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Abstract. In anticipation of the upcoming GOES-R launch
we simulate visible and near-infrared reflectances of the Ad-
vanced Baseline Imager (ABI) for cases of high aerosol
loading containing regional haze and smoke over the east-
ern United States. The simulations are performed using the
Weather Research and Forecasting (WRF), Sparse Matrix
Operator Kernel Emissions (SMOKE), and Community Mul-
tiscale Air Quality (CMAQ) models. Geostationary, satellite-
derived, biomass-burning emissions are also included as an
input to CMAQ. Using the CMAQ aerosol concentrations
and Mie calculations, radiance is computed from the discrete
ordinate atmospheric radiative transfer model. We present
detailed methods for deriving aerosol extinction from WRF
and CMAQ outputs. Our results show that the model simu-
lations create a realistic set of reflectances in various aerosol
scenarios. The simulated reflectances provide distinct spec-
tral features of aerosols which are then compared to data
from the Moderate Resolution Imaging Spectroradiometer
(MODIS). We also present a simple technique to synthe-
size green band reflectance (which will not be available on
the ABI), using the model-simulated blue and red band re-
flectance. This study is an example of the use of air quality
modeling in improving products and techniques for Earth-
observing missions.

1 Introduction

The Geostationary Operational Environmental Satellites-R
Series (GOES-R) is the next generation of geostationary
satellites that will offer a continuation of current products and
services and enable new and improved applications (Schmit
et al., 2005). The Advanced Baseline Imager (ABI) on

GOES-R (currently scheduled for 2016) will monitor clouds,
aerosols, and surface features with a greater number of spec-
tral bands and improved spatial resolutions when compared
to the current GOES sensors (Schmit et al., 2008). The ABI
will provide data in 16 spectral bands in the visible (0.47
and 0.64 µm), near-infrared (0.87, 1.38, 1.61, and 2.25 µm)
and infrared (3.9, 6.19, 6.95, 7.34, 8.5, 9.61, 10.35, 11.2,
12.3, and 13.3 µm) portions of the electromagnetic spectrum.
These improvements will help data assimilation and numer-
ical weather prediction (NWP) applications, especially by
providing crucial observations for regional and mesoscale
data assimilations and predictions (Schmit et al., 2005).

Among the variety of application possibilities, GOES-R
will also be used to monitor aerosols from fires and dust
storms. The capabilities of GOES-R for air quality can cur-
rently be assessed by simulating what GOES-R ABI would
see when it is in orbit. The synthetic radiance computations
require inputs for meteorological and chemical species fields
and could be obtained from air quality models (e.g., WRF-
CMAQ or WRF-CHEM).

To simulate radiance fields, we use the Discrete Ordinate
Radiative Transfer model (Ricchiazzi et al., 1998), coupled
to the existing CMAQ modeling system. This consists of
three primary modeling components (Yang et al., 2011): the
Weather Research and Forecasting model (WRF, version 3.2;
Grell et al., 1995), Sparse Matrix Operator Kernel Emissions
(SMOKE) model (SMOKE, version 2.5; Houyoux et al.,
2000), and Community Multiscale Air Quality (CMAQ, ver-
sion 4.6). The CMAQ model simulations include background
emissions and fire emissions derived from satellites (Yang
et al., 2011). The background emission rates are estimated
using SMOKE with the 2002 National Emission Inventory
(NEI). The WRF and CMAQ outputs are then used as input
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Table 1.Model inputs and configurations.

Configuration WRF SMOKE CMAQ

Horizontal 12 km× 12 km 12 km× 12 km 12 km× 12 km

Vertical 21 layers 1 and 15∗ layers 21 layers

Input RUC NEI 2002 WRF output
SMOKE emissions
Fire emissions

Option Kain-Fritsch (cu.)
WSM-6 class (cloud)
RRTM/Dudhia (rad.)
YSU (PBL)
Noah (land sfc)
CB-IV (gas-phase)
AE4 (aerosol)
AQ (aqueous/cloud)

∗Point emission sources.

to SBDART, which generates radiance and reflectance values
for the GOES-R ABI bands.

