this way (Fig.12b) is very sensitive
to the non-equilibrium fractionation factor in theCraig and
Gordon(1965) model. As shown in Table1 and discussed in
several recent publications (Braud et al., 2009b; Haverd and
Cuntz, 2010; Soderberg et al., 2012) large uncertainties are
associated with the non-equilibrium fractionation factors for
soil evaporation. This is the most important source of error
associated with the transpiration fraction estimation method
presented here. It is illustrated in Fig.12b using different lit-
erature values for the non-equilibrium fractionation factor.
Because we only use the slope of thed–hs relation, no infor-
mation on the soil moisturedc is needed. Changes in the soil
moisture isotopic composition induce a parallel shift of the
d–hs relation and do not affect the slope.

To obtain the transpiration fractions for each HRA and
HLA event, the theoretical linear relation between thed–
hs slope and the transpiration fraction is computed using
Eq. (3). In the case of HRA events the average ocean evap-
oration fraction for each event is obtained from the moisture
source diagnostics. For HLA events the ocean evaporation
fraction is set to 0.

We used the non-equilibrium fractionation factors for wet
soils ofMathieu and Bariac(1996) for soil evaporation and
those ofPfahl and Wernli(2009) (see Table1) for ocean
evaporation to obtain the transpiration fraction estimates
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Fig. 11.Thed–h`
s relations of HLA events. The colour bar indicates

ground temperatureT `
s . The dashed red line represents a fit to the

data forT `
s ≥ 10◦C: d = −0.12·h`

s+25 and thus a diagnosed local
soil moistured`

s of 13 ‰ in the Rietholzbach area. The dashed blue
line represents a fit to the data forT `

s < 10◦C: d = −0.17·h`
s +27

and thus a diagnosed local soil moistured`
s of 10 ‰ in the Ri-

etholzbach area. The black line shows the empirical relationship of
Pfahl and Wernli(2008).

shown in Tables5 and6, because they are probably represen-
tative for the moisture sources of HRA events with a dom-
inance of evaporation from western and central Europe as
well as for Rietholzbach for the transpiration part estimates
during HLA events.

The transpiration fractions of continental evapotranspira-
tion obtained from thed–hs slopes of the 21 HRA events
(Table 5) and the 20 HLA events (Table6) lie within the
range of values presented in other studies using isotope mea-
surements (Moreira et al., 1997; Yepez et al., 2003; Williams
et al., 2004; Robertson and Gazis, 2006; Zhang et al., 2010;
Sutanto et al., 2012; Jasechko et al., 2013) or from GCM
modelling (Lawrence et al., 2007). The event-to-event vari-
ability of the transpiration fraction associated with the dif-
ferent HRA events is large and varies between 0 and 89 %
with an average value of 62 %. These values are very sensi-
tive to the non-equilibrium fractionation factors and increase
with largerαk

c (see Fig.12b as well as the sensitivity study in
AppendixC). The sensitivity of the transpiration fraction es-
timates obtained using Eq. (3) with respect to different non-
equilibrium fractionation factors for soil evaporation is much
more important than the way that the closure assumption is
applied. When using the non-equilibrium fractionation fac-
tor for dry soils ofMathieu and Bariac(1996) we obtain
an average transpiration fraction for HRA events of 73 %
with a minimum value of 31 %. Particularly for low transpi-
ration fractions, when soil evaporation is strong, the choice

of the non-equilibrium fractionation factor becomes very im-
portant.

Applying our transpiration fraction estimation method to
HLA events (Table6) yields higher transpiration fractions
due to the flatterd–hs slopes than for HRA events, as dis-
cussed in Sect.6. Averaged over all HLA events we find
a transpiration fraction of 76 % with values between 65 %
and 86 % for the individual events. When using the non-
equilibrium fractionation factor for dry soils ofMathieu and
Bariac(1996) we obtain an average transpiration fraction for
HLA events of 82%. Other non-fractionating local moisture
sources like intercept evaporation, dew formation and re-
evaporation might also have contributed to these large tran-
spiration fractions for Rietholzbach. This could be particu-
larly important in late autumn and winter when the contribu-
tion of plant transpiration is expected to be close to zero. En-
trainment of free tropospheric air may be a further confound-
ing factor, as it brings dry air with lowh and larged values
into the boundary layer. Neglecting this effect in the analysis
of HLA events is a strong assumption, which should be stud-
ied in more detail in the future. Furthermore, the grassland-
dominated local land use at the Rietholzbach measurement
site probably induces higher transpiration fractions than dur-
ing HRA events, for which evaporation from large parts of
continental Europe with a land use combination of crop land,
forest and grassland contribute to the sampled water vapour
(Teuling et al., 2010). This may also contribute to explaining
the lower values and the larger variability of the transpiration
fraction for HRA events than for HLA events.

