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Abstract. It is paradoxical that, while atmospheric dynamics ity waves, we find that these have mostly been tested in the
are highly nonlinear and turbulent, atmospheric waves aréhorizontal (and occasionally in the vertical) directions. Other
commonly modelled by linear or weakly nonlinear theories. predictions of the corresponding linear theory — “polariza-
We postulate that the laws governing atmospheric waves ar@on relations” — are invoked but are only used in a diagnostic
in fact high-Reynolds-numbeR€), emergent laws so that mode so that they cannot be considered to have been con-
— in common with the emergent higRe turbulent laws —  vincingly validated (see Placke et al., 2013). Recently, linear
they are also constrained by scaling symmetries. We progravity wave theory has been directly brought into question
pose an effective turbulence—wave propagator which correby data from dropsonde pairs. For example, such pairs have
sponds to a fractional and anisotropic extension of the classidirectly shown that certain terms neglected in the Taylor—
cal wave equation propagator, with dispersion relations sim-Goldstein equations are typically much larger than the corre-
ilar to those of inertial gravity waves (and Kelvin waves) yet sponding retained terms (Lovejoy and Schertzer, 2013). Also
with an anomalous (fractional) ordéfya,/2. Using geosta-  the pairs have clearly shown that the vertical structure of the
tionary IR radiances, we estimate the parameters, finding thaatmosphere is composed of a fractal hierarchy of unstable
Hyay ~ 0.17+ 0.04 (the classical value: 2). layers through which linear gravity waves would not able to
propagate (Lovejoy et al., 2008a).

The application of linear wave theories are generally justi-
fied in cases where the nonlinear terms are weak, such as in
theories of linear advection (e.g. Pielke, 2002) or more gen-

h h is a highl bul ith th ._erally by the existence of large regions of laminar flow, as
N a“.“OSp ere Is a highly turbulent system with the ratio, e ‘a5 for the study of terrain-induced or heating-induced
of nonlinear to linear terms — the Reynolds humkeeé (-

icallv of the order~ 10%2. At th . here i mesoscale waves (Smith, 1979; Lin, 1987, 2007, and refer-
ayplf)a i/]o the or Em, - ALt e'samedtm:e, t Ere 1SN0 ances therein). Empirical and modelling studies have also at-
oubt that atmospheric waves exist and play an ImportanEempted to relate linear waves to cyclogenesis in the trop-

role in transferring energy and momentum. These empiricatcs (Frank and Roundy, 2006; Schreck et al., 2012; Shen et

facts only become problematic when we consider the nu'al., 2012, 2013, and references therein). However, since the

merous apparently su_ccessful studies comparing data_w'triQSOS—and largely thanks to the development of multifractal
linear (or.weakly nonlinear) the_ory, commonly (fgr grawj[y cascade models — there has been dramatic progress in under-
Wa\_/es) with the Taonr—GoId_steln equations or V.V'th the lin- standing atmospheric intermittency (Schertzer and Lovejoy,
earized shallow-V\‘/‘ater equations. For example, in the Word§987; Frisch, 1995). It is now clear that a prime characteris-
of Nappo (2.002)’ a'”.‘OSt a_II of what we know abqut the na- tic of fully developed turbulence is that most of the important
ture C.)f gravny Waves 15 derived from thieear theory (em- fluxes are concentrated in highly sparse (fractal) sets so that
phasis in the original). : : . . much of the flow appears relatively calm. The modern under-
Although one may easily get the impression that IInearstanding is that, by its very nature, turbulence is highly inter-

wave theories have been _emplrlcally conﬁr_m_ed, a closer_ IOOl?nittent so that on any realization of a turbulent process there
reveals that what has typically been scrutinized is the Imeat{Ni" be violent regions in proximity to ones of relative calm.
theory dispersion relations. Considering the example of grav-

1 Introduction
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However, examination of the apparently calm regions showshe theoretical side, the reason is that with only scaling sym-
that they also have embedded regions of high activity, and ametries to guide us the possibilities are very broad, while
we zoom into smaller and smaller regions this strong heteroon the empirical side over the scaling range accessible here
geneity continues in a scaling manner until we reach the dis{60-5000 km in space and 3—100 h in time) the turbulent part
sipation scale (Tuck, 2010). This explains why aircraft mea-of the spectrum is by far the most dominant one, account-
surements of the wind invariably find roughly®/2 (i.e. tur- ing for an empirical range of spectral densities of a factor
bulent) spectra even in apparently calm regions. Large-scale- 10°, leaving the residual wave-like part to account for the
regions of true laminar flow have yet to be documented byremaining factor of 0.2 0.5 in the dynamical spectral scal-
actual measurements. However, the multifractal, multiplica-ing range.

tive cascade picture has been well verified even at large scales

(e.g. Lovejoy and Schertzer, 2010). Therefore, it would be a )

mistake to separate these regions of high and low “turbuleng Fractional propagators and turbulence

intensities” and associate them with different mechanisms or

. : . In order to motivate our model, consider the classical wave
to apply nonturbulent (linear) wave theories to regions of ap'equation for the wave with forcing f:

parent calm.

In the last few years, (nonlinear) scaling theories of waves 1 92
have become more compelling. This is because empirical evgV2 - Wﬁ) I(r,t) = f(r,1). (1)
idence and theoretical arguments have amassed to the ef

fect that atmospheric dynamics give rise to emergent high-v is the wave velocityr is the position vector andthe time
Reynolds-number scaling laws with different horizontal and variable.

vertical exponents. This allows the horizontal scaling to ac- As usual, we can solve Eq. (1) by taking Fourier trans-
curately apply over huge ranges in scale (see Lovejoy andorms (denoted by tildes):

Schertzer (2010) and Lovejoy and Schertzer (2013) for re-

cent reviews). Based on the classical laws of turbulencey( o) = sk, w) F(k, w): 3k, w) = <w2/v2_ |k|2)_l, 2)
they involve extensions to account for (multifractal) inter-

mittency and anisotropy. Their success underlines the fundayherek is the wave vectory the frequency and(k, w) is
mental role of scale symmetries in constraining the HRgh-  the propagator. This propagator is symmetric with respect to

dynamiCS. All this motivates the fOIIOWing question: are at- an isotropic Space_time scale transformation by fax:‘['d[
mospheric waves also scaling turbulent phenomena? If this is

the case, we may logically expect anomalous wave propagag (A‘l(k, w)> =25 ((k,w)); H=2 ©)

tors that could readily have dispersion relations identical to

or nearly indistinguishable from their classical counterparts,However we anticipate that at higRe “effective propaga-
while simultaneously having nontrivial consequences for thetors” may emerge constrained by the same overall scaling
dynamics and for our understanding — for example, we findsymmetry but with some other “anomalous” expon&ng2.

that energy transport will be modified (Appendix B). In this case we obtain fractional propagators corresponding

