Atmos. Chem. Phys., 14, 3513532 2014 Atmosphenc _g

www.atmos-chem-phys.net/14/3511/2014/ . g
d0i:10.5194/acp-14-3511-2014 Chemistry >
© Author(s) 2014. CC Attribution 3.0 License. and Physics @

Modelling and assimilation of lidar signals over Greater Paris
during the MEGAPOLI summer campaign

Y. Wang®?, K. N. Sartelet!, M. Bocquet!3, and P. Chazetté

1CEREA, Joint Laboratory Ecole des Ponts ParisTech — EDF R & D, Université Paris-Est, 77455 Champs-sur-Marne, France
2LSCE, Joint Laboratory CEA-CNRS — UMR8212, 91191 Gif-sur-Yvette, France
SINRIA, Paris-Rocquencourt Research Centre, Le Chesnay, France

Correspondence tor. Wang (wangy@cerea.enpc.fr)

Received: 10 July 2013 — Published in Atmos. Chem. Phys. Discuss.: 18 October 2013
Revised: 11 February 2014 — Accepted: 20 February 2014 — Published: 8 April 2014

Abstract. In this study, we investigate the ability of the of assimilating lidar profiles for aerosol forecasts. The eval-
chemistry transport model (CTM) ®RAIR3D of the air  uation shows that lidar DA is more efficient at correcting
quality modelling platform BLYPHEMUS to simulate lidar PMzig than PN s, probably because P is better mod-
backscattered profiles from model aerosol concentration outelled than PMg. Furthermore, the algorithm which analyses
puts. This investigation is an important preprocessing stagédoth PMy s and PM 5_10 provides the best scores for R/

of data assimilation (validation of the observation operator).The averaged root-mean-square error (RMSE) of i

To do so, simulated lidar signals are compared to hourly lidar11.63 pg m3 with DA (PM25 and PMs_10), compared to
observations performed during the MEGAPOLI (Megacities: 13.69 ug nm3 with DA (PMyg) and 17.74 pg m® without DA
Emissions, urban, regional and Global Atmospheric POLIu-on 1 July 2009. The averaged RMSE of R\ 4.73 pg n3

tion and climate effects, and Integrated tools for assessmemith DA (PM2s and PMs_10), against 6.08 pug i with

and mitigation) summer experiment in July 2009, when aDA (PM1g) and 6.67 pg m? without DA on 26 July 2009.
ground-based mobile lidar was deployed around Paris on-

board a van. The comparison is performed for six different

measurement days, 1, 4, 16, 21, 26 and 29 July 2009, corre-

sponding to different levels of pollution and different atmo- 1  Introduction

spheric conditions. Overall,iyPHEMUS well reproduces

the vertical distribution of lidar signals and their temporal Aerosols are key air quality species to monitor and model
variability, especially for 1, 16, 26 and 29 July 2009. Discrep- @S they impact vegetation as well as human health; impacts
ancies on 4 and 21 July 2009 are due to high-altitude aerosdn the latter result from aerosol’s penetration of the respira-
layers, which are not well modelled. In the second part of thistory system, leading to possible respiratory and cardiovas-
study, two new algorithms for assimilating lidar observationscular diseasesKelly et al, 2011 Lauwerys et al. 2007,
based on the optimal interpolation method are presented?0ckery and Popel99§. They also impact visibility\(Vang
One algorithm analyses PM (particulate matter with di- et al, 2009 and represent an uncertain component of cli-
ameter less than 10pum) concentrations. Another analyse®ate changes due to their effects on the Earth's radiative
PM,s (particulate matter with diameter less than 2.5um)budget (PCC 2007). For air quality, in order to simulate
and PMs_10 (particulate matter with a diameter higher than and predict particle concentrations, modellers have devel-
2.5 um and lower than 10 um) concentrations separately. Th@Ped various chemistry transport models (CTM), e.g. EMEP
aerosol simulations without and with lidar data assimilation (European Monitoring and Evaluation Programm@jn{p-
(DA) are evaluated using the Airparif (a regional operational SOn et al. 2003, LOTOS (Long Term Ozone Simulation) —
network in charge of air quality survey around the Paris EUROS (European Operational Smo§ghaap et 812004,

area) database to demonstrate the feasibility and usefulne$sHIMERE (Hodzic et al, 200§, DEHM (Danish Eulerean
Hemispheric Model)Brandt et al.2012 and FOLYPHEMUS
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(Sartelet et a).2007). However, the aerosol vertical distribu- using in situ surface measurements have been performed by
tion is poorly quantified, because of numerous uncertaintieDenby et al(2008 andTombette et al(2009 over Europe,
on their sources (direct emissions) and on processes affectingndPagowski et al(2010, Pagowski and Gre(R012) andLi
their formation (e.g. nucleation, condensation, evaporatioret al.(2013 over the United States of America. Over Europe,
and coagulation), as well as on meteorological conditionsthe efficiency of assimilating lidar measurements to improve
Since aerosol lifetime ranges from 1 to 10 dageififeld and  PMjq forecast has been compared to the efficiency of assim-
Pandis 1998, improvements in the representation of their ilating in situ surface measurements Wang et al.(2013.
vertical distribution may lead to improved surface concen-Using an observing system simulation experiment (OSSE),
trations (lower error and higher correlation against observathey suggested that the assimilation of lidar observations may
tions) Wang et al,2013. be more efficient to improve P} forecast, although it de-
Various measurement types have been used to evaluaggends on the number of lidar stations used. Howedang
these models. The most frequently used data are in sitet al. (2013 did not directly assimilate the lidar signal, but
surface measurements, e.g. AirBalse://www.eea.europa. they used a relation between mass concentration and optical
eu) and EMEP over Europe, BDQA (Base de Données deproperties of pollution aerosol. Although this kind of rela-
la Qualité de I'Air) Sartelet et a).2007 Konovalov et al.  tion has been determined for pollution aerosols over Greater
2009. However, they do not provide direct information on Paris Raut et al. 20093, it needs to be generalised to other
vertical profiles. measurement sites before operationally assimilating the mass
Satellite passive remote sensors (e.g. the Moderate Resoncentration converted from the lidar signal. Moreover, the
olution Imaging Spectroradiometers — MODIS) and sun-uncertainly linked to the estimation of mass concentrations
photometer surface stations (e.g. the AErosol RObotic NETimay be about 25 %Raut et al.20093, which is mostly due
work — AERONET) have greatly enhanced our ability to to uncertainties in estimating the specific cross sections. Be-
evaluate such models. Comparisons between observed am@use uncertainties in the lidar signal may be less than 5 %,
simulated aerosol optical depth (AOD) have been performedt is more accurate to directly assimilate lidar signals.
for global models and regional modelsiine et al, 2006 This paper aims at evaluating the lidar signals simulated
Tombette et a).2008 Péré et al.2010. However, instru- by PoLYPHEMUS and at testing new DA algorithms for as-
ments such as sun photometers can only retrieve columnsimilating lidar signals. We used measurements performed
integrated aerosol properties and can only work duringduring the MEGAPOLI summer experiment, when a ground-
daytime. based mobile lidar (GBML) was deployed around Paris on-
Since accurate vertical profiles of aerosols can be meaboard a van. Measurements from a ground-based in situ lidar
sured by aerosol lidars, lidar measurements were used iat Saclay were also performed on 1 July 2009. The evalua-
several campaigns, for example to evaluate the transport dion of lidar signals can also be regarded as a preprocessing
particles Chazette et al2012. Moreover, aerosol lidar net- stage of DA (validation of the observation operator).
works such as the European Aerosol Research Lidar Network This paper is organised as follows. Sectidrdescribes
(EARLINET) are being developed at in situ sites. In space,the experiment setup, i.e. the chemistry transport model used
measurements are performed with the Cloud-Aerosol LidafPoLAIR3D) and the observations. In Se8t.the lidar ob-
with Orthogonal Polarization (CALIOP) lidaWinker et al, servation operator is presented. Sectafescribes the eval-
2007. Lidar measurements have been used for the validatioruation of the simulation with in situ surface measurements
of aerosol models. For exampldpdzic et al.(2004 com- and AERONET data. Results of the comparisons between
pared vertical profiles simulated by CHIMERE with those observed and simulated lidar signals are shown in Sect.
observed by lidars from EARLINET, anfitromatas et al. Two new algorithms for the assimilation of lidar observations
(2012 used observations from the CALIOP space-based li-and results are shown in Se@tThe findings are summarised
dar. Royer et al.(2011) used optical-to-mass relationships and discussed in Seat.
(urban, pre-urban and rural) to retrieve the f3\particu-
late matter with diameter less than 10 um) concentrations
from lidar signals Raut et al. 20093 b). In Royer et al. 2 Experiment setup
(201)), lidar-derived PMg concentrations were compared
with simulations from BLYPHEMUS and CHIMERE dur- 2.1 PoLAIR 3D model
ing the MEGAPOLI (Megacities: Emissions, urban, regional
and Global Atmospheric POLIution and climate effects, andIn this study, the BLAIR3D air quality model $artelet
Integrated tools for assessment and mitigation) summer exet al, 2007 of the air quality platform BLYPHEMUS, avail-
periment in July 2009. able at http://cerea.enpc.fr/polyphemushd described in
Data assimilation (DA hereafter) can reduce the uncer-Mallet et al. (2007, is used to simulate air quality over the
tainties in input data such as initial or boundary conditionsGreater Paris area. Aerosols are modelled using the Slze-
by coupling models to observationBduttier and Courtier  REsolved Aerosol Model (SIREAM-SuperSorgam), which
2002. In air quality, applications of DA to Ph forecast is described irDebry et al.(2007) andKim et al. (2011).
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SIREAM-SuperSorgam includes 20 aerosol species: 3 pri-  49.6 —{ ®  AwparitPM,, W
mary species (mlneral dl_Jst, blaf:k carbon a_nd primary or- a0.4)
ganic species), 5 inorganic species (ammonium, sulfate, ni-
trate, chloride and sodium) and 12 organic species. Five bins  49.2}
logarithmically distributed over the size range 0.01-10pum