There are two main differences between our approach and
evapotranspiration partitioning methods based on an isotope
mass balance at the measurement site (see review byZhang
et al., 2010). Firstly, by combining a Lagrangian moisture
source diagnostic tool with locald measurements we propose
a framework to estimate the evapotranspiration partitioning
over the whole footprint region of continental evaporation
for time periods during which large-scale moisture advec-
tion dominates over local evapotranspiration. This approach
could be useful for model verification as it provides region-
ally integrated estimates of the transpiration fraction (in the
case of HRA events). Secondly, we do not need to apply an
isotope mass balance at the measurement site to obtain the
partitioning, in contrast to the traditional evapotranspiration
partitioning methods using isotopes.

The values of the transpiration fraction found here over
5 months ofd measurements are generally lower than the
global estimates of 80–90 % on average presented in a re-
cent study byJasechko et al.(2013) using isotope measure-
ments from lake catchments in various regions. The transpi-
ration fractions found here show that even though the transpi-
ration fraction of continental evaporation can be very high,
especially in summer, the event-to-event variability is sub-
stantial. Clearly, because different timescales are considered
(i.e., daily data here versus annual data inJasechko et al.,
2013) a direct comparison of our estimates with those from
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Fig. 12. (a)Thed–hs relations obtained using theCraig and Gordon(1965) evaporation model assuming closure for different fractions of
transpiration contributions to continental evaporation (colours). The non-equilibrium fractionation factors for wet soils (see Table1, Mathieu
and Bariac, 1996) were used here.(b) Theoretical linear relationship between the transpiration fraction and the slope of thed–hs relation
using theCraig and Gordon(1965) evaporation model and applying the closure assumption forTs = 25◦C. The different lines correspond
to the use of different non-equilibrium fractionation factors. PW09 stands forPfahl and Wernli(2009), MJ79 forMerlivat and Jouzel(1979),
C03 for Cappa et al.(2003), and MB96 forMathieu and Bariac(1996). For the estimates of the transpiration fraction in Tables5 and6
the non-equilibrium factors for wet soils (see Table1, Mathieu and Bariac, 1996) are used for soil evaporation and the non-equilibrium
fractionation factors ofPfahl and Wernli(2009) are applied for ocean evaporation.

Jasechko et al.(2013) is difficult. Furthermore, no estimates
can be done for NRA or NLA events with our approach. For
many of the NRA and NLA events, especially in summer,
the high transpiration fraction is supposed to be responsible
for the absence of anticorrelation betweend andhs. How-
ever, like for the traditional isotope mass balance based meth-
ods (Zhang et al., 2010), some assumptions used inJasechko
et al. (2013) should be further investigated, particularly the
assumptions involved in computing the isotopic composition
of the soil evaporation flux to explain the very high values
of d in the soil evaporation flux (75 ‰), the role of the non-
equilibrium fractionation factor, and the influence of the iso-
topic signature of ambient water vapour in contrast to using
the equilibrium vapour isotopic composition from precipita-
tion isotope measurements.

In future research a comparison of the transpiration frac-
tion estimates obtained here with traditional isotope mass
balance methods as well as with estimates from regional
climate models could provide further constraints for the
robust modelling of the land surface evaporation compo-
nents. Specific simulations of HRA events using isotope-
enabled numerical weather prediction models would allow us
to perform sensitivity experiments on the importance of the
non-equilibrium fractionation factor for soil evaporation and
eventually help to better constrain this important parameter.
Furthermore, the importance of other non-fractionating evap-
oration fluxes like intercept or dew evaporation should be in-
vestigated. From the experimental side, controlled chamber
or soil column experiments of soil evaporation for different
soil moisture contents using the advantages of the novel laser

measurement techniques are critical to reduce the uncertainty
associated with the non-equilibrium fractionation factor.

8 Conclusions

In this paper, we presented 5 months of hourly laser spectro-
metric measurements ofd in the continental boundary layer
in northeastern Switzerland. Earlier studies revealed thatd

measurements in a marine environment are a good proxy for
hs at the evaporation site of the moisture (Gat et al., 2003;
Pfahl and Wernli, 2008; Uemura et al., 2008). Our goal in
this study was to find out whether continental moisture af-
fected by land surface recycling processes still can be used
as a tracer for evaporation conditions at the source. We inter-
preted ourd measurements using localh`

s andT `
s measure-

ments as well as a Lagrangian moisture source diagnostic
providinghr

s andT r
s conditions integrated over the evapora-

tion source region.
We found that at the hourly to daily timescaled measure-

ments were strongly influenced by boundary layer mixing
of local evapotranspiration and water vapour in the free at-
mosphere. These processes are driven by the daily cycle of
the incoming solar energy. At a longer timescale (≥1 day),
this daily cycle ofd is modulated by large-scale advection
of moisture from land surface and ocean evaporation with
a generally larger footprint than the local evapotranspiration
source.