If dispersion relations from linear theory and those from to fractional generalizations of the wave equation
strongly nonlinear theory can be very similar to each other,

then how might one empirically distinguish them? The obvi- 5\ _ (wz/vz B |k|2) H/z; )
ous way is to note that linear theory also predicts the entire
space-time propagators relating the wave forcings and re-, , 1 92
sponses. A key characteristic of linear theories is that they(V - Wﬁ)
involve integer powers of the (space and time) differential
operators, and this strongly constrains the form of the propaAlthough we will only require fractional propagators, if
gators; below, we show how this allows us to test the theoryneeded, we could define the fractional differential operator in
by seeking possible anomalous propagator exponents. We irEq. (4) by the inverse Fourier transform@fk, w) 1 (or see
vestigate this using geostationary satellite infrared radiancese.g. Miller and Ross (1993) for fractional differential equa-
This paper attempts to show how scaling propagators withtions). If we seek the real space solution of Eq. (1) or (4),
both turbulent and wave-like characteristics could arise whilewe can use the fact that Fourier space products (Eqg. 2) cor-
being consistent with both (anisotropic) turbulence theoryrespond to real space convolutions’; hence the solutions
and observations. However, let the reader be warned that to Eqgs. (1) and (4) aré(r,7) = g(r,t)* f(r,t) so that the
while the turbulent part of the propagator, which was derivedpropagator links the forcing to the responsé.
and empirically tested elsewhere (it is summarized here in a In order to estimatg(r,r) we can appeal to the method
Appendix A), is reasonably well grounded — the wave-like of stationary phase (e.g. Bleistein and Handelsman (1986))
part, i.e. the subject of this paper, is in contrast fairly spec-which ensures us that the dominant contributiorgte, r)
ulative; it is perhaps little more than a proof of concept. Onis due to the wave-number—frequency region over which

H/2

I(r,t) = f(r,t).
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g(k, ») is singular; this singularity defines the dispersion re- gg thatp, (k) <)f‘2> Py (k) o <‘¢;‘2> where “<>" denotes
lation and accounts for its origin and significance (see Ap-

pendix B). For both the classical Eq. (1) and the nonclassicaf
Eq. (4), we find the dispersion relation

w==%V k|, (5)

nsemble averaging.
To obtain the classical Kolmogorov—Obhukhov®/3 law
we use

— —S¢ . — _
which is therefore of fundamental importance, a fact which Po ) = Polkl ™ 359 = d — K(2), ©)

is true for anyH >0, not only for positive but even integer \yhere p; is a dimensional constan, is the dimension of

values ofH. . . space and (2) is the second-order intermittency correction.
Before attempting to estimate propagators of real data, werpig yields

must take into account the fact that atmospheric waves oc-

cur in the presence of turbulence. Indeed the spectrum is s, (k) = Py (k) |gtur|2 = Polk| 520 = ppk—so—2H, (10)
strongly dominated by a “turbulent background” that it must k= |k|.

first be removed before evidence of any wave-like propaga-

part lmplles the existence of a set of pointg, (ky, w) iU_Ch then given by integrating® over shells in Fourier space. Ig-
that g (kx, ky, w) — oc; in the simplest case, such a “singu- noring constant factors f2in d = 2, 4 ind = 3), we obtain

lar set” is a surface inkk, ky, ) space and should be easy the (intermittency corrected) isotropic Kolmogorov law
to detect, although the topology need not be so simple (see

Sect. 5). However, the singularities are apparently of suffi-E(k) ~ P;(k)k¢ *=k=? ; B=14+2H - K(2) (11)
ciently low order and the spectral estimates are sufficiently

noisy that in practice the singular set is hard to observe. In{sinceH = 1/3, we see that the nonintermitteki{2)=0 case
deed it is much easier to study 2-D subspaces obtained bgloes indeed have exponght= 5/3).

integrating out one of the spectral coordinates (which also A basic consequence of wide-range spatial scaling of at-
reduces the “noise”), althoughH is small enough (and this mospheric fields (in particular the wind) is that the spec-
is indeed the case here; see below) this can integrate out tHgum and spectral density of the turbulent fluctuations in hor-
singularities. Indeed, one of the main techniques for empiri-izontal wave-number—frequencl( ky, ) space follow the
cally investigating atmospheric waves (Wheeler and Kiladis,straightforward space—time extension of Eq. (6):

1999; Hendon and Wheeler, 2008; Dias et al., 2012) inte-_ ~ .

grates over § space to yield akk, ) 2-D spectrum while 1 (k, ®) = gur(k, w)¢ (k, »); (12)
also using an gd hoc averaging technique for removing thep, (k, w) = |3y (k, »)|? Py(k, o),

turbulent contribution.

Following Wheeler and Kiladis (1999) (and see Kiladis where Py (k, w) and Py (k, w) are space—time spectral densi-
et al. (2008) for a review), we also use infrared data al-ties, andgy(k, w) is the turbulent propagator. To obtain the
though at hourly not daily resolution: we use instead a theoform of gy (k, »), we follow Lovejoy and Schertzer (2010)
retically motivated turbulent spectrum to search for evidenceand Pinel et al. (2014) outlined in Appendix A (see
of anomalous wave propagators. To understand this, recakq. (A13)) to obtain the dimensionless propagator
the classical Kolmogorov law of three dimensional isotropic
turbulence: Sur(k, ) = (—io' + ||k||)7H‘“r, (13)

AI(Ar)=¢|Ar|T; ¢ =3 H =1/3, ®)  where

wherel is a component of the wind\/ is a fluctuation Ar ) o o\ 12
is a vector displacementjs the turbulent energy flux and the © = (v +k - wot o= (1 - (Mx +a My>) ; (14)
equality is understood in a statistical sense. In Fourier space

k 2, 2,2\Y?
this becomes Ikl = (kx +a ky) ;