are used. The chemical mechanism CB05 (Carbon Bond-S

In situ lidar
A Airparif PM, 5 ® AERONET

A CREIL FAIENCERIE

[l CERGY-PONTOISE
SSE

LOGNES
version 5) is used for the gas chemistiyatwood et al, £ 488 y
2005. POLAIR3D/SIREAM has been used for several ap- = ag.6
. . . . R — WMELUN
plications. For example, it was compared to in situ surface 8.4

measurements for gas and aerosols over Europ@altelet
et al. (2007, 2012 and Couvidat et al.(2012, and over 48.2}
Greater Paris by ouvidat et al(2013; it was compared to
AERONET data over Europe bjombette et al(2008 and
to satellite data by hang et al(2013; and it was compared
to lidar-derived PMg over Greater Paris during MEGAPOLI
by Royer et al(2017).

A‘St Jean

1.5 2.0 2.5 3.0 3.5
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2.2 Modelling setup and observational data 48.95

W GENNEVILLIERS

48.90f
The modelling domain is the same as the one usdtbyer 3
et al.(2011) andCouvidat et al(2013. It covers the Greater _.§ 48.85 E
Paris area ([12E, 3.5 E] x [47.9° N, 50.2 N]) with a hor- &
izontal resolution of 0.02x 0.02. BecauseRoyer et al. —48.80 VITRY:SUR-SEINE
(2011 show that limited vertical model resolution leads to ;g 55|

much smoother vertical profiles than those deduced from li-

dar signals, a finer vertical resolution is used with 23 vertical ~ 48.70
levels from the ground to 12000 m, instead of the 9 verti- 2.2 2.3 2.4 2.5 2.6
cal levels inRoyer et al(2011). The simulations are carried Longitude

out for 1 month, from 28 June to 30 July 2009. Meteorologi-

cal inputs are the same as@ouvidat et al(2013. They are  Fig. 1. The blue square shows the location of the ground-based in
simulated with the Weather Research and Forecasting (WRRjtu lidar station, the red squares (black triangles) show the locations
model Skamarock et 812008 using an urban canopy model of Airparif stations for PMg (PM, 5) measurements and the green
and an undated Corine land-use datab&se €t al., 2013 circles show the locations of AERONET stations. The thick black
with the Yonsei University (YSU) parameterisatiodang track shows that of the GBML on 1 July 2009. The thick yellow and
et al, 2006 for the planetary boundary layer (PBL) dynam- cyan tracks show those two followed by GBML on 26 July 2009.
ics (Kim et al, 2013. Anthropogenic emissions of gases and The rectangular area is detailed in the bottom figure.
aerosols are generated using the Airparif (the Paris air quality
agency) inventory for the year 2005. Boundary conditions for
gaseous and particulate species were obtained from nesteitu lidar measurements were performed at Saclay {48.7
simulations over Europe and France, presente@dyvidat 2.14 E; 30ma.s.l.) on 1 July 2009 from 06:49 to 16:44 UTC
etal.(2013. (the blue square in Fid.). These measurements are used for
The GBML used during the MEGAPOLI campaign is both the comparison and the assimilation of lidar bservations.
based on an ALS450 lidar commercialised by the company Airparif is the regional operational network in charge of
LEOSPHERE and initially developed by the Commissariatair quality survey around the Paris arédt://www.airparif.
a I'Energie Atomique (CEA) and the Centre National de la asso.fi}. It provides hourly gas and/or aerosol concentrations
Recherche Scientifique (CNRSCLlfazette et al.2007). It (PM1p and PM ) measurements. Figufeshows the loca-
provides lidar measurements at 355 nm. The main charaction of the Airparif stations by means of red squares and/or
teristics of this lidar are detailed Royer et al(2011). This black triangles. There are 17 stations at which;esind/or
system is particularly well adapted to air pollution and tro- PM> 5 concentration measurements are performed.
pospheric aerosol studies thanks to its full overlap reached The AERONET programme is a federation of ground-
at about 150-200m height and its increased vertical resobased remote sensing aerosol networks established by NASA
lution of 1.5m. Measurement days of 1, 4, 16, 21, 26 andand PHOTONS (Univ. of Lille 1, CNES and CNRS-INSU),
29 July 2009, which correspond to different levels of pol- which provides a long-term, continuous and readily accessi-
lution from Airparif (low, moderate or high), are used for ble public-domain database of aerosol optical measurements
comparisons to the lidar signal. Moreover, ground-based irperformed by sun photometerkidlben et al. 1998. Sun

| macly  gpalaiseau
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Inputs
Meteorology Emissions
@ Airparif
Section 4.1