This study examines the three cases in the eastern United
States for high-aerosol-loading events including haze and
fires. We compared the simulated surface PM2.5 mass con-
centrations with ground-based observations to assess the
model performance. The model-simulated RGB imagery is
also compared with the Moderate Resolution Imaging Spec-
troradiometer (MODIS) data. From the perspective of spec-
tral signature of various features, we present a simple tech-
nique to synthesize green band reflectance, which will not be
available on ABI. We show the synthetic RGB imagery that
is produced based on the red, green (synthesized), and blue
band reflectance.

2 Overview of case studies

The GOES-R ABI imagery is simulated for three cases in the
eastern United States in 2008, 2010, and 2011.

2.1 Smoke in North Carolina on 10 June 2008

The Evans Road fires in North Carolina produced intense
smoke, which circulated along the Mid-Atlantic coast on
10 June (shown as the red oval in the left panel of Fig. 1).
Due to the semi-permanent Bermuda High weather system,
regional haze was also visible along the eastern coastline of
the United States. PM2.5 levels were also mostly “moder-
ate” to “unhealthy for sensitive groups” in this area (http:
//airnow.gov).

2.2 Haze in Southeast on 8 July 2010

A large area of thick aerosol covered much of the Ohio Val-
ley and the eastern portion of the United States. Smoke con-

tribution to this area of aerosol was not significant (middle
panel of Fig. 1). The daily peak Air Quality Index (AQI)
was reported between “moderate” to “unhealthy for sensitive
groups” (http://airnow.gov).

2.3 Regional fires in Florida on 25 March 2011

There were numerous fires in the southern part of the
United States. Observers reported fires and smoke in Kansas,
Oklahoma, Texas, Missouri, Arkansas, Mississippi, Al-
abama, Georgia, Florida, South Carolina, and North Car-
olina. MODIS Aqua true color image (right panel of Fig. 1)
showed smoke from several of the fires in Mississippi, Al-
abama, Georgia, and Florida. These fires were agricultural
(Mississippi and Alabama) and wildfires (near the boundary
of Georgia and Florida).

3 Modeling approach

The WRF, CMAQ, and SBDART models in this study are at
12 km spatial resolution. For comparison purposes, we will
show the model simulations at 19:00 UTC, at or near the
MODIS Aqua overpass time.

3.1 WRF-SMOKE-CMAQ

The modeling system in this study consists of three primary
models: WRF, SMOKE, and CMAQ, which is similar to the
case study during the Georgia and Florida fires in 2007 (Yang
et al., 2011). The domain has 140 by 149 grid cells with
a horizontal resolution of 12 km. The Rapid Update Cycle
(RUC) analysis data are used as an input to WRF. Table 1
describes the model configurations used in this study.
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Fig. 1. MODIS Aqua imagery shows smoke from the Evans Road fire in North Carolina on 10 June 2008 (left), haze in Ohio Valley
and Southeast on 8 July 2010 (middle), and agricultural fires and wildfires in Louisiana, Mississippi, Alabama, Georgia, and Florida on
25 March 2011 (right). The areas covered by plumes are shown as the red ovals. The imagery is available fromhttp://www.star.nesdis.noaa.
gov.

3.2 SBDART

SBDART is designed for the analysis of a wide variety of
radiative transfer problems encountered in satellite remote
sensing. It is based on a collection of reliable physical mod-
els, which have been developed by the atmospheric science
community over the past few decades (Ricchiazzi et al.,
1998). The radiative transfer equation is numerically inte-
grated with DISORT, where the discrete ordinate method
provides a numerically stable algorithm to solve the equa-
tions of plane-parallel radiative transfer in a vertically inho-
mogeneous atmosphere (Stamnes et al., 1988). The intensity
of both scattered and thermally emitted radiation can be com-
puted at different heights and directions (Ricchiazzi et al.,
1998).