[ = gurl)p (k) Grurtk) = k|~ () \whereky, ky andw have been nondimensionalized as dis-
Comparing this with Eq. (2), we see thatk) is the forc-  cussed in Appendix A, using the size of the Earth and the
ing and gwr(k) is the spatial part of a (fractional order) turbulent velocityV,,, andp = (ux, uy) is the mean dimen-
propagator (a Green’s function). Now recall that, for real  sionless horizontal advection vector. The (horizontal) spatial
[ (k) = I*(—k), if in addition we assume statistical transla- (Fourier) scale function ik || anda is the north—south/east—
tional invariance (“statistical homogeneity”), then we may west aspect ratio; when =1, we obtain| k| = |k|. The

define the spectral densiti®y, Py, by transformationy — »’combines the effects of a mean advec-
L tion by velocityu and the statistical variability of the advec-
<1 (k) I (k/)> =8(k+k') Pi(k), (8)  tion wind about its mean (via). Note that (a) the factarin
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Eq. (13) is necessary so that the propagator respects causals + k - u) o ~1 is the classical advection transformation (see
ity, and (b) overallgy,s respects the same isotropic scaling e.g. Nappo, 2002); although just as in the turbulent propa-
symmetry as the wave propagator (Eqg. 3) but with exponengator (where it is more fully justified), we have included the
Hyyr. extra factoro to take into account the statistical variation of
Note that, if needed, more complex spatial scale functionghe advection velocity (see Eq. 14). Finally, the parameter
may be used; they they are only weakly constrained to be obyay is the phase speed nondimensionalized by the turbulent

the general form|k|| = [k| ® (7;) wherek is a unit vector  velocity V,, (Eq. 13). Note that the overall propagaggrsat-

and @ a fairly general function (see Appendix B for more isfies tkle scaling symmetry Eq. (?’) W'm = Ht‘”."' Hwa‘_"
details).||k|| replaces the vector norms in the isotropic the- Due'tngav, the overall propagatqg; yields the dispersion
ories. For another example, below we consider the specifiéela’[Ion

case of Kelvin waves with the help of another wave scale

function —| k|| = (kf —a2k5)1/2 — which has the effect of

“channelling” the waves in the zonal direction. With respect to the background advectiq),(o vway is the
effective wave speed which takes into account the mean wave
speed ¢max) and the statistical variability via. By taking

3 Fractional propagators and waves appropriate scale functiorig|| one can obtain dispersion re-

) ) _ . ) _lations close to gravity and other waves (see Lovejoy et al.,
With the exception of the we_ak singularities assouate_d W|th2008b)_ The factorization of the propagator into a turbulent
waves, th_e tur_bulence dom.mates the spectral density; the,q wave-like part (Eq. 15) is quite natural since it can be
PI(k,a)).gNen in Eq. (12) W'.th th.e propagator Eg._ (13) al- re-writteng; = gwa\,q?, where¢’ = gwr¢ corresponds to the
:ealldé/ gl\{tes _I"’_‘hQOOd a%prOX|mat!onFFo T € ?mpI&C?:_fSpec-overa|| space-time localized (turbulent-like) response to the
ral density. This may be seen In Fg. 1 using ultitunc- forcing turbulent flux; the overall result is a turbulent-like
tional Transport Satellite (MTSAT) data (described below) forcing 43/ for the waves; in real space; = guay* &'
which shows the 1-D spectral densitiesoB( E(ky), E(w) > ’ § o swavE@ . .

. . . . . . . To interpret the propagators and dispersion relations in
obtained by successively mtegrat_lng out various pairs of Varl_terms of trzvelling V\F/)avgs gnote that in thg Fourier expansion
abIe; fronquI(kx,k.y, "?‘”d“’) (;ee Pinel etal,, 2014). The log- of g(r, t), the propagatogll (k, w) is the amplitude of the
log I_meanty on this figure directly shovx{s_ that the spectra aregouriér c;)efficient of exp((k~r’+a)t))' i.e. it corresponds to
scaling and the near-perfect superposition of the 1-D spectr wave travelling in the direction I'Ev.aﬁescent Waves oc-
demonstrates that the scaling exponents are essentially ide@hrwhen fora %ven real frequen 'the dispersion relation
tical so that (in conformity with Eq. (3) the conclusions of ’ 9 queney P

Appendix A and the form Eq. (13)) the radiance field struc- MPIies that in some directionkis no longer real but com-
ture functions are symmetric with respect to isotropic scaleP ginary p P 9 P

changesAx, Ay, Ar) — A~1(Ax, Ay, At) or, equivalently damping. In the propagator framework, the equivalent phe-
(k. ky» ) —>’?»(k;< ky. ). This tu’rbulénce p;irt correspon,ds nomenon is obtained by considering, for a given wave vector

to the “background” spectrum obtained by Wheeler and Ki—k’ the corresponding frequency (e.g. Eq. 17); when the latter

ladis (1999); any wave behaviour is to be found in deviations'> c.omplex, th'en waves in the directiork will decay rapidly
from this. in time and will thus not propagate.

A simple model that takes into account waves while re- For the most general propagator respecting the constraints

specting both the space—time scaling and the turbulent forc(-)]c scaling, causality and reality, see Appendix B. Although

ing and background is obtained by including a facigsy the dispersion relation is independent o_f the propagator ex-
in the overall propagator. To be “wave-likeyg, must be ponentHyay, the exponent does determine the (power law)

causal, unlocalized in space-time and must also be chosetrr"ilte of decay of the forcing so that the valuefy will af-

so that the overall scaling symmetry of the system (Eq. 3) ect ':the trarésl,p_o :t 9f m%m: mléml and enlegrgé ?f]?r the genl_eral
is respected by the overall propagafgrk, »). Following o't S€€ BlEISIen and Han elsman (1986); for an applica-

Wheeler and Kiladis (1999), who factored the spectral den—t'on to gravity waves, see Lovejoy et_al (2008)). .
Of more relevance here are Kelvin waves which are the

sity into a “red noise” turbulent background and a wave part, L . . . L
Y g P low Coriolis parameter/high “effective thickness” limit of

inspi Egs. (2 1 he f . : . . : ) .

{imd inspired by Egs. (2) and (13), we can use the form the inertial gravity (Poincaré) wave dispersion relations of-
[(k,0) =g (k,w)¢ (k,w); &1k, 0) = gk, 0)gwavk, ), (15)  ten invoked at these space—time scales. First, for only one
S~ : spatial (zonal) dimension, we may note that Kelvin waves

with iven by Eq. (13) an iven b ) . .
8tur 9 yEq. (13) @‘Na‘;{g - y are a special case of Eq. (17) withk| = k. Consider-
~ — I1wavy, H 1 i .
Gwav(k, ) = (w/z/vaav— ||k||2) . (16) ing the full honzontaI. plane, Kelvm. waves are chaljnelled,
they only propagate in the zonal direction. To obtain some
This is a generalization of Eg. (2) to account for spa- channelling while maintaining the same overall scaling sym-
tial anisotropy (with |k| — || k||). The replacementv — metry, in gway We could replace the spatial (Fourier) scale

o=—k-pExovwavlkl. (17)

Atmos. Chem. Phys., 14, 319%21Q 2014 www.atmos-chem-phys.net/14/3195/2014/
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function [|k|| = (k§+a2k§)l/ * by Ikl = (k2 —azkg)l/ g Log,ok
which only allows meridional propagation for small-scale (10000 km)’ (1000 k)" (100 km)
(high-wave-number) structures. For example, wipes 0,
large structures withy <w/(ovway) Cannot propagate in the
meridional direction, they are channelled.