[Acrosol water content} [ Aerosols J—‘

Section 3.2 ay, and Gy «{Optical properties: a, and ﬂaJ AERONET
[Normalisation altitude zref}—ﬂnm + aay P + Ba, AOD} Section 4.2 ’

H |4
‘ ‘M[Simulated lidar signals}

Fig. 2. Diagram describing the methodology for lidar signals modelling from outputs of the air quality model#3D. Comparisons to
measurements are performed at black nodes. ACRI stands for aerosol complex refractivénir{@axis the molecular (aerosol) backscatter
coefficient.am (ag) is the molecular (aerosol) extinction coefficient.

smnjerodwa],
QINSSL

photometers measure AOD at different wavelengths rang3.1 Modelling of lidar signals

ing from 340 to 1024nm. AOD data are computed for

three data quality levels: level 1.0 (unscreened), level 1.5The range-corrected lidar signal PRieasured at an alti-
(cloud-screened), and level 2.0 (cloud-screened and qualitytudez is defined byCollis and Russel(1976:

assured). The uncertainty of AOD measurements is less .
than 0.02 Holben et al. 2001). For this study, there are _ / N
two availatf:e stations in Gr]gater Paris: Pa?lis (urban sta—P Fe(@) = € (Bn(a) + fala)) exp (_20/ (oam(&") + 0a() dz) - ®)
tion; 48.87 N, 2.33 E; 50ma.s.l.) and Palaiseau (subur-

ban station; 48.70N, 2.2 E; 156 ma.s.l.) (the green cir- whereSm (8a) is the molecular (aerosol) backscatter coef-
cles in Fig.1). In this paper, level 2.0 AOD data at 340 and ficient, om («a) is the molecular (aerosol) extinction coeffi-
380 nm are used to derive AOD data at 355 nm following thecient, andC is the instrumental constant for each channel

Angstrém law depending on the technical characteristics of the emitting
and receiving optics. In order to eliminate the instrumental
. 355\ constantC (because it is unknown), BRs normalised as
AOD(339 = AOD(340) <340> ’ @) follows:
wherew is the Angstrém exponent, defined by H() = PR() _ _ Am(@) + Ba(2)
PR (zref) Bm (zref) + Ba(zref)
AOD(340 > <380) Zref
a=In{—=])/In|=—). 2
(AOD(SSO) /" 320 @) exp 2/(am(z’) + aa(z)) dz’ |, 4)

Z

3 Methodology wherezref is taken at an altitude in the molecular zone. In

Eqg. (@), to estimate the normalised lidar sigré| four opti-

cal parameters B, Ba, «m andag — are needed.

The molecular backscatter coefficiefft,) at the wave-
ngth of the incident light is calculated byicolet (1984

Figure 2 describes the methodology used for lidar signal
modelling from the outputs of the air quality model and for
comparisons to measurements (aerosol concentration mea
surements, AOD data and lidar vertical profiles). This section
presents the methodology used inlRPHEMUS to derive

the lidar observation operator. P

Bm = kB_T - SRay, (5)
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whereP is the pressurel is the temperature, arig is the Table 1. Dry CRI and density for different aerosol species at
Boltzmann constant, and the Rayleigh scattering cross sec-=355nm.
tion sray is given by

Species RE Im?2 Density
SRay = 4.678 x 10—29 . A—(3.916+0.074K+0.05/A). (6) (g Cm*3)
The molecular extinction coefficient,) is given byNicolet Nitrate 1.53 —0.005 15
(1984: Ammonium 1.53 —0.005 0.91
Black carbon 1.75 —0.4645 2.25
o= Zp @ Mineral dust 153  —0.0166 2.33
3 Organics 1.53 —0.008 1.3
Aerosol extinction and backscatter coefficierfis@ndoa) Sulfate 1.45 ~1x1078 1.84
are functions of the particle sizes, of the aerosol complex re- ~ Sodium 1.509  —2.946x 10—; 0.97
fractive index (ACRI) of particles:, and of the wavelength Chlorate 1509  —2.946x 107" 115
Water 1.35738 272876108 1.0

A of the incident light. With a population of different-sized
particles of identical refractive index and with a number 1 Re @ Im) stands for the real (imaginary) part of CRI.
size distribution functiom (Dyet) With Dyt the particle wet

diameter, the aerosol extinction and backscatter coefficients

are given by the following formulas: .
g Yy g W= Z M, ’ (10)
Dvrveatx 5 i Mmoi (aW)
Qg = / 7 Diet Oext(m, awet) 1 (Dwet) dDyet (8) ;
4 ’ whereay =RH, W is the aerosol water content concentra-
0 tion, M; is the molar concentration of speciegmol m=3)
and and m,; (aw) is the molality of an aqueous solution of
pmx species (mol kg™1). . .
T nget Computing the ACRI requires to make an assumption on
Ba = / 7 Cbscalm. awed) 7 (Dwet) dDwiet, (9 the mixing state of the aerosol chemical species. The cur-
0 rent version of BLYPHEMUS is based on an assumption

where D is a wet diameter upper limit for the parti- of a(_erosol mte_rnal mixing: _aII the part|cles_of a given size
cle population, ayer= 7Dwet 5 dimensionless size param- section at a given grid point of the domain are supposed
Swet™ T to have the same chemical composition. Within this frame-

eter, andQexi(m, awet) and Qpscdm, awet) are extinction .
and backscatter efficiencies respectively. These efficiencie\évork’ Tombette et al200§ compared aerosol optical prop-

are computed through the Mie code frdtp://ftp.giss.nasa. erties using_ Mo diﬁe.rgnt assumptions for the b_Ia_ck car-
gov/publcrmim/spher.{de Rooij and van der Stad984 bon (BC) mixing state: mte_rnally homogeneous mixing e_md
Mishchenko et a).2002. The dry complex refractive in- core—shel! mixing. I.n the internally homogeneous mixing
dex (CRI) is interpolated from the OPAC packadée$s case, BCis trea_ted like the other components and avoll.,lme-
et al, 1998 for each species at the desired wavelength weighted ACRI is ca}lgulated from the CR.I of pure Species.
(355nm). The CRI and densities used for calculation 0fln the core—shell mixing case, each particle is assumed to
optical properties are shown in Table The wet diameter have a structure: the core (BC) and the shell (all the other

Dyt is computed from the mean dry diameter of each Sec_components). The hypothesis of an internally homogeneous

tion of the aerosol sectional model SIREAM and from the m!xmg.state seems to be unphy§|cal as BC cannot be well
: ixed in the particle because of its complex geometry and
aerosol water content. The aerosol water content is calculated ;. :
. solid state Katrinak et al, 1993 Sachdeva and Atir2007).
from the thermodynamic model ISORROPINdnes et al, Tombette et al(2008 have shown that the use of these two
1998a b), which models the phase state (i.e. gas, liquid,

. . . L ; . 'mixing states leads to negligible differences in AOD, but
solid) of inorganic aerosol species (i.e. ammonium, sodium, . ) . ;
4 ) . L . non-negligible differences on single-scattering albedo and
chloride, nitrate, sulfate) in equilibrium with gaseous precur-

sors. The inputs of ISORROPIA are temperature, relative hu_absorpnon process. According to illustrations Jaicobson