Using a 5-day running window correlation ofd with hr
s as

well as withh`
s for 24 h filtered data, events of strong anticor-

relation betweend andhr
s (HRA) as well as betweend andh`

s
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(HLA) could be identified. The temporal correlation pattern
of the diagnosedhr

s at the moisture source and the measured
d signal in Rietholzbach revealed different modes of strong
anticorrelation between moisture sourcehr

s andd measure-
ments. These modes can be explained by either a higher than
normal contribution of ocean sources or the dominance of
soil evaporation over plant transpiration. Periods with a weak
or absent relationship between thed and the sourcehr

s coin-
cide with periods and source locations that are probably char-
acterised by the dominance of plant transpiration. The clear
seasonal pattern in the properties of thed–hr

s link for both di-
agnosed sourcehr

s and localh`
s support this hypothesis. With

the decreasing importance of plant transpiration as well as lo-
cal boundary layer dynamics towards winter and increasing
importance of large-scale advection, the strength of the 5-day
moving average anticorrelation betweend andhr

s increases.
We found thatTs is a secondary predictor ofd. On the

one hand it indirectly characterises the seasonality of thed–
hs relationship, being a proxy for transpiration intensity. On
the other hand it plays a role through cross-correlation ef-
fects betweenTs andhs. Furthermore, corr5 day(d,Ts) more
often showed strongly negative values rather than positive
ones as would be expected if the small temperature effect on
d through the equilibrium fractionation factor played an im-
portant role.

Due to the stronger influence of transpiration in the warm
season, we found a weaker sensitivity ofd to changes inhr

s
at the moisture source in summer (∼ −0.2‰%−1) than in
winter. Thed–hr

s relations found for oceanic settings in the
literature are larger (∼ −0.5 ‰%−1) due to the absence of
moisture from plant transpiration. In the cold season, how-
ever, the sensitivity ofd to changes inhr

s at the moisture
source is larger than for oceanic settings (∼ −0.6 ‰%−1).
This is probably due to stronger non-equilibrium fractiona-
tion for soil evaporation than for ocean evaporation. The ef-
fect of precipitation on thed signature of continental evapo-
ration is central. It modulates the soil moisturedc and indi-
rectly impacts the strength of the non-equilibrium fractiona-
tion via the soil wetness.

The characteristics of thed–hr
s relationship may be a use-

ful proxy for attributing ambient water vapour to ocean evap-
oration, soil evaporation and plant transpiration, even though
the uncertainties associated with this attribution method are
still large. The transpiration fractions of continental evapo-
ration estimated from thed–hr

s slopes obtained in this study
show a strong case-to-case variability. For continental Eu-
rope during HRA events we found average transpiration frac-
tions of 62 % for the 5-month time period between August
and December 2011. Higher values of on average 76 % were
found for the grassland measurement site of Rietholzbach
during HLA events and are probably due to the difference
in dominant land use. As the estimates from other isotope
methods for the separation of the evapotranspiration flux, the
transpiration fractions obtained in this study are associated
with important assumptions and uncertainties that have to be

addressed in future research. Particularly the validity of the
closure assumption and the effect of entrainment and bound-
ary layer dynamics should be studied in detail in future work.
The non-equilibrium fractionation factor used in the Craig
and Gordon (1965) model for soil evaporation is another im-
portant source of uncertainty. Future studies investigating the
variability of this factor as a function of soil conditions (wet-
ness and temperature) could help to provide better constraints
for the estimate of the transpiration fraction and for the repre-
sentation of land surface evaporation in isotope-enabled nu-
merical models.

Finally, our results show that despite the generally intense
mixing processes in the atmospheric boundary layer a de-
tectable imprint of the evaporation conditions of the wa-
ter vapour remains present in its isotopic composition. This
highlights the potential use ofd measurements as a tool for
the study of evaporation conditions over land and ocean as
well as its role as a proxy for circulation patterns.
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Table A1. Isotopic composition of∼ 10 days accumulated soil
moisture samples from the lysimeter collected at the measurement
station Rietholzbach between 27 July 2011 and 12 January 2012.