Finally, combining Eg. (13), (15) and (16), we obtain the
turbulent-wave spectral density:

(98]

Log,,E

Pk, ) = Py (k, ®) |gturl® |dwavl (18)
_HlLlf —Hwav
Pk, w) = Py(k,w) (?+ ||k||2 @202 — k|2 ;
1k, @) = Py(k, ) (o2 + kI 2 (/00— 1K12) - T <
—s¢/
P¢(k,a))=P0(w’2+||k||2> v Log,,®

o . . Fig. 1. 1-D spectra from MTSAT data; blue: temporal; or-
In Eq. (18), we have followed the assumption in the isotropic ynge: meridional; purple: zonal and a multivariate regression

case (Eg. 10) that the forcing of the flux has the samecyrved due to the finite empirical domain; black, usifigay =0,
scale symmetries ag}wr|2; from Eq. (A13) we see that v, =41+3kmh; ¢, =L,/ V, ~20+ 1 days;a~ 1.2+0.1;
sy =d — K (2) is the spectral exponent of the flux afda  s; ~3.4+0.1; Py =2.840.2° C? km?h; ux ~ —0.3 £ 0.1; (7x ~
dimensional constant determined by the climatological (low-—12+ 4kmh™1); ;y ~0.10+ 0.08; Oy ~4 + 3kmh™1); ¢ =
frequency) average forcing. 0.95+ 0.03.

4 Data analysis

form (Eq. 18) with Hyay=0. Figure 1 shows the 1D spec-
tra obtained by integrating the 3-D density over the com-
plementary coordinates using =2.88+0.01 and Hyyr =

We follow Wheeler and Kiladis (1999) and Hendon and
Wheeler (2008) but estimate the turbulent background us

ing regressions to estimate the parametergofi.e. of - 561°0.05. The log-log linearfit is good over the range
8tr andgway). The data set was comprised of 1386 Images ¢ 54165 120-5000 km in space and 3—100h in time (except

(~two months of data, S(.-:‘pt(?‘mber arld, October 2007) of radit, g diurnal contributions at 12 and 24 h); itis especially
ances measured by the first “thermal” infrared channel (10.3— ood if we numerically take into account finite sample size

11.3um, particularly sensitive to temperature near the top Ofe (s at the large and small scales (the curvature in the black
clouds) of the geostationary satellite MTSAT over the West-jine in Fig. 1 i.e. good agreement to the highest wavenum-

ern South Pacific at resolutions 30 km and 1 hr over Iatitudesber at 60 km scales). The excellent superposition confirms
40° S-30 N and longitudes 80E-200 E. We separated the o <.gje symmetry of the type Eq. () (A‘l(k,a))) _

sample into five 277 h¢12-day) blocks, calculating for each 351 Py (k with s/ — 9H — 3.4+ 0.1 (Eq. 18
block the spectral density of fluctuations of the field with re- Wé(ngv(i/),consig{er tli(é thhree 2—D.spec'tra( gt.)tair:éd by suc-

Wessively integrating the 3-D spectral density oygrky, and
y

to redl_Jce_spectraI leakage). Note that as oppqsed to Wheeley tpe it is sufficiently good that we can use the above

and Kiladis (1999), who averaged their data in order to es-

. h bul buti he sianal h regression withHyay=0 to estimate all the turbulent pa-
timate the turbulent contribution to the signal, we rather av-r, meters, However for the 1-D spectra to have fixed expo-
eraged our data to obtain a better statistical estimate of th

i X Rents, when fitting the wave part we must use the constraint
ensemble spectrum; the regression to the theoretical form, _ Hur + Hyay SO that the 1-D spectral slopes are not af-

provi(_jes the smooth background._ _In contrast, Wheeler _anqected. In this way we find an optimum relative weighting
Kiladis (1999) performed an additional ad hoc SmOOth'ngforthe turbulence and wave contributions. Figure 2a—d show

to better bring out wave-like signals. Our choice of 12'daythese for three different values Byay. As before, the purely

blocks was made since the temporal scaling has a break 3hirbulent (Huay=0) case gives a good fit with mean devi-

a_bout 5-10 days and we Were_only interes_ted in analysing thﬁtions:l: 11% in LogioP (k, o) in the three 2-D spaces (ex-
high-frequency “weather” regime. Choosing a longer block cluding the diurnal spikes and the origin), which is small con-

period would allow_ us to exgmine lower frequencies, pUtsidering that the 2-D space signlk, ) varies over about
would take us outside the unique (weather) scaling regimg, . o gers of magnitude. The orientations of the contours

considered in this paper and would decrease the number f P(ky, w) and P(ky, ») is a consequence of the nonzero
blocks and the corresponding amount of averaging. mean zonal velocityi ~ —12+ 4 km h~1 and smaller mean

To see how a purely turbulent spectrum already prOVideSmeridionaI velocitysy ~ 4 & 3km h-1, the wave part is the
a good approximation, we performed a multivariate regres-

. » ¢/ 2+ Huyr
sion on the empirical MTSAT spectral density and theoreticalresidual: |wavl® o Py (w’z + ||k||2> ; see Eq. (18)

www.atmos-chem-phys.net/14/3195/2014/ Atmos. Chem. Phys., 14, 313239 2014
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from (60 km)~* to (~ 13 000 km) * andky from (60 km) to (~ 8000 km)™L. (@) With imposedHway = 0, which corresponds to the purely
turbulent case (wittHiyr = H — Hwav, H =0.26+0.05,54 = 2.88+ 0.01). The other parameters drg = 41+ 3km i, = Le/Vy ~
20+ 1 daysa ~ 1.2+ 0.1;s; ~ 3.4+ 0.1; Pp=2.8 £ 0.2°, C2km?h; ux ~ —0.3+ 0.1; (ix ~ —12+4kmh1); 4y ~ 0.10+ 0.08;
and py ~4+3km h—l). Henceg = 0.954+0.03.(b) Hway=0.17+ 0.04 (best-fit value) and nondimensional wave spggeg =1.0+0.8.
(c) Fit from Eq. (18) withgway from Eq. (19). Hwav=0.08+ 0.04 andvyay = 1.4+ 0.8. (d) Same parameters &a), but with imposed
HWaV = 1

1/2 . I
with ||k|| = k2 +a2k2 / . Although this is noisy, the value In order to isolate the wave contribution to the spectrum,
Hyay ~ 0.17+ 0.04 (so thaily, = H — Hyay=0.09-+ 0.06: Wheeler and Kiladis (1999) removed a turbulent background