- : . .éZOOQ, the BC mixing state influences the absorption cross
midity (RH), gaseous precursor concentrations and inorgani :
Section at small wavelengths (lower than 1 pm) for aerosols

aerosol concentrations. Because of the large amount of wa ith diameters higher than 1 um. Thus, a core—shell mixing
ter vapour in the atmosphgre, the ambient RH is as.sum?ﬁlypothesis is used in this study. The Maxwell-Garnett ap-
to be unaffected by the deliquescence of aerosol particles in? """ ~=™ =

ISORROPIA Nenes et a).19983 and equals the water ac- proxmayon is used to calculate ACRI from the core CRI

= i . (i.e. BC in this study) and the shell CRI (where all the other
tivity (referred to asaw). The aerosol water content is es- components are well mixedJ¢mbette et aJ.2008

timated by the Zdanovskii-Stokes-Robinson (ZSR) relation- P | '

ship Robinson and Stoke2002),
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3.2 Estimation of zjef LAD regression line at each vertical point of the lidar
signal in a loop starting from high altitudes to low al-

The altitude used to normalise the lidar signal does not need titudes. The altitude at which the difference becomes

to correspond exactly to the beginning altitude of the molec- larger than a pre-assigned value (1 % of the value cor-

ular zone, but it could be any arbitrary chosen altitude in the responding to the LAD regression line) corresponds to
molecular zone, where there is almost no aerosol. However, Zref.

it is better to use an estimation of the normalisation altitude
as close as possible to the beginning of the molecular zone, Figure 3 shows comparisons between the lidar signal
because lidar signals are attached to higher uncertainties &nd the simulated molecular signal P&y for different li-
high altitudes because of a higher signal-to-noise ratio. Al-dar measurement days during MEGAPOLI. The simulated
though the molecular zone is often determined visually frommolecular signal (red lines in Fig) agrees well with the i-
lidar vertical profiles, this method is not efficient for the treat- dar observations (black lines in Fig).at high altitudes in the
ment of large amounts of lidar profiles. We therefore creatednolecular zone, leading to the determination of the molecu-
a new algorithm which can automatically estimate the nor-lar zone ander.
malisation altitudees from the lidar vertical profile.

The normalisation altitudees is estimated from the lidar

signal and the simulated molecular signabRg,, 4 Model evaluation

z To evaluate air quality modeloylan and Russel{2006
p _ ) N 11 r_ecommended a PM model performance goal and a crite-
Re.Ray(2) = fm(z) exp /ocm(z Yz | (11) rion that are based upon an analysis of humerous PM and
0 visibility-modelling studies. The PM model performance
as follows: goal corresponds to the level of accuracy that is considered to

be close to the best a model can be expected to achieve. The
— Define a weight for each vertical point of the lidar PM model performance criterion corresponds to the level of
signal (the vertical resolution is 1.5m). The weights accuracy that is considered to be acceptable for modelling
should be larger for the points that are more likely applications. The mean fractional bias (MFB) and the mean
to be in the molecular zone, i.e. at high altitudes. We fractional error (MFE) are proposed IBoylan and Russell
usedw(h) =exp((h — hmax)/L)/L, whereh is the al- (2006 in order to evaluate model performances against ob-
titude of the pointskmax is the maximal altitude con- servations: if the MFB is in the range-BO, 30 %] and the
sidered (e.g. 4 km) and the parameteis taken equal MFE is in the range [0, 50 %], then the PM model perfor-
to 200 m. mance goal is met; if the MFB is in the rangeq0, 60 %]
] ] ] ] ] and the MFE is in the range [0, 75 %], then the PM model
— Fit all lidar signal vertical points (noted as a vec}dr  performance criterion is met. The root-mean-square square
with a weighted least-absolute-deviations (LAD) re- (rMmsE) and correlation are also often used in the aerosol

gress@on pasGupta and Mishy2007); the LAD_ re- modelling community. The statistical indicators are defined
gression is employed here because we are interesteg AppendixA.

in the linear regression of lidar signal points at higher
altitudes, e.g. the points between 2 and 3km above4.1 Model evaluation with Airparif data
the ground. However, it is difficult to know the alti-
tude below which lidar signal points could be cut off Table2 shows statistics for the month of simulation and for
for the estimation ot . When considering all avail- the six lidar measurement days. For the month of simula-
able lidar signal points, the disturbances are promi-tion, for PM, 5, the MFB and MFE are in the range-80 %,
nently non-normally distributed and contain sizeable 30 %] and [0, 50 %] respectively, i.e. the PM model perfor-
outliers (i.e. points at lower altitudes). In such cases,mance goal is met. For P)d, the MFB and MFE are in the
the least-squares method fails and the LAD methodrange 60 %, 60 %] and [0, 75 %] respectively, i.e. the PM
performs well DasGupta and Mishf2007). In detail, = model performance criterion is met. For each lidar measure-
we minimise ment day, the PM model performance goal is always met for
PMgz 5, and the PM model performance criterion is met for
I(y — (@h + b)) wlliy = lei (i —ahi —b)| (12)  PMyg except for 29 July.
i As shown in Table, the model simulates PM, concen-
to finda andb (cyan lines in Fig3). trations well, but PMg concentrations are underestimated. In
other words, coarse particles (particulate matter with a diam-
— Calibrate the simulated molecular signal 778y with eter higher than 2.5 um and lower than 10 pm) are underes-
the LAD regression line at altitudenay, and calculate  timated. This may be because emissions and boundary con-
the difference between the calibrated Ry and the  ditions of coarse particles are underestimated: for example,
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Table 2. Statistics (see Appendi) of the simulation results for the Airparif network during the MEGAPOLI summer experiment.

Day PMo PM; 5

Obs!mean SinPmean RMSE Cor. MFB MFE Obs! mean Simfmean RMSE Corf. MFB MFE

g3 ugm—3  pgm3 % % % g 3 pgnm3  pgnr3 % % %

All 21.53 14.14 10.79 64 —42 49 12.59 12.78  6.02 68 4 39
1 July 44.99 29.39 18.08 78 —45 47 28.82 2714 7.94 74 —10 23
4 July 18.37 11.11 8.34 8 —48 48 10.80 999 390 -25 -4 31
16 July 26.25 16.47 12.28 16 —41 46 12.60 15.76  5.41 31 25 34
21 July 27.84 16.84 13.13 28 —46 50 15.46 16.19 5.84 14 6 31
26 July 18.04 10.12 952 —-46 -52 53 12.32 1027  5.05 71 -16 34
29 July 29.25 12.33 18.49 28 -76 78 14.82 11.78  7.32 38 —20 37

1 Obs. stands for observatiohSim. stands for simulatiors. Corr. stands for correlation.

Table 3. Statistics (see Appendi&) of the simulation results for  Fig. 1); this is the most polluted day of the MEGAPOLI ex-

the AERONET network for different lidar measurement days. periment. High levels of PM, on average about 45 ug
(see Table2), are measured by the Airparif network. Fig-
Day Obs. Sim. RMSE MFB MFE ure4 presents the comparison between lidar observations and
mean mean % % % the simulation at 11:00, 12:00 and 13:00 UTC. It shows that
1Juy 059 047 020 -21 29 PoLyPHEMUS underestimates the lidar signal at 11:00 UTC
4 July 025 0.14 0.12 -58 58 but that it overestimates it at 12:00 UTC and agrees well with
16July 0.26 0.18 0.08 -33 33 observations at 13:00 UTC. While the PBL height increases
26July 0.15 0.08 0.07 -53 53 from about 1.2 to 1.8 km from 11:00 to 13:00 UTC and the