Date δ18O [‰ ] δ2H [‰ ] d [‰ ]

27 Jul–12 Aug −10.76± 0.14 −73.91± 0.51 12.19± 1.63
12 Aug–25 Aug −11.00± 0.09 −75.48± 0.44 12.51± 1.14
25 Aug–06 Sep −11.10± 0.12 −76.97± 0.69 11.80± 1.62
06 Sep–21 Sep −11.09± 0.07 −78.50± 0.44 10.23± 0.97
21 Sep–05 Oct −11.21± 0.06 −78.65± 0.22 11.05± 0.69
05 Oct–18 Oct −11.47± 0.08 −80.51± 0.56 11.26± 1.16
18 Oct–01 Nov −11.32± 0.06 −80.22± 0.11 10.36± 0.55
01 Nov–18 Nov −11.26± 0.06 −79.35± 0.50 10.70± 0.98
18 Nov–28 Nov −11.18± 0.09 −79.20± 0.65 10.21± 1.39
28 Nov–13 Dec −11.20± 0.06 −81.74± 0.56 7.85± 1.07
13 Dec–26 Dec −10.49± 0.36 −74.56± 0.38 9.33± 3.26
26 Dec–12 Jan −10.13± 0.09 −68.42± 0.34 12.65± 1.04

Fig. A1. Comparison of the 5-day moving window correlation be-
tween 24 h filteredd and diagnosed sourcehr

s with COSMO (grey)
and with ERA-Interim (violet). The horizontal black line shows the
corr(d,hr

s) = −0.5 line used as a threshold for the HRA event defi-
nition in Sect.5.3.

Appendix A

The closure assumption andd of the moisture source

According to the closure assumption ofMerlivat and Jouzel
(1979) the only source of vapour in the boundary layer is
surface evaporation. The isotopic ratio of the evaporation flux
Re in this case equals the isotopic ratio of boundary layer
vapourRv:

Re = Rv. (A1)

Fig. A2. Sensitivity of the 5-day moving window correlation be-
tweend and hr

s to the uptake height threshold. A comparison is
shown of the correlation pattern with a fixed uptake threshold al-
titude of 1800 m (green curve), with an uptake threshold altitude
of 1.5 times the boundary layer height (red curve) and without an
uptake height threshold (grey curve).

The isotope ratio of the evaporation flux followingCraig and
Gordon(1965) is

Re =

Rl
α

− hs · Rv

αk(1− hs)
, (A2)

whereα is the equilibrium fractionation factor,αk the non-
equilibrium fractionation factor,Rl the isotope ratio of the
liquid water andhs the relative humidity with respect to the
surface temperature.

If the closure assumption (Eq. (A1)) is applied, Eq. (A2)
simplifies to

Rv =
Rl

α(αk + hs(1− αk))
. (A3)

Forhs = 1 we have

Rv =
Rl

α
. (A4)

Thed is derived fromR
18O
v andR

2H
v and is not substantially

affected by equilibrium fractionation, thusdr
s(hr

s = 100%)

provides information on the averaged of liquid water at the
moisture source.
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Appendix B

Derivation of Eq. (3) for the estimation of the transpira-
tion fraction of continental evaporation

When assuming closure for total evaporation, the heavy iso-
tope ratio of the water vapour mixRv containing moisture
originating from ocean evaporationRvo, plant transpiration
Rvt and soil evaporationRve is

Rv = foRvo + (1− fo) · [ft · Rvt + (1− ft) · Rve]. (B1)

If we replaceRvo andRve by their respective expression us-
ing the Craig and Gordon(1965) model (Eq.A2) and as-
suming thatRvt = Rc with Rc the isotope ratio of liquid soil
water we obtain

Rv = fo
Ro

1
α

− hsRv

αk
o(1− hs)

+ (1− fo)

·

[
ft · Rc + (1− ft)

Rc
1
α

− hsRv

αk
c(1− hs)

]

⇒ Rv

[
1+ fo

hs

αk
o(1− hs)

+ (1− fo)(1− ft)
hs

αk
c(1− hs)

]
= fo

Ro
1
α

αk
o(1− hs)

+ (1− fo)

[
ftRc + (1− ft)

Rc
1
α

αk
c(1− hs)

]
(B2)

Dividing through the brackets on the left-hand side yields
Eq. (3).