H =0.26+0.05 is fixed) gives the best overall fit and nondi- (estimated with an ad hoc averaging technique) from their

mensional wave speagyay =1.0+ 0.8. Recall that the case (*x» @) 2-D spectrum and tried to identify maxima in the
vwav = 1 means the wave speed is equal to that of the turfesidual with linear theory dispersion relations. Following

bulent wind. Note that, even thougiiyay> Hiur, the turbu- them, we removed (by dividing) from the empirical 3-D spec-
lence still dominates the overall spectrum: due to the fac- tral density the turbulent background estimated from the fit

tor Py (Eq. (18)) one should compasg+2Hy,r ~ 3.06 with of Eq. (18) with Hyay = 0 (i.e. the purely turbulent spectral
2Hyay ~0.34. density from which we obtained Fig. 2a). The residual from
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—kyx. For example, the following form is adequate:

k, (km)"
T - @’ gwav (k, ) = {i (w//vwav‘i‘ Ikl sign(k - M))}_Hwav§ (19)

1/2

ey = (K +a%k3)

Replacinggway in EQ. (18) with Eq. (19) preserves the qual-

' ity of the fit of the total (turbulent-wave) spectral density (see
the 2-D subspaces in Fig. 2¢) and gives a spebitge(kx, )

a close to the data, including a maxima line which is close
to the maxima in the residual presented in Fig. 3. With
this asymmetrical propagator, we find that the only param-
eters that change significantly angay = 1.4+ 0.8, Hyay =

" 0.084+ 0.04 (so thatHy = H — Hyay = 0.18+ 0.06).

® (hrs)"

(15)" 5 Refined singularity analysis

: - = - - I‘376T' The above analysis is paradoxical since our hypothesis is that
-(60)"  ~(100)"  ~(1000)°(1000)" (100)"  (60) there is a singular surface ify ky, ») space yet analysis

of the 1-D and 2-D sections showed no direct evidence of
singular behaviour. This is consistent with the finding that
0 < Hwav< 1, implying that the singularities are integrated out
region of maxima relevant to Kelvin waves indicated in grey). Blue in thg Iower'_qimenSional sections. In order to display poten-
lines: | dwavl2 = | vway + I & | Sign(k_ﬂ)rwwav with param- tial S|ngu!ar|t|es, we are therefo.re forced to study the fuII
eters Hyay = 0.080.04 andvyay = 1.4+ 0.8 integrated oveky 5D density P (kx, ky, w) recognizing that most of the vari-
(the maximal line is indicated in green). In red: the dispersion re-ation is due to the turbulent part and that the wave part —
lation for Kelvin waves (corresponding to=12m in Fig. 3 of  being only weakly singular —is expected to manifest itself in
Wheeler and Kiladis, 1999). maxima, perhaps with surface-like topology (line-like in 2-D
sections). If one considers 2-D sectionsRiky, ky, w) — for
instance forw fixed — and using a landscape analogy, these
maxima would be either isolated peaks or crests of moun-
tain ranges (including saddle points in such crests). To detect

which wave behaviour is to be identified (and which is to be these peaks or crests, we implemented an ad hoc singularity

described by the wave part of Eqg. 18) is presented in Fig. ?etection glgorithm thqt “sca}ns" parallel to .the axes to esti-
for the (x, w) 2-D space withw >0 (i.e. after integrating over mgte maxima sgccesswe!y n the, andky_d|re.ct|on§ (for .
ky). We observe a region of maxima (Fig. 3 in grey) fge> 0 1) f|>§ed)'. In principle, con'5|der|ng'the maxima in a single di-
which is similar to the residual obtained by Wheeler and Ki- rection is adequate, but in practice t_he smg_ular surface_has
ladis (1999) although for larger wave numbers and frequenparts_ th_at are roughly parallel to a given axis, the re_sultlng
cies. Also shown in Fig. 3 is the theoretical dispersion rela-2MPiguity can be resolved by determining maxima in two
tion for Kelvin waves which was obtained by Wheeler and orthogonal directions.

Kiladis (1999) (compare with their Fig. 3 for the equivalent The resplts are shown in Fig. 4, whgre we compare such
depthi = 12 m). an analysis with the theoretical behaviour (wihay from

Eqg. (19)) for constanb sections. A drawback of the method
is that it does not distinguish maxima due to the turbulent
contribution and from the (presumed) wave contribution, and
1/2 in the empirical case the separation is not always evident. In
scale function|k|| = <k>%+02k§) which is symmetrical  the figure, the two have been distinguished by the colour of
in k and which involves, in thek{, ») space, maxima lines the lines. We see that, although far from perfect, the semi-
(coming from the singularities) fds >0 as well as fokx<0, ellipses indicating the theoretical singularity (dispersion re-
which is incompatible with Fig. 3 (grey region). However, the lation) are close to the empirical ones. Given that we used
only constraints on the form d#yay are that it must respect a straightforward generalization of the classical wave equa-
causality, thag is real (henc& (k, w) = g* (—k, —w)), and  tion with only one new parametetya, (two if we include
that the overall scaling symmetry (Eg. 3) is respected (sedHway=0.08, but this does not affect the singular surface), and
Appendix B for the general form). We can therefore modify given that the wave part of the overall propagator Eq. (16) as
the form ofgway SO that it is no longer invariant undeg — the postulated multiplicative decomposition (Eq. 15) are not

Fig. 3. Contour plot in the 2-DKx ,w) space (i.e. integrated over
ky). Black lines: the empirical spectral density divided by the “tur-
bulent background” (i.e. the fit of Eq. (18) with impos&@ay = O;

A key point about Kelvin waves and Fig. 3 is that they
are asymmetrical in the zonal directidty). In contrast, the
simple form ofgway Used in Eg. (18) involves a Fourier space
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Ky km)! o K (k)™
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Fig. 4. Left to right, top to bottom, fourk, ky) sections ofP (kx, ky, ) for =2, 3, 5 and 10 hrl, origin in the centre. The black line

is the theoretical singularity (dispersion) cur\yg\,\(‘—,“,l2 with gway from Eq. 19), the blue the empirically estimated curve using the ad hoc
algorithm, and the green and red show maxima but are presumed to originate in the turbulence “background” (they are very close to the axes)