GBML leaves the pollution plumeRpoyer et al, 2011), both

the observed and simulated lidar signals decrease. Figures
road resuspensions of PM are not considered in the mode?f the comparison between the simulation and observations
and boundary conditions are obtained from nested simulafrom a ground-based in situ lidar at Saclay are shown later in

tions over Europe and France where coarse particles werllis paper. The pollution plume covers Saclay because of the

underestimated. northeast wind. Thus high lidar signal values in both the sim-
ulation and observations are seen after 10:00 UTC, although
4.2 Model evaluation with AERONET data the simulated lidar signals are underestimated. DA will be

performed for this day, as it is the most polluted day with ob-
Table 3 presents statistics for hourly data. As the MFB and servations from both the GBML and a ground-based in situ
MFE on 1, 4, 16 and 26 July 2009 are in the rangé( %, lidar.
60 %] and [0, 75 %)] respectively, the model performance cri-  On 4 July 2009, GBML measurements are performed
terion of Boylan and Russe([2009 is met, despite a slight around Paris with a circular pattern from 14:49 to
underestimation of AOD in agreement with the underesti-17:24 UTC. Particle AOD and concentrations are underesti-
mation of PMg in comparison to Airparif observations (see mated in the simulation. The daily averaged AOD from the
Sect.4.1). AERONET network is about 0.25; in the simulation it is
0.14 (see Tabl@®). The daily averaged P concentration
from the Airparif network is about 18.37 ugm, whereas
it is 11.11 pug 3 in the simulation (see Tabl®). Figure5
shows the comparison between the GBML measurements
vations performed during the MEGAPOLI summer experi- qnd thg simulation at 15:0.3 and 16:00UTC. The simulated

Hdar signals are underestimated. Moreover, lidar measure-

ment on the different measurement days (1, 4, 16, 21, 26 an s sh N bet 50 and 3.0k b
29 July 2009). The purpose of this section is to validate theMENtS Show an aerosol layer between 2.U and 2.0 km (prob-

ability of PoLYPHEMUS to simulate lidar backscattered pro- ably from long-range transport), which is not present in the

files and then choose suitable measurement days to do assi |_r_nu_lat|on, but impacts the lidar 5|gna! _unt|l low alt|tude_s;
ilation tests. this is mostly because boundary conditions do not provide

On 1 July 2009, GBML measurements are performed Iee_information about this aerosol layer due to the large-scale

ward inside the pollution plume in the southwest of Paris model uncertainties.
between Saclay and Chateaudun during 3h (black track in

5 Comparisons with lidar vertical profiles

The simulated lidar signal is compared with GBML obser-
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Fig. 3. Black lines (red lines) indicate lidar signals PEimulated molecular signals BRay) at 13:00UTC, 1 July; 16:00UTC, 4 July;
12:00UTC, 16 July; 15:00 UTC, 21 July; 14:00 UTC, 26 July; and 14:00 UTC 29 July 2009. LAD regressions of weighted lidar measurement
points are indicated by cyan lines.

On 16 July 2009, GBML measurements are performed inThe simulated AOD has a good correlation with AERONET
the north of Paris from Saclay to Amiens between 11:00 anddata (up to 80 %). As deduced from the comparisons of the
14:30UTC. The lidar signal is underestimated everywhere modelled and observed lidar signals in Fégthe PBL height
as shown in Fig6, in agreement with the underestimation is well modelled until 12:00 UTC, but it is underestimated af-
of PMjp shown by the statistics in Tabl&and3. Surface  terwards; for example, the PBL height is about 2.1 km from
PMz concentration from the Airparif network and from the the observed lidar signal but it is about 1.6 km in the simula-
simulation are 26.25 and 16.47 pgtnrespectively (low— tion. These differences in PBL height explain that the sim-
moderate level of pollution; see Tal# The observed and ulated lidar signal agrees better with the observation until
simulated AOD are 0.26 and 0.18 respectively (see Tapble 12:00UTC.
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Fig. 4. Comparisons between the vertical profiles observed by GBML (black lines) and simulated YyHEMUS (red lines) on 1 July 2009
at 11:00, 12:00 and 13:00 UTC. Lidar observations below the altitude of full overlap are not represented. The lower-right panel shows the
positions of the different lidar profiles and the horizontal distribution of the mean of the AODs at 11:00, 12:00 and 13:00 UTC.

On 21 July 2009, the GBML travels from Saclay to the Although the lidar signal is slightly underestimated in the
north of Paris across the Paris city centre. As shown inFig. simulation, simulated and observed lidar signals agree fairly
the lidar signal is overestimated for this measurement daywell, as shown in Fig8. The pollution from Paris is trans-
However, the surface P} concentration is underestimated: ported by the south wind to the north. This is why the lidar
27.84 and 16.84 ugn? (low—moderate level of pollution; signal is higher at 14:00 UTC in Fi@. Because as much
see Tabl&) from the Airparif network and from the simula- as 5h of lidar measurements are performed, which is longer
tion respectively. The large simulated lidar signals originatethan on 4, 16, 21 and 29 July 2009, we will perform DA for
in high aerosol concentration at high altitudes, i.e. betweerthis day.

2.0 and 2.5 km, which leads to higher backscatter and extinc- On 29 July 2009, GBML measurements are performed
tion coefficients. This high-altitude aerosol layer originatesfrom 12:22 to 15:10UTC in the north of Paris and in
in boundary conditions (large-scale model uncertainties), buperi-urban and rural areas. While low levels of pollution
is not present in the observations, and it impacts the lidar12.33 ugm? of the mean Pl concentration in Tabl&)
signal until low altitudes. This is why surface RMs under-  are simulated, moderate levels of pollution (29.25 15 rof
estimated while lidar signal is overestimated. the mean PNy concentration in Tabl@) is observed by the

On 26 July 2009, the GBML followed two circular pat- Airparif network. As deduced from Fi@, at the beginning of
terns (the yellow and cyan tracks in Fij. One is performed measurement period, the PBL height is about 1.5 km and the
from 12:40 to 15:30 UTC at a distance between 15 and 30 knsimulated lidar signal agrees well with the lidar observations.
from the city centre. Another one is performed from 16:44 to At 15:00 UTC, the observed lidar signal has increased, due
18:18 UTC in the south-southwest of Paris. Low levels of to an aerosol layer between 2.0 and 3.5 km. This layer is not
pollution are observed and simulated. Surface;fon- simulated and the simulated lidar signal is underestimated.
centration and AOD are underestimated. The daily averaged For all measurement days, we also computed the statistics
PMygo concentration from Airparif is 18.04 ugm, com- (i.e. RMSE, correlation, MFB and MFE) between observed
pared to 10.12 pg i? in the simulation. The mean observed and simulated lidar vertical profiles. The respective scores
AOD value is 0.15, compared to 0.08 in the simulation. are shown in Figs4-9. Overall, RMSEs are below 1.63, the
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Fig. 5. Comparisons between the vertical profiles observed by GBML (black lines) and simulatedYyHEMUS (red lines) on 4 July 2009
at 15:03 and 16:00 UTC. Lidar observations below the altitude of full overlap are not represented. The lower-left panel shows the positions
of the different lidar profiles and the horizontal distribution of the mean of the AODs at 15:00 and 16:00 UTC.