SBDART requires several user-defined input files. For
this study, we provide cloud and atmospheric conditions
from WRF; aerosol loadings from CMAQ; aerosol diame-
ter growth factor as a function of relative humidity for each
aerosol type; surface albedo from the MODIS surface prod-
uct (MCD43B3, containing both black sky and white sky
albedos); spectral response function of the GOES-R ABI;
and sun-satellite viewing geometry for GOES-R (solar zenith
angle, viewing zenith angle). Optical Properties of Aerosols
and Clouds (OPAC) (Hess et al., 1998) is also a useful re-
source for refractive index and diameter growth factor for
CMAQ aerosol species. Water and ice clouds are treated as
spheres and for ice this is merely an approximation but note
that this study is only focused on haze events. Aerosol opti-
cal properties are assumed to be constant for each GOES-R
ABI band. The procedures to compute spectral extinction are
outlined in Appendix A.

4 Model results

4.1 Comparison of the measured and simulated surface
PM2.5

Although one of the goals of this study is to simulate the
radiance that the GOES-R ABI will observe, we are also in-
terested in surface PM2.5 mass concentrations to assess how
realistically the model calculates the mass concentration of
aerosols.

Figure 2 compares the daily PM2.5 mass concentrations
from simulations and measurements at the AIRNow sta-
tions on 10 June 2008, 8 July 2010, and 25 March 2011.
The domain average PM2.5 concentrations are about 8.9
and 11.4 µg m−3 for the measured and simulated cases re-
spectively. The simulated PM2.5 is slightly biased toward
high concentration values because the majority of PM2.5
mass resides in the boundary layer, and the model often un-
derestimates the nocturnal planetary boundary layer height
(e.g., Yang et al., 2011). The PM2.5 mass concentrations
in Fig. 2 range from “Good” (0–15 µg m−3), “Moderate”
(16–40 µg m−3) to “Unhealthy for Sensitive Groups” (41–
65 µg m−3) according to the AQI categories. The model per-
formance for PM2.5 is consistent with the previous stud-
ies using the WRF-CMAQ and Eta-CMAQ over the eastern
United States (Yu et al., 2012).

4.2 GOES-R reflectance

SBDART computes upward radiance and downward irradi-
ance at the top of atmosphere (TOA). We convert them to
reflectance for visualization (values from 0 to 1) and for in-
terpretation purposes. Reflectance is defined as the ratio of
the radiant flux reflected by a medium to that incident upon
it. Therefore, spectral reflectance at TOA is given by

Rλ = (π · Iλ)/(Fλ · cosθ)
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Fig. 2. Comparison of the simulated daily PM2.5 mass concentra-
tions with the measured at the AIRNow stations for 10 June 2008,
8 July 2010, and 25 March 2011.

whereRλ, Iλ, andFλ are spectral reflectance (unitless), spec-
tral radiance (W m−2 µm−1 sr−1), and spectral irradiance of
the sun (W m−2 µm−1) at TOA, respectively. The quantity
(π ·Iλ) represents total upward radiant flux andθ denotes the
solar zenith angle (◦). Since the ABI filters reduce the appar-
ent scene radiance and solar flux, reflectance should be unfil-
tered to produce the reflectance measured by GOES-R ABI
at TOA. The unfiltered ABI spectral reflectance is computed
as

Rλ =
π ·

∫ λ2
λ1 Sλ Iλ dλ

cosθ ·
∫ λ2
λ1 Sλ Fλ dλ

,

where Sλ is the spectral response of each ABI band.λ1
and λ2 are the cutoff wavelengths beyond which filter re-
sponse is assumed zero. We set the cutoff wavelengths
at λo± 0.5· FWHM, whereλo and FWHM are the central
wavelength and full width at half maximum. The spectral
response is assumed as Gaussian Boxcar Hybrid (GBH),
where the top of the curve is flattened (data available at
ftp://ftp.ssec.wisc.edu/ABI/SRF).