more than the simplest analytical hypotheses, the results ar@mounts to a transformation of variables, which itself is only
quite encouraging, yet they indicate some of the difficulties. valid if it is weakly nonlinear: it cannot compensate for the
neglect of the nonlinear terms. Yet even aside from the issue
of linearization, at least in the classical case of gravity waves
6 Conclusion (Appendix C), we showed that in any case — due to turbulence
—the necessary WKB smoothness conditions were rarely sat-
The atmosphere is highly nonlinear yet displays both tur-isfied so that the method cannot be justified.
bulent and wave-like behaviour over huge ranges of space— The mathematical structure of the turbulent laws that link
time scales. Theories explaining the turbulent aspects aghe observables to driving turbulent fluxes (such as energy
sume that the dynamics are strongly nonlinear and scalingfluxes) use scaling (turbulent) propagators which are very
in contrast, the corresponding wave theories are generallgimilar to those of wave equations except that the latter are
linear or weakly nonlinear. We proposed that the paradoxsingular. To account for both waves and turbulence, the actual
can be resolved by noting that, although linear theory pre-propagators need only respect scale symmetries and can be
dicts propagators, only the relations implied by the singu-modelled as products of turbulent-like and wave-like (space—
lar part of the latter — the dispersion relations — have beertime localized and unlocalized) propagators, with both in-
tested to any extent. However, linear theories invariably in-volving anomalous exponents. The wave propagator involves
volve integer-ordered differential operators and correspondthe mean horizontal turbulent wind and energy flux as well
ing integer-ordered propagators, so we may test these the@s a mean background wave advection velocity. Although in
ries by examining the propagators — or at least their squaredppendix B we give the more general results, in the case
moduli which are amenable to empirical spectral determina-studied here it was obtained as an (anisotropic and fractional)
tion. Although linear theories are commonly extended usinggeneralization of the classical wave equation (which is ap-
the WKB (Wentzel-Kramers—Brillouin) approximation, this proximately satisfied by inertial gravity waves and Kelvin
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Appendix A due to the largest eddies. For the same reasons, the link be-
tweenL,, andz, is via a turbulent velocity, a consequence
The space—time turbulent spectrum of which is that the pure temporal development (Lagrangian)

_ term may be neglected.
The 23/9D model of spatial turbulence (Schertzer and Love- Denoting the scale function obtained by averaging over the

joy, 1985a, b) involves wide-range scaling in the horizon- ensemble of different advection velocities as the “effective”
tal and vertical directions but with different scaling expo- scale function, it is obtained by averaging

nents — the horizontal being dominated by energy fluxes,

and the vertical by buoyancy variance fluxes. Since the in- Ax — vu AL\ 2 Av — voAf 2

frared radiances are essentially, (v, 7) (horizontal-time) [[AR]]?> = <—X> + (y—y> (A5)
fields, we need not explicitly consider the vertical; however Luw Lw/a

we do need to extend the model to space-time. In this ap- . . )
pendix, we summarize the arguments developed in Lovejo;P_Ve”he turbulence (this argument is not completely rigorous

et al. (2008b), Lovejoy and Schertzer (2010, 2013) and inSNCe; due to the intermittency, averaging over other powers
Pinel et al. (2014). of [[AR]] will give somewhat different parameters). Turbu-

lence will have two effects on Eq. (A5): the mean advection
by v, and the effect of turbulent variability. The overall result
(for more details, see Pinel and Lovejoy, 2014) is

The first step is to rewrite the isotropic Eq. (6) in a more
general anisotropic scaling manner by replacing the vecto
norm by a space—time scale functipa R]]:

AI(AR) =¢yary [ARN", (A1) <AI (AR)2> = (¢[2[AR]]eﬁ)[[AR]]é# : (A6)
where we have used the subscifish R]] to emphasize that ) ) _

the flux is at resolutiof{ A R]]. The space—-time scale func- With the effective scale function given by

tion is symmetric with respect to generalized scale changes

1 0 —Mx
Ty [[AR]]er = (ARTBAR)l/Z;gz ( 0 a® —a?u ) (A7)
2
[7.AR =2"'[AR]; T, =2, (A2) Ty
whereG is the generator of the scale-changing oper@tor ~Where we have used the nondimensional variables
Ignoring for the moment advection, and takifgas a hor- Ax Ay A
. . . . . y At _
izontal velocity component, the canonical (simplest) nondi-AR — AR = (U . Tw>; = (1 iy) = (0. %) /Vu. - (A8)

mensional scale function compatible with the Kolmogorov
law is with v = (vx, vy) the overall mean advection over the region

2 2 o | Y2 considered antt,, = (v2+a%v2)*? the large-scale turbulent
[[AR]] =L, |<Ax> + < Ay ) + <A’) ’ . (A3) velocity at planetary scale.

Ly Ly/a Tw The intermittency corrections come from the scaling of the

ux ¢:
where H, = (1/3)/(1/2) = 2/3, L,, and t,, are the outer ¢

scales of the scaling in space and in time, ands a 2 - -k
north—south/east-west aspect ratio. The outer scales ar(éb [[AR]]eff>N[[AR]]eff ’
linked by the overall average energy flaxt,, = e~1/31%/3
(tw is the lifetime/*eddy-turn-over time” of structures
sizeL,,). Successively substitutirR = (Ax,0,0), AR = >
(0, Ay,0) and AR = ()(;, 0, Ar) intr:)gEq. (A3) and the latter <AI(AR)2> ~ [[AR]]ilgf)' (A10)
into Eq. (A1) yields the Kolmogorov law in the horizontal .

directions (e.gAv = £¥3Ax/3) and the Lagrangian law in The structure function exponeg{2)=2H—K(2) thus takes

(A9)

so that, overall,

time (Av = ¢1/2A1Y/2), into account the scaling exponektas well as the intermit-
The next step is to consider the scale function correspondt€ncy correction. .

ing to a constant advection in the horizontak (vx, vy). To obtain the corresponding spectral denslfyk, ») (and

Due to Galilean invariance (i.e. under— x — vxAt; y —  hencegur (k. w)), we follow the development presented by

y —vyAt; At — Ar), we obtain Lovejoy and Schertzer (2010) (see also Pinel et al. (2014))

and use the general relation between structure functions and

2 1/2 o0 ) )
[AR]] :L,,,{(AvaxA’>2+<Any;flA’) +<ff)2“”) (Ad) spectra:(lAI(AR)|2):2_{o dK (1—K-AR) py(K), with

nondimensionalized wave vector
Since there is no scale separatioiis a turbulent velocity, so
that over a given region it will be dominated by the advection K = (Lykx, Luwky, Tw®),
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so that the effective real space scale function (that takes intohis can be simplified t§[ K]]eff = (w’2+ ||k||2)1/ 2, where

account the averaging over an ensemble of advection veIocink”z _ k§+(ky/a)2 is the (horizontal) spatial (Fourier) scale
ties) defines an effective Fourier space scale function:

[Ker= (K" BK)

B = wmpy (1-p)/a®ny
x 123% 1

Using

o =@+k-wo i o=(1- (“3”2“5))1/2’

Atmos. Chem. Phys., 14, 319%21Q 2014

(A11)

(A12)

function. The transformation — «’ combines the effects of

a mean advection by velocipy, and the statistical variability

of the advection wind about its mean is accounted fos by

With this scale function, we have the nondimensional

spectra

Pi(K) = 3url® Po(K): |3l = [ K] o™ (AL3)
—d+K (2

Py =Kl *

(with d = 3 for horizontal space—time).
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Appendix B The solution| k|| of this scaling equation is
The general form for space—time propagator, dispersion k|| = |k| ® (75); k= "‘—‘ (B7)

relations, group velocities and wave amplitudes

The propagator poles are defined by the zerodgo], i.e.
In sect. 3, we discussed some specific examples of botlhe frequencies satisfying

space—-time localized (turbulent) and space—time unlocalized

(wave-like) propagators; here we outline their general prop-, = —; |k| & (7;) , (B8)
erties.
] Causality now imposes the condition