Appendix C

Sensitivity of transpiration fraction estimate on closure
assumption and non-equilibrium fractionation factor

The closure assumption can be applied to Eq. (B1) in three
different ways:

1. Overall, for the total evaporation flux, to obtain Eq. (3).

2. For continental and oceanic sources separately to ob-
tain

Rv = fo
Ro

α(αk
o + hs(1− αk

o))

+ (1− fo)

[
ft

Rc(1− hs)

1− hs(1−
1
αk

c
(1− ft))

+ (1− ft)
Rc

ααk
c(1− hs(1−

1
αk

c
(1− ft)))

]
. (C1)

3. For each individual evaporation type, i.e. ocean evap-
oration, soil evaporation and plant transpiration sepa-
rately, to obtain

Rv = fo
Ro

α(αk
o + hs(1− αk

o))

+ (1− fo)

[
ftRc + (1− ft)

Rc

α(αk
c + hs(1− αk

c))

]
.

(C2)

The transpiration fractions for HRA and HLA events ob-
tained from these three approaches differ by a maximum of
2 % and 6 % respectively. When using version 1 the average
ft is 62 % for HRA events and 76 % for HLA events; when
using version 2 the averageft is 61 % for HRA events and
78 % for HLA events; when using version 3 the averageft is
63 % for HRA events and 82 % for HLA events.

When using the closure version 1 and the non-equilibrium
fractionation factors for wet (dry) soils fromMathieu and
Bariac (1996), the transpiration fraction range for HRA
events is 0–89 % (31–92 %) and for HLA events 65–
86 % (73–89 %). Particularly for low transpiration fractions,
when soil evaporation is important, the choice of the non-
equilibrium fractionation factor becomes very important.
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Appendix D

Sensitivity of anticorrelation modes to uptake diagnostic
parameters

D1 Global reanalysis compared to regional model
analysis data for trajectory calculation

The impact of using ERA-Interim data instead of COSMO
data as a basis for the trajectory calculation and the mois-
ture source identification on the correlation structure between
d and diagnosed sourcehr

s is large only for a few events
(Fig.A1), for example, in mid-November. Many HRA events
discussed in Sect.5.3are also found using ERA-Interim data
(67 %, 14 HRA events of 21). Sometimes a small temporal
shift of the start and end of the HRA events or the strength in
the anticorrelation can be noticed. Five supplementary HRA
events are found with ERA-Interim that are not present in
thed–hr

s running window correlation using COSMO. These
ERA-Interim HRA events are strongly influenced by sources
outside the COSMO domain and the fraction of explained
moisture is below 50 % using the COSMO trajectories. The
seven HRA events found using COSMO but not detected us-
ing thed–hr

s running window correlation from ERA-Interim
are not identified either when using 6-hourly changes in
specific humidity along the COSMO trajectory data for the
moisture source identification. These events can thus only
be detected with higher temporal resolution of the evolu-
tion of specific humidity along the trajectories. Due to the
limited model domain, the moisture sources identified with
COSMO trajectories strongly emphasise continental sources.
The modes of anticorrelation betweend andhr

s found using
COSMO trajectories thus reflect large-scale situations with
a strong continental recycling component.

D2 Impact of setting an uptake height threshold

The uptake height has been mentioned in Sect.3.2 as an
important parameter in the setup of the moisture source di-
agnostic. To distinguish between cloud processes and sur-
face evaporation an uptake height threshold can be set above
which the uptakes along the trajectories are not considered.
However, convection can be associated with strong moist up-
drafts, which can lead to a rapid vertical mixing over a layer
deeper than the boundary layer. Although, based upon de-
tailed analysis of a few cases, we regard the diagnosed above-
boundary layer uptakes as relevant (Aemisegger, 2013), we
assess here the impact of the boundary layer height threshold
on the temporal correlation pattern betweend andhr

s at the
moisture source. In Fig.A2 the 5-day moving window corre-
lation is shown between 24 h filteredd and sourcehr

s using
all uptakes (grey line in Fig.A2) and only uptakes occurring
below a fixed maximum uptake height of 1800 m (red line in
Fig. A2). The differences between the two moving window
correlation signals are small in November and December, but
larger in the warm season, in which parameterised convection
plays an important role. In this study, choosing a maximum
uptake height that is 50 % higher than the model boundary
layer height as in previous studies (Sodemann et al., 2008a;
Pfahl and Wernli, 2008) does not impact the moving correla-
tion signal significantly (compare the grey and green curves
in Fig. A2). With the scaled boundary layer top as a maxi-
mum uptake height we miss a few HRA events (e.g. one at
the end of September, one at the beginning of October and
one at the end of October). Furthermore, the anticorrelation
found here is generally weaker when using the scaled bound-
ary layer height as an uptake threshold than without uptake
threshold, especially in summer. This confirms that the ap-
proach of considering all uptakes leads to meaningful results
here but obviously does not preclude the use of the boundary
layer height criterion for other studies.
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