4.3 True color imagery derived from
WRF-CMAQ-SBDART

To produce MODIS-like RGB images, we build a “synthetic”
ABI filter for the green band that has a central wavelength at
0.55 µm and FWHM of 0.02 µm. The FWHM is assumed to
be the same as that of the blue band, in the same manner as
the MODIS blue and green bands.

The SBDART along with inputs from WRF-CMAQ are
used to compute radiance and solar irradiance at TOA.
The radiance and irradiance are converted to reflectance at

the ABI blue, green (assumed), and red bands. To obtain
clearer, less hazy images, we do not include the Rayleigh
scattering contribution in the SBDART runs, which can be
called “Rayleigh corrected” in terms of remote sensing.
The ocean-water-BRDF options include bio-pigments, foam,
and sunglint reflectance of sea surface (see Vermote et al.,
1997) with the default values of salinity= 34 ‰, chlorin-
ity = 19 ‰, and wind speed= 5 m s−1. Therefore, the TOA
reflectance over ocean is primarily from scattering due to
aerosols, foam, and white caps. Figure 3 shows the RGB im-
ages produced from the simulations for GOES-R. The im-
ages could be slightly different from the scenes visible to
the human eyes because the ABI and our eyes differ in their
spectral response. Another reason for this is the color im-
age in Fig. 3 follows the image enhancement scheme used
by the MODIS Rapid Response team (http://earthdata.nasa.
gov/data/near-real-time-data/rapid-response). The model-
derived image is the one supposed to be measured from
the GOES-R ABI. They are not directly comparable to the
MODIS true color imageries because of the difference in
viewing geometry between MODIS and GOES-R.

The cloud, aerosol, land, and ocean are well simulated in
these images (Fig. 3); although, there is a need for improved
cloud representation in dynamical models (Pour-Biazar et
al., 2007). The clouds often differ from their positions in
the simulated images due to difficulty in simulating the ob-
served clouds from WRF. The model does not reproduce the
small scale convective clouds during summer, especially on
8 July 2010, which is a topic for further investigation. The
smoke aerosols on 10 June 2008 (Fig. 1, left) are spread
more evenly along the mid-Atlantic coast (Fig. 3, left). This
also happens to the plumes from the wildfires in the southern
Georgia simulations on 25 March 2011, where plumes at two
separate locations (Fig. 1, right) are viewed as one combined
plume in the simulation (Fig. 3, right). The simulated haze
on 8 July 2010 is seen in the eastern states (Fig. 3, middle),
where the haze in Illinois, Indiana, and Kentucky was not ap-
parent because of clouds in Fig. 1 (middle). It is shown that
the simulations can capture the ocean color in the coastline of
the Bahamas and around Key West. The model simulations
are at 12 km spatial resolution where the surface consists of
different land use types such as water, soil, trees, grasses, and
so on. Thus, the simulated land surface scene may represent
the mixture of different land use.

5 Synthetic RGB imagery

The GOES-R ABI does not contain a green band. However,
because the green band is essential to produce RGB true-
color imagery, we develop and demonstrate a technique to
derive the green band reflectance from other ABI bands. This
section starts by showing spectral signatures of various fea-
tures at the ABI visible and near-IR bands and then shows
how the reflectance in the green band can be calculated by
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Figure 3 

  

Fig. 3.The simulated RGB imagery viewed from GOES-R on 10 June 2008 (left), 8 July 2010 (middle), and 25 March 2011 (right).

using the red and blue bands, keeping in mind that this is
only an approximation.