MFB ranges from-38 to 8 % and the MFE ranges from3to  In air quality, the large humber of state variables leads
38 %. Currently, there is no criterion to evaluate the compar-to high computational costs when implementing DA algo-
isons for lidar signals. The criterion &oylan and Russell rithms. Among the widely used DA algorithms, the optimal
(2006 was designed for PM concentration and light extinc- interpolation (Ol) is used here, as it is the most computa-
tion. Because the scores of the lidar signal comparisons argonally efficient Oenby et al. 2008 Tombette et a).2008
extremely good compared to the criteriorBufylan and Rus-  Wu et al, 2008 Li et al., 2013. In applications of DA to
sell (2006 with low errors and bias, the criterion 8oylan  aerosol forecastJombette et al(2009 have used the Ol
and Russel(2006 may not be restrictive enough for lidar over western Europe for assimilating observations from the
signals. BDQA network, which covers Franc®enby et al.(2008
have used two different DA techniques, the Ol and ensemble
o ) . Kalman filter, to assimilate PM concentrations over Eu-
6 Assimilation test of lidar observations rope. Pagowski et al(2010 used the Ol over the United
DA of lidar observations is performed for two out of the six S_tates_of America for data a55|m|lat|o_n of E_Mobserva-_
different measurement days. Only these two days are retainettljons'l‘I etal. (2013 used the OI for multiple aerosol species

due to the other days being cloudy and our algorithms noﬁ?d for prediction of PMs in the Los Angeles Basin, and

allowing us to assimilate lidar data when there are clouds ang et al.(2013 used the Ol over Europe to investigate

There is 13h of cloud-cleaned measurements on 1 July, 5rt1he potential impact of future ground-based lidar networks

of cloud-cleaned measurements on 26 July and less than 3R analysis and short-term forecasts of igM

of cloud-cleaned measurements on the other measurement

days. Therefore, DA run is performed on 1 and 26 July 20096.1  Basic formulation

because too few data are available during the other measure-

ment days. A simple formulation for DA of lidar signals with Ol is now
described. Particles are represented in the model by mass
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Fig. 6. Comparisons between the vertical profiles observed by GBML (black lines) and simulateduyyHEMUS (red lines) on

16 July 2009 at 11:03, 12:00, 13:25 and 14:09 UTC. Lidar observations below the altitude of full overlap are not represented. The lower-left
panel shows the positions of the different lidar profiles and the horizontal distribution of the mean of the AODs at 11:00, 12:00, 13:00 and
14:00UTC.

concentrations of different chemical species for the differentgrid points at each vertical levéland!/ is the total number
particle size sections. of vertical levels.
The state vectar is defined by The analysed state vector is a solution to the variational

optimisation problem:
. 13
YT VI i Ny 1< j<Ne A<k <ni<h<i’ (13) .

e x? = ArgminJ (x), (14)
wherexh ;& Is the mass concentration of the aerosol spegies . _ _
in sectioni for the horizontal spatial gridl at the model ver-  WhereJ is the cost function defined by
tical level i, Ny is the number of size sectiond/s is the

number of chemical species,is the number of horizontal
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Fig. 7. Comparisons between the vertical profiles observed by GBML (black lines) and simulateduyyHEMUS (red lines) on
21 July 2009 at 12:15, 13:16, 14:10 and 15:10 UTC. Lidar observations below the altitude of full overlap are not represented. The lower-left
panel shows the positions of the different lidar profiles and the horizontal distribution of the mean of the AODs at 12:00, 13:00, 14:00 and

15:00 UTC.

wherex?® is the model concentrationy, is the vector of ob-

1 1 T
J(x)= > (Hx) -y RYHE@) —y) + > (x - xb> servationsH (x) =L - S(x) is the lidar observation operator,

1 T S is a nonlinear operator from the model statéo the lidar

B! (x - xb) =5 (H(xb) + LS(x - xb> - y) signal statel is a linear spatial interpolation operat&js
1 T the tangent linear of operatdt, andB andR are the ma-
R! (H(xb) +LS (x - xb) - y) + > (x - xb) trices of error covariances for backgrounds and observations
respectively. In this way, we have

B! (x - xb), (15)
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Fig. 8. Comparisons between the vertical profiles observed by GBML (black lines) and simulatedyyHEMUS (red lines) on

26 July 2009 at 13:00, 14:00, 15:00, 17:00 and 18:00 UTC. Lidar observations below the altitude of full overlap are not represented. The
bottom-right panel shows the positions of the different lidar profiles and the horizontal distribution of the mean of the AODs at 13:00, 14:00,

15:00, 17:00 and 18:00 UTC.

VI (%) = L9TR(HED) — y)

+(B+ AR (x* - %) =0, (16)
which leads to
xa_ b — (Bfl +(LS)T Frl(LS))_1 (y - H(xb)) 17)

= B(LS)"(LS)BLS)" + R)_1<y - H(xb)). (18)

www.atmos-chem-phys.net/14/3511/2014/

6.2 Construction of error covariances

Since the measurements at different levels originate from the
same lidar, the matriR should not be diagonal because of
measurement error correlations. However, in order to sim-
plify R in the first tests of DA of lidar observations, one takes
R =r1 as a diagonal matrix, whetas the identity matrix and

r is an error variance. The value of the observation error vari-
ancer is determined by &2 diagnosis k1énard et al.1999,

in which the scalar
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Fig. 9. Comparisons between the vertical profiles observed by GBML (black lines) and simulateduyyHEMUS (red lines) on
29 July 2009 at 13:00, 14:00 and 15:00 UTC. Lidar observations below the altitude of full overlap are not represented. The lower-right panel
shows the positions of the different lidar profiles and the horizontal distribution of the mean of the AODs at 13:00, 14:00 and 15:00 UTC.

v1 0... 0

2=y~ H(xb>)T (LSBLST+R) " (y - HED)  (19) 0vs .. 0
P=| . . , (21)

should be equal, on average, to the number of observations Do

(N) at each DA step. 0 0...vy (M-No-Ng)x M

Specifically,B plays a role in determining how the cor-

rections of the concentrations should be distributed over th

domain during DA. In practice, however, it is impossible to

accurately know all coefficients &. In our simulation, the

number of model grid points is of the order of?1@hus the > :

number of coefficients in the matri is about 18° multi-  FM10 mass concentrations at grid point

. L D .
plied by the square of the number of analysis variables (about. Let.S =SPbe ‘Qe d'reg“ona' derivative cha_Iong agien
100 variables for particles are used here). There®iie,too direction, and let® andc® be PM concentration states be-

large to be handled numerically. fore and after analysis respectively. In order to conyvérnto

In order to reduce the size of the error covariance matriced® PN%O statec, we multiply each side of Eq1) by the
for background, we model the matiixas follows matrixZ:
1...10...00...00...0

B =PDP', (20) 0...01...10...00...0
Z=\|._ .. ... . (22)

éNhereM is equal to the dimension of the domain £) and

v IS a vector of sizeVy, - Ns (the number of state variables).
Each component of, corresponds to the proportion of the
mass of particles for a given species in a given size section in

whereD is the error covariance matrix for Pyl defined by Dol Dl Dl
the Balgovind approactB@lgovind et al, 1983 obtained by 0...00...00...01... 1§,/ vronpne)
considering the RMSE and correlation of simulated 1M
concentrations. Thus, the sizedfis much less than the one
of B. The matrixP is defined by @ — P =DLSHT((LS)DLS)T + R)‘1 (y - H(xb)). (23)

We obtain
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Fig. 10. Time evolution ofxz/N (blue lines) for DA runs on 1 and 26 July 2009. The mean over DA Windowzqu is 1.02 (1.02) for 1
(26) July 2009.