B1 Scaling

. . . Re(||k[)) > O (B9a)
The basic scaling symmetry of the Fourier transform of the
propagator is or, equivalently,
F (AGK) =3 Hg(K) 1 K=(kw): k= (kaky), (B1) Re(d> (i)) ~ 0. (B9b)

whereG is a matrix; it is the transpose of the real space gen-NOte that advection by the deterministic vectois equiv-
eratorG of the scale-changing operattr = »~C discussed alent to the transformatiom — w+ k - u; this is equiva-
in Appendix A. This generality is needed at minimum to take lent to ® (k - O (k) —i|pl cos(k . [L). In Appendix A

into account the vertical stratification. The solution is it is argued that a random advection can be modelled by
2 (K)=[[K]]"", (B2) the w - (w+k-u) /o which is equivalent tod (k) —

. . _ . o—(ob(k)—i(@u)).
where the space—time (Fourier) scale function satisfies

[[AGK]] = A[[K]]. 3) B3 Reality

. . _ . If the forcing and responses are real, then the propagasor
However, for the horizontal radiance field that we empirically rea| and its Fourier transform satisfies

found (Fig. 2),G = identity matrix, in this case® = 1, and

the solution in terms of unit vector is g(K)=g"(K), (B10)
A . K isk indi i

[K] = |K|©® (K) - ﬁ (B4) where the asterisk indicates complex conjugate. Hence

[—KII*=I[K]l (B11)

where® is a (complex) function of the unit vectds ; this

can be easily checked. Whéh is not the identity matrix, ~and

we must first diagonalize the system and then performanon-, <~y ./ 2\, ak (D). ol

linear coordinate transformation after which the same basic® <K> =© ( K) ’ ¢® =" ( E ’ F® = E (B12)
solution methoq may be applied; see Lovejoy and SChertzebverall, we have

(2013) for details.

B2 Causality gk.0) =K " = [(~iw+ ko (R)) F(K)] . (B13)

Causality implies thag (r, 1) = O for t <0: otherwise the fu- Where®, F satisfy Eq. (B12). -

ture will influence the past. The consequence for the Fourier Alternatively, in the usual wave tradition, we can use com-
propagator is that there cannot be any singularities/poles oP!€X waves and simply take real parts when needed. In this
& (K) in the upper half complex plane:; therefore we rewrite  ©2S€, We can ignore the reality condition (Eq. B10), choosing

[[K]] as a product of zero and nonzero parts: g simply to satisfy the scaling and causality conditions, and
then —if needed — construcgeof a real propagator by taking
~ 5 1.5 o
[KD = [(—iw+ kD) F(K)]. (B5) &)= 3@E)+E (K.

) ) ] . A B4 Dispersion relations and waves
where F is an arbitrary nonzero function of unit vecté&r

and||k|| is the spatial (Fourier) scale function. It satisfies The propagator form B5 is convenient for discussing the tur-
bulent case since space—time localisation will lead to that

Akl = A Ikl (B6) form with correspondingk|| > O —i.e with no poles (see the
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discussion in Lovejoy et al. (2008)). However, when there gyav (r, 1) (B18)

are poles, the latter define dispersion relations and it is con- 82w, (k) ~1/2

venient to consider the form: ~ @ (1) 4/% Lt Huav [det( af‘ék )] e~k +oa(Ri+¢olk)
i0Kj

Gway (k, ) = [[K]] = (B14)

whered is the dimension of space; for the horizontal space

[K]] = (—i(w— w4 (k))) Fwav (12) , discussed in the papet=2 andgg(k) is a phase, anddet’
indicates determinant. Equation (B18) is a parametric equa-

wherew, (k) defines the dispersion relation. In this case, thetion; k is the wave vector which satisfies the “ray” equation:

scaling and causality constraints impose

r=—vg(k)t, (B19)

wq (k) = llkllwav; A kllway = A llkllway 5 Im lIkllway <O (815) . .
wherew, is the group velocity:

(the reality condition can be treated as indicated above). Fi- o) — Voo (k 820
nally, Fwa\,(le) is a nonzero function of the unit vector vg (k) = Ve (k). ( )

R satisfying Fuay (I? = F., —R). However, the overall The negative sign in Eq. (B19) is due to the fact that the

: Fourier propagatodway (k, ) is the amplitude of a wave trav-
propagator is the product of the wave and turbulence IoroloaeIIing in the direction - as discussed in Sect. 3. When the

gators: determinant vanishes, the approximation breaks down; the
N 71— Huur corresponding rays are the “caustics”.
81 = Gtur8wav = [(—iw+||kI|)Ftur (K)] (B16a) Of more interest to our present discussion is the am-
N\ 1 — Huay plitude factors—4/2-(—Hwav) which quantifies the rate at
[(—i (@ — wq (k))) Fwav (K)] ; which an impulse forcing at= 0 decays as the disturbance

. ) spreads. For comparison, the classical wave equation corre-
so that without loss of generality we may takgav=1, € sponds toHyay=1 so that in 2-D the waves decay ast

fectively absorbing it intaFy,: -1
Y g r (to see this, in Eq. (2), use the ident([y)z/v2 — |k|2) =

A —Hur
g1 =[(=io+ 1K) Fur (R) | 1—i @=watop) . (B16b) Y[ (w/V — k)" + (/V + |k "L]; ie. there are two
terms each withH =1). We see that smaller values Hf,ay

In order to see what such Fourier propagators imply for thecorrespond to waves that decay more quickly in time. Al-

rgal space behaviour, first take the inverse Fourier transfomghough the precise implications of this for energy transport
with respect ta: will depend on the physical nature of the fieldvhose re-

) sponse is described kyone generally finds that the power
_ —i(k-r+or) is proportional to the wave amplitude squared multiplied by
gway (k. 1) = / ¢ gway (k, ) do (B17) the group velocity, i.ep « |g|2vg; hence the amplitude fac-
—o0 tor for the wave power isx r~4—2(1—Hwav) |f the observed
< Hyay < 1 (as is the case here), then the amplitudes decays
= / eI Rrten (i (w — wq (k)M de anomalously quickly and, when compared with a classical
0o wave propagator, the fractional propagator will deposit the
= @ (1)t MHHwav—itkr o)) energy more locally.