5.1 Spectral signatures

The spectral reflectance provides a valuable tool for differ-
entiating features in images generated from solar reflectance
bands. Under traditional classification schemes, supervised
or unsupervised approaches identify key classes using dis-
tinctive spectral signatures of each of the classes (Richards,
2012). The ground truth verifies the classification classes.
However, in this study, classification can be done a priori
using the model outputs (land cover, aerosol optical thick-
ness, water/ice path, etc.). The classes identified by model re-
sults, which we call “simulated truth”, can instead be used for
spectral signature identification of constituent classes. These
model-based spectral signatures may provide useful informa-
tion about optimal selection of spectral bands by evaluating
which band information is relevant or redundant for a given
application.

We select a representative set of pixels for land, ocean,
aerosol, cloud, and coastline to view their spectral responses.
Based on a priori knowledge, Table 2 shows the classifica-
tion criteria in this study in which pixels are identified using
the WRF and CMAQ outputs. Figure 4 shows the model-
simulated spectral signatures of land, ocean, aerosol, and
cloud. The reflectance range and average are shown with dots
and a filled circle for each class. The simulated reflectance
values at the green band are also included in Fig. 5 to com-
pare them with the values at the other bands. The averaged
green band reflectance lies between the averaged blue and red
band reflectance. Figure 4 shows the reflectance at 1.38 µm is
affected by water absorption, generating discernible response
of ice cloud to the background land, ocean, and aerosol (King
et al., 1992). The cloud and aerosol reflectance depends on
cloud and aerosol optical thickness so that the spectral re-
flectance range of cloud and aerosol shown in Fig. 4 could
be changed by the classification selection rules in Table 2.
The ocean generally has low reflectance, peaking in blue and
decreasing as wavelength increases. Turbid water increases
the reflectance in the red portion of the spectrum.

   Simulation of GOES-R ABI aerosol radiance 

 

 

 

Figure 4 

  

Fig. 4. Spectral signatures of land, ocean, aerosol, and cloud for
10 June 2008 (top), 8 July 2010 (middle), and 25 March 2011 (bot-
tom). The spectral signatures for the imaginary green band are also
shown between the blue and red bands.

The spectral signature for surface features is a mixture of
spectral signatures from soil, vegetation, water, and other fea-
tures. While healthy vegetation would reflect more green and
near-IR light than the stressed vegetation, the stressed vegeta-
tion and soil would have increasing reflectance with increas-
ing wavelength (Myneni et al., 1995). The spectral signature
for land in Fig. 4 shows that the reflectance at the red band is
slightly higher than at the green band, indicating the healthy
vegetation is not the major contributor to reflectance spectra
at the 12 km spatial resolution in this study.
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Table 2.Classification criteria.

Class Classification criteria

Land LWP <0.001, FWP < 0.001, AOT < 0.02, and mask= land
Ocean LWP < 0.001, FWP < 0.001, AOT < 0.02, and mask= ocean
Aerosol over land LWP < 0.001, FWP < 0.001, AOT >0.15, and mask= land
Aerosol over ocean LWP < 0.001, FWP < 0.001, AOT >0.15, and mask= ocean
Cloud water LWP >200, FWP < 0.001, and AOT < 0.02
Cloud ice LWP < 0.001, FWP >800, and AOT < 0.02
Coastline LWP < 0.001, FWP < 0.001, AOT < 0.02, and mask= coastline

LWP (Liquid Water Path) in g m−2 from WRF, FWP (Frozen Water Path) in g m−2 from WRF, AOT (Aerosol
Optical Thickness) from CMAQ.
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Fig. 5a.Plot of reflectance at the visible and near-IR bands against reflectance at the green band at 19:00 UTC, 10 June 2008. The Spectral
signatures are shown for land, ocean, aerosol (over land and ocean), cloud (water and ice), and coastline. Note that the reflectance interval of
0.0 to 0.3 is enlarged to show more details of signatures from land, ocean, aerosol, and coastline.