After the analysis, the concentratiocfare redistributed  obtaine, 5 ande, 510, the mass concentrations of Biland
over particle species and size sections following the initial PM,5_10 respectively (see AppendB for details). We sep-

chemical and size distributions. arately set the error variances for Pyand PM5_10in ma-
trix D. Because of the lack of PM_10 observations, we can
6.3 DA setup not directly estimate the background error variances. They

] ] are determined by thg? diagnosis using the observation er-
DA experiments are carried out for 1 and 26 July 2009. All .4 \ariance- found in the first algorithm.

DA experiments are performed with a time step of 600s and |, the following, we note the assimilation with the first
fr_om 200 _to 1800 m above the ground (_10 model Ievels),(second) DA algorithm as “DA (PM)” (“DA (PM 25 and
since the lidar measurements are not available below the aIPM2 5-10)").
titude of full overlap (200 m above the ground) and since '
aerosol concentrations above the PBL have limited impack.4 Results and discussions
on surface PN in the short term\(Vang et al.2013. In the
Balgovind approachBalgovind et al. 1983, the horizontal =~ The purpose of these DA tests is to verify whether these new
correlation length is set to @ 2which is estimated from nu- algorithms are functional. Because we work at small scale,
merical DA tests. The error variances are separately set fothe corrections of DA are transported out of the simulation
each DA level, depending on the RMSE of PM concentra-domain very quickly. Thus we only compute the statistics for
tions and the variability of PM concentrations at each modelthe DA window to validate the DA tests.
level. Table 4 presents statistics of the simulation results both
Two new algorithms are tested for the assimilation of li- without and with DA. Statistics are computed for both
dar observations. In the first algorithm, we use the assimiPM;p and PM 5 concentrations. Overall, both DA algo-
lation of lidar observations to analyse RPdconcentrations rithms lead to better scores (lower RMSE, MFB and MFE,
and the analysed P concentrations are redistributed over and higher correlation) than the simulation without DA for
particle species and size sections following the initial chem-PM;jg concentrations. Comparing the two DA algorithms, the
ical and size distributions (see Se6t2). The background simulation with DA (PMs and PM5_10) leads to better
error variances of PMy concentrations are estimated by the scores than the simulation with DA (Rly) for PM1o concen-
simulation without DA and Airparif observations. The value trations (see Tabld). The RMSE of PMg is 11.63 pg
of the observation error varianaeis determined by g2 in the simulation with DA (PMs and PMs5_10), compared
diagnosis, which yields=1 pgg m—® andr=0.006 uggm—6  to 13.69 ug m? in the simulation with DA (PMg) on 1 July.
respectively for 1 and 26 July, depending on the level of un-The RMSE of PMo is 4.73 ug m3 in the simulation with
certainties (see Sed). Let N be the number of lidar obser- DA (PM2s and PMs_10), compared to 6.08 ugni in the
vations at one DA step. Figu) shows the time evolution simulation with DA (PMg) on 26 July. It is because higher
of x2/N (blue lines) for DA runs on 1 and 26 July. The mean background error variances are set for the coarse sections in
over DA window of x2/N is 1.02 (1.02) for 1 (26) July. the simulation with DA (PM s and PM 5_10). However, the
In the second algorithm, we separately analyse Pihd simulation with DA (PMys and PMps_10) leads to similar
PM2s_10 (particulate matter with a diameter higher than scores to the simulation with DA (P}g) for PM, 5 concen-
2.5um and lower than 10 um) in the assimilation of lidar trations (see Tabld). It is because similar background er-
observations. We modify the matrices used in S6.to ror variances for PM5 in the simulation with DA (PM5s
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Table 4. Statistics (see Appendi&) of the simulation results (PM) and PM 5) without DA and with DA for the Airparif network for
1 and 26 July 2009. “With DA (PNp)” stands for the assimilation of lidar observations correcting; Pilirectly. “With DA (PM» 5 and
PM> 5_10)” stands for the assimilation of lidar observations correctingpBMnd PM 519 Separately.

Day Species  Simulation Stations Obs.mean Sim.mean RMSE Corr. MFB MFE
pg 3 pgm3 pgm3 % % %
1Jduly  PMpg Without DA 15 47.26 32.35 17.74 84 —41 43
With DA (PM1() 36.20 13.69 90 -29 32
With DA (PM2 5 and PM5_10) 39.85 11.63 84 -19 25
PMog  Without DA 5 30.52 30.21 8.54 69 -5 23
With DA (PM1() 33.04 10.44 59 5 27
With DA (PM2 5 and PMs5_10) 33.08 10.45 58 5 27
26 July  PMg Without DA 15 16.25 9.96 6.67 —20 —47 47
With DA (PM1q) 10.55 6.08 15 42 42
With DA (PM2 5 and PM 5 10) 12.80 4.73 26 —-25 30
PMy5  Without DA 5 10.25 8.99 2.80 7 -9 25
With DA (PM1() 9.64 2,51 2 -2 22
With DA (PM2 5 and PMs5_10) 9.49 2,54 21 -4 22

and PMs5_10) to the simulation with DA (PM5) are used in
the x 2 diagnosis, since fine particles contribute to more than
80 % of the lidar signalRandriamiarisoa et a2006. In the
following, we compare the simulation without DA and the
simulation with DA (PMy s and PN 5_10).

On 1 July, the averaged RMSE of Rplis 11.63 g m3
with DA (PM25 and PM5_10), compared to 17.74 pgmi

improvements of PM concentrations. At the Paris ler Les
Halles station (48.86N, 2.35 E; 35ma.s.l.), the RMSE of
PMjg is 1.96 ug n13 in the simulation with DA (PM5s and
PMy5_10), compared to 4.71 ugmi in the simulation with-
out DA. Moreover, DA runs lead to better scores than the
simulation without DA for PM . At the Creil Faiencerie
leeward station (49.26N, 2.47 E; 28 ma.s.l.), the RMSE of

without DA. The decrease of the RMSE are explained by thePMy 5 is 4.1 pgnT2 in the simulation with DA (PMs and

correlation length in the matri®, since no Airparif station

PMy5_10), compared to 4.9 ugnt in the simulation with-

performs measurements in the southwest of Paris (the northeut DA.

east wind). At the Issy-Les-Moulineaux station (48.8Q

2.27P E; 36 ma.s.l.), the closest station to Saclay, the RMSE

of PMyg is 14.72 ugm? with DA (PM2s and PMs_10),
compared to 22.81 pgnd without DA. However, the aver-
aged RMSE of PMs is about 10.4 ug m? with DA (PM25

and PM5_10), compared to 8.54 pug i without DA. This is
due to the larger horizontal correlation length (see S&8}.
While DA runs increase PM concentrations in the lidar mea-
surement grids, PM concentrations are increased at Airpari
stations, where Pl concentrations is well simulated and

coarse particles are underestimated. This problem can b
solved by decreasing the horizontal correlation length. Fig-
ure 11 shows that the model underestimates the lidar signa

at Saclay. The simulation with DA better simulates the lidar
signal than the one without DA. It means that DA corrects the
model aerosol concentrations well (the closer to the truth th

model aerosol concentrations are, the better the lidar signal

are simulated).