The above calculation ofway(r,t) is fairly straightfor-
where we have ignored constant numerical factors@ad ~ ward; if we use the full turbulence-wave Fourier propa-
is the Heaviside functiond(r) =0 for <0, otherwise=1; gator g; (k, ®) = guwr (k, ®) gwav (k, @), this corresponds to
it assures that causality is respected). We may now use&r (r.?) = gwr(r,1)" gwav(r,?), where *” indicates “convo-
the method of stationary phase (e.g. Bleistein and Handelslution”. Alternatively, as indicated in Sect. 3 since both the
man (1986), and see Lovejoy et al. (2008) for the applica-forcing turbulent fluxp and the turbulent propagatei,r are
tion to gravity waves) to estimate the real space propagatoﬁpace—time localized, we may consider that the overall forc-
gwav (r, 1) ing is ¢’ = gi,,¢; the propagatogway (r,t) thus transports

the disturbance’'.
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Fig. C1. This shows the Brunt—Vaisala frequengy(in Hz) as esti- _ _ 2v-1/2 |
mated by a single dropsonde over the Pacific; only estimates acrodsig. C2. This shows Logp|s'| where §" = N_S/ngizz In
layers <20m thick were used, and it was typical of the 238 son- (s m~1)2. 5 = V2§’ is the nondimensional smoothness parameter
des analysed in the Pacific 2004 experiment. Analysis of dropsondgetermining the applicability of the WKB approximation a¥idis

pairs (Lovejoy et al., 2008a) indicated that the measurement errorghe wave speed (assumed constant). For the WKB approximation to
are less than the thickness of the lines. The right-hand side showge valid, we requiré « 1.

the real part, the left hand side the negative of the imaginary part
(these unstable layers constituted 15 % of the all the values, and this

was typical). g Z ( m)
- 8000

median |

Appendix C

The WKB approximation, the example of gravity waves

- 6000

The first step in formulating a linear wave theory is to lin-
earize the equations by eliminating various nonlinear terms, a %
procedure that is valid only when they are smaller than the re- - 4000
tained terms. In the simplest cases, the resulting linear equa-
tions have constant coefficients. Since the coefficients are

determined by a presumed mean state around which the lin- — L2000
earization has been performed, the assumption that the coeffi- Te—

cients are constant is very artificial so that linear theory is of- §

ten extended to cases where the coefficients are slowly vary- ; Log, V.
ing: the WKB approximation (Wentzel-Kramers—Brillouin, = 10%e

also known as the Liouville—-Green method). It is therefore -3-5 =30 -25 -20 =15 -1.0 -05 0 (m/s)

conceivable that, although it does not compensate for the ne- L/ Lemls 1oems

glect of the nonlinear terms, the WKB theory might provide Fig. 3. This shows LoggVe whereVe = (Sc/s/)l/z is the critical

a more plausible basis for linear theories. speed . is the critical value of the nondimensional smoothness
Rather than continue the discussion at a purely theoreticagbarametes, and here we také:; =0.01. For the application of the

level, let us consider the classical atmospheric application ofVKB method, we require/<Vc. The medianVc (1.9cms?l) is

the WKB method: to gravity waves. Consider the classicalshown by the dashed red line.

wave equation in the direction only, without forcing and

for frequenciesV. We follow the standard development from . . ) )
Gill (1982). In this case Eq. (1) reduces to Where w is the vertical component of the wind; is the

vertical wave number and = (dlogg/d2/? is the Brunt—
Vaisala frequency((is the potential temperature), Eq. (C1)

d?w
dz? is a special case of the Taylor—Goldstein equationd. ¢#nd

yE tmPw=0m="N;I(z,1)=w()eN. (C1)
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V (hencen) are independent af then we have the solutions The vertical thus has a large number of layers with imag-
, inary N in which the gravity waves would be evanescent

w = Ae™M. (C2)  (see the black lines in Fig. C1); this is already quite prob-
lematic for the method. However, with the help of the WKB

The WKB method extends this to the case wherearies  ,n5roximation, the smoothness condition can also be exam-

slowly. The approximation starts by defining the phase ined. Fig. C2 shows the estimate &f it is seen that at the
sonde resolution it varies wildly; for example over half the
¢ = /m dz, (C3)  layers had’> 25 (s 1)2, while only 6 % of the layers had
8’<1 (sm 2. This places strong limits on the maximum
from which the approximate solution is obtained: wave speed’ that is compatible with the WKB approxima-
tion. For example, if we interpret the conditiéng 1 as a
w=m"Y2*iP, (C4)  requirement thag<s. (for a smallsc), then we require
However, the condition of validity of the approximation is v < .. v, = (5C/5/)1/2. (C7)

that¢ varies slowly; it is quite strict:

Takingd: =0.01, we obtain the limits shown in Fig. C3 where
we find that 90% of the time, in order for the profile to be
smooth enough, the wave speed must be less than 7.5%sm s
and that 1% of the time it must be less than 1.4 mm/s. Since

Rather than taking the theoretical analysis further, we eMpirgravity waves are usually considered to have wave speeds of

ically check whether this smoothness criterion is satisfied bYia order of severai/s. these very low values are highly
using hlgh-re_solunor_l _dropsondes._AIth(_)ugh the wave spee‘ﬂ)roblematic for the application of the WKB approximation.

_V IS not readl_ly empirically accessibl#, is accessible and, A scaling analysis of the statistics of the fluctuatiaks

in any caseV is often assumed to be constant — as for exam-gp,5\vs thalAs (Az)7) ~ AzE@ . Although£(1) ~ 0.1 indi-

ple in the case of hydrostatic waves treated in Gill (1982). If .o1as that in the small-scale limitvé — 0) the meanAs

we takeV' = constant, then the method is applicable for small joes gecrease, the intermittency (due to the multifractality)
8 is so extreme that for example the root mean square value

5=V28 « 1. 8 = N—3/2d*N12 (C6) (A(S(Az)z)l/2 has an exponer§(2)/2 ~ —0.35, indicating

2, —1/2

d
s= m*3/2';1—zz <1 (C5)

z that in fact it rapidly diverges in the small-scale limit. In com-

In Lovejoy et al. (2008a) data from 238 dropsondes from theParison, the corresponding exponents AqRe(N)) are&(1)
Pacific 2004 experiment were analysed with vertical reso-~ 0.0 and(2)/2~ —0.1, i.e. much less intermittent but with
lutions varying from~5 to ~ 12m (depending on altitude, the same qualitative behaviours.

but with frequent outages; see Lovejoy et al. (2007) for de-

tails of the experiment). Three instability criteria were con-

sidered: conditional instability corresponding X¢<0 (rel-

evant here), as well as dynamical instability and convective

instability; Fig. C1 shows a typical example. The occasional

use of sonde pairs directly showed that the measurement er-

rors were small (less than the thickness of the lines in the

figure). In all cases it was found that the atmosphere is ac-

tually a fractal hierarchy of unstable layers. Lovejoy and

Schertzer (2013) give a summary as well as an empirical

demonstration that the linearization assumptions needed to

obtain the Taylor—Goldstein were generally badly violated.
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