5.2 Synthetic green band reflectance

The green band can be approximated using a look-up-table
(LUT) approach, either using the MODIS blue, red, and near-
IR bands (Miller et al., 2012) or using the blue, red, and near-
IR band simulations from a radiative transfer model (Hillger
et al., 2011). Both these approaches indicate that the synthe-
sized green band imagery agrees with the observed MODIS
or simulated green, reporting a less-green bias in the synthe-
sized green values.

Miller et al. (2012) assume that the green band reflectance
for each scene is a function of the red, blue, and near-IR
(0.86 µm) bands. They generate scene-dependent green band
LUTs from the MODIS red, blue, and near-IR bands. Once
the ABI red, blue, and near-IR band reflectance were given,
the green band reflectance is selected for the pair of the red-
blue-near IR reflectance that makes the best match between
the MODIS and ABI. This LUT approach would produce

the MODIS green band reflectance, not the GOES-R ABI
reflectance. We expect slightly different spectral signatures
of scenes between the MODIS and ABI because they have
different filter spectral response and viewing geometries.

In contrast, Hillger et al. (2011) compute radiances at
0.47 µm (blue), 0.64 µm (red), and 0.865 µm (near-IR) us-
ing a radiative transfer model along with the regional atmo-
spheric modeling system (RAMS) outputs and the MODIS
surface albedo product. The green band imagery is approx-
imated from the blue, red, near-IR band simulations using
the LUT method and compared with the directly-simulated
green band imagery.

Our study uses a set of models (WRF, SMOKE, CMAQ,
and SBDART) that enables description of the “realistic” state
of land surface, ocean, and atmosphere. As a result, it is pos-
sible to investigate the spectral reflectance relationships in
complex scenes. We introduce five distinctive classes in the
model domain, which are classified as land, ocean, aerosol,

Atmos. Chem. Phys., 14, 3183–3194, 2014 www.atmos-chem-phys.net/14/3183/2014/
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Fig. 5b.Same as in Fig. 6a, but on 8 July 2010.
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Figure 5c 

  

Fig. 5c.Same as in Fig. 6a, but on 25 March 2011.

cloud, and “coastline”. The aerosol and cloud are further sep-
arated into two classes in Table 2. For example, aerosols
over land and ocean show different spectral behavior because
coarse mode particles (dominated by sea salt) increase over
ocean. Similarly, liquid cloud is distinguished from ice cloud
due to the differences in the imaginary part of their refrac-
tive index. Figure 5 shows the ice cloud can be discriminated
from the liquid cloud using the visible (0.55 µm or 0.64 µm),
and near-IR (1.38 µm or 1.61 µm) (e.g., Schmidt et al., 2005;
Baum et al., 2005).

This study focuses on synthesizing the green band re-
flectance as a function of reflectance at visible and near-
IR bands. Figure 5 shows the relationships between the
green and other band reflectance for each class. As expected,
the classes show complex spectral responses of reflectance.
Surprisingly, strong linear relationships are found between
R0.47µmandR0.55µm (top left in Fig. 5) and betweenR0.64µm
andR0.55µm (top middle in Fig. 5) for all classes specified in
Table 2, whereR0.47µm, R0.55µm, andR0.64µmare reflectance
in the blue, green, and red bands, respectively. The high cor-
relation betweenR0.47µm andR0.55µm and betweenR0.55µm

www.atmos-chem-phys.net/14/3183/2014/ Atmos. Chem. Phys., 14, 3183–3194, 2014
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Fig. 6a. Mean difference between the synthesized and simulated green band reflectance with varyingwB andwR for land, ocean, aerosol
(over land and ocean), cloud (liquid and ice), and coastline for 10 June 2008. The unit is reflectance in percent. The point atwB = 0.4 and
wR = 0.6 is shown for land, ocean, aerosol, and cloud. The point atwB = 0.6 andwR = 0.6 is also shown for coastline.
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Fig. 6b.Same as in Fig. 7a, but for 8 July 2010.

andR0.64µm indicates that the blue, green, and red bands con-
tain redundant spectral information for certain classes. We
expect thatR0.55µm in a pixel can be estimated usingR0.47µm
andR0.64µm.