On 26 July, the averaged RMSE of Ri/s 4.73 ug nt3
with DA (PM2s and PMs_10), compared to 6.67 ugni
without DA. Because two circular GBML travelling pat-
terns were performed around Paris (see Hig.most of
the Airparif stations are either leeward (the south wind) or
close to the patterns of GBML. These patterns could validat
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7 Conclusions

In order to investigate the ability of the CTMORAIR3D of

the air quality modelling platform &.YPHEMUS to simu-

late lidar vertical profiles, we performed a simulation over
the Greater Paris area for the summer month of July 2009.
Fhe results (PNp and PM 5 concentrations) are evaluated
using Airparif data. We simulated aerosol optical proper-
ties and lidar signals from the model aerosol concentra-
fon outputs using the ACRI and the wet particle diameter.
I'I'he AOD was evaluated using AERONET data: the RMSE
ranges from 0.07 to 0.20, the MFB ranges frens8 to
—21% and the MFE ranges from 29 to 58 %. According to
the criterion ofBoylan and Russel2006, the model per-
ormance criterion is met for AOD. Hourly comparisons be-
fween simulated lidar signals and lidar observations were de-
scribed for six measurement days during the MEGAPOLI
summer campaign. These comparisons showed a good agree-
ment between GBML measurements and the simulation ex-
cept for 4 July 2009, when an aerosol layer was not mod-
elled at high altitudes but observed in lidar measurements,
and for 21 July 2009, when an aerosol layer was modelled
at high altitudes but not observed in lidar measurements.
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Fig. 11. Lidar vertical profiles observed by the ground-based in situ lidar at Saclay (black lines), simulated without DA (red lines) and
simulated with DA (magenta lines) on 1 July 2009.

The statistics obtained for the lidar comparison are extremelypresented: one algorithm analyses fgMoncentrations, an-
good compared to the criterion Bbylan and Russe{R006), other analyses Py and PMs_10 concentrations sepa-
with low errors and bias: the MFB ranges fron88 to 8%  rately. DA tests were performed for only 1 and 26 July 2009,
and the MFE ranges from 3 to 38 %. Because the criterion obecause the other measurement days were cloudy and our al-
Boylan and Russel2006 was designed for PM concentra- gorithms do not allow us to assimilate lidar data when there
tion and light extinction, they may not be restrictive enough are clouds. Both of these algorithms lead to better scores
for lidar signals. A specific criterion would therefore need to (lower RMSE, MFB and MFE, and higher correlation) for
be designed. Overall, the results show that the optical propPMzp and PM 5 on 26 July 2009. However, they did not im-
erty module of BLYPHEMUS models lidar signals well. prove PM s on 1 July 2009, because of the large horizon-
Two new algorithms for the assimilation of lidar obser- tal correlation length. The simulation with DA (P and
vations based on the optimal interpolation method werePM,s_10) leads to better scores than the simulation with DA
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(PMy0) because the error variances for backgrounds are sethazette, P., Sanak, J., and Dulac, F.: New Approach for Aerosol

separately for fine (Pls) and coarse (PWs_10) particles. Profiling with a Lidar Onboard an Ultralight Aircraft: Applica-
The results shown in this paper suggest that the assimila- tion to _the African Monsoon Multidisciplinary Analysis, Envi-
tion of lidar observations that analyses P&vand PN 519 ron. Sci. Technol., 41, 8335-8341, 2007.

Chazette, P., Bocquet, M., Royer, P., Winiarek, V., Raut, J.-C.,
Labazuy, P., Gouhier, M., Lardier, M., and Cariou, J.-P.: Eyjafjal-
lajokull ash concentrations derived from both lidar and modeling,

would perform better than the assimilation of lidar obser-
vations that analyses PN but it is computationally more
costly. he simulation with 4 the simula. . - GECPYS. Res., 117, 1-17, 461:1020/20111D015753012.

. Comparlng the simulation without DA and the simula- Collis, R. T. H. and Russell, P. B.: Lidar measurement of particles
tion with DA (PM25 and PMs_10), the averaged RMSE and gases by elastic backscattering and differential absorption,

of PMyg is 11.63 pugm?3 with DA (PM2s and PMs_10), in: Laser Monitoring of the Atmosphere, edited by: Hinkley, E.,
compared to 17.74 ugnd without DA on 1 July 2009. The vol. 14 of Topics in Applied Physics, Springer, Berlin, Heidel-
averaged RMSE of PM is 4.73 g nm3 with DA (PMas berg, 71-151, dal:0.1007/3-540-07743-X_18976.

and PMs_10), compared to 6.67 ugmi without DA on Couvidat, F., Debry, E., Sartelet, K., and Seigneur, C.: A hy-
26 July 2009. drophilic/hydrophobic organic (?D) aerosol model: Develop-

A forthcoming paper will present results about the Ment evaluation and sensitivity analysis, J. Geophys. Res., 117,
assimilation of continuous measurements from the AC- 1~19.d0i10.1029/2011JD017212012.

TRIS/EARLINET network during a 72 h period of intensive C°UVidat, F., Kim, ., Sartelet, K., Seigneur, C., Marchand, N., and
observations. Sciare, J.: Modeling secondary organic aerosol in an urban area:

application to Paris, France, Atmos. Chem. Phys., 13, 983-996,
doi:10.5194/acp-13-983-2013013.
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Appendix A

Statistical indicators RMSE =

1 n
" Z(Oi - Si)z» (A1)
i=1

{oi}i=1, and{s;};=1,, are the observed and the modelled N =
concentrations at time, respectively.n is the number of El(o’ —0) (5 =9
available observations. The statistical indicators used to evalcorrelation= = =
uate the results with respect to observations are the root- 3 (0; —0)? Y (si —5)?
mean-square error (RMSE), the (Pearson) correlation, the i=1 i=1

mean fractional error (MFE) and the mean fractional bias 1
(MFB). MFE and MFB bound the maximum error and bias MFE =
and do not allow a few data points to dominate the statis-

tics. They are often used to evaluate model performance "5 -0
against observations for aerosol mass concentrations and O&FB - Z (si +0i)/2
tical properties Boylan and Russell2006. The statistical
indicators are defined as follows:

(A2)

lsi — oil

n — (si +0:1) /2 (A3)

(A4)

n n
—_1 -1
whereo = 3 Zlo,- ands == 'le,-.
1= 1=
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Appendix B where each colum& of P25 (P25-10) corresponds to the
proportion of the mass of particles for a given species in a

Update formula for DA (PM 2.5 and PM2.5_10) given size section in Pl (PM25_10) mass concentrations
at grid pointk, as shown in Sec6.2

In order to separately analyse Byand PMy5_1¢ in the as- The matrixZ is defined by

similation of lidar observations, the matiiis modelled as

follows: 7 _ [22_5 } (B4)

Z25-10
B =PDP', (B1)

where the matrixZos5 (Z25-10) is an M x (M - Np - Ns)
where D is the error covariance matrix for P\ and  matrix, which converts the state vecterinto the PM 5

PM>5_10. The matrixD is defined by (PMg.5_10) Stateca s (¢2.5-10)-
Let S =SP. After multiplying each side of Eq1@) by the
D,s O trixZ btai
D= , (BZ) matrix £, we optain
0 Das-10

( 55— ”ké.s ) =DLS)T(LSHDLSH +R) " (y - H (xb))~ (BS)

a
€25-10 ~ €25-10

and the matrixP is defined by

P= [PZS ] (B3)

P25-10
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