5.3 RGB imagery

A linear relationship betweenR0.55µm andR0.64µm (and be-
tweenR0.47µm andR0.55µm ) is not sufficient enough to de-
riveR0.55µmfromR0.64µmbecause the linear relationship dif-
fers from one class to another. Therefore, it is necessary to
classify each scene before applying the linear relationship,
although scene classification could be a challenging problem.

Alternatively, it is noted in Fig. 5 that green band reflectance
can be approximated by one or two linear combinations of
blue and red band reflectance for all classes.

The green band reflectance can be expressed as a sim-
ple relation,Gsyn= wB · B+ wR· R, whereGsyn, B, andR

are the synthesized green, simulated red, and simulated blue
band reflectance, respectively. The coefficients,wB andwR,
give the weights of blue and red band reflectance in deter-
mining green band reflectance. However,wB and wR dif-
fer for different classes, butwB andwR have a range within
which the synthesized green band reflectance is close to the
simulated one for all classes. Figure 6 shows the difference
between the actual (simulated) and synthesized green band

Atmos. Chem. Phys., 14, 3183–3194, 2014 www.atmos-chem-phys.net/14/3183/2014/
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Fig. 6c.Same as in Fig. 7a, but for 25 March 2011.
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Fig. 7. Comparison of the synthesized and simulated green band reflectance, where the synthesized green band reflectance is derived from
the blue and red band reflectance. The coastline are produced with a different blue-red combination such asGsyn= 0.6 · B+ 0.6· R.

reflectance, where the synthesized reflectance is derived by
Gsyn = wB · B+ wR· R with varying wB andwR. Since the
minima of reflectance difference occur over a range, not at a
point, inwB andwR space, we can select an optimal weight
pair whose reflectance difference is close to minimum for all
classes.

After searching for optimalwB andwR pairs for three dif-
ferent days, we chose twowB andwR pairs, such that green
band reflectance is well approximated (synthesized) by the
relations,

Gsyn = 0.4 · B + 0.6 · R for land,ocean,aerosol,and cloud

Gsyn = 0.6 · B + 0.6 · R for coastline

Figure 7 shows that the synthesized (Gsyn) and simulated
green band reflectance (G) are almost the same except for
coastline. The relatively large uncertainty inGsyn for coast-
line was also recognized in the LUT method (Hillger et al.,
2011; Miller et al., 2012). The synthesized green band re-
flectance differs from the simulated by up to about 0.01 for

land, ocean, aerosol, and cloud and by 0.01–0.03 for coast-
line.

The synthetic RGB imagery using the synthetic green band
reflectance is shown in Fig. 8. The synthetic RGB imagery
appears almost identical to the simulated one with subtle bi-
ases. The ocean and cloud in the synthesized RGB imagery
(Fig. 7) are slightly brighter (less than 0.01 in reflectance)
than those in the simulated RGB imagery (Fig. 3).

We introduce an approach to synthesize RGB imagery
while there is a missing green band in GOES-R ABI. This
approach uses the synthesized green band reflectance that
is derived by a simple relation of the red and blue band re-
flectance, i.e.,Gsyn = 0.4·B+ 0.6· R. Since the coastline oc-
curs at fixed locations, we can apply the same linear equation
and then add 0.2· B to the pre-defined coastline to synthesize
the green band reflectance for coastline. The correction fac-
tor for coastline, 0.2· B, can be obtained from the MODIS
16-day albedo product that provides the atmospherically cor-
rected, cloud-cleared reflectances (Schaaf et al., 2002). It is
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Figure 8 Fig. 8. Synthetic RGB imagery at 19:00 UTC, 10 June 2008 (left), 8 July 2010 (middle), and 25 March 2011 (right). The green band
reflectance is synthesized from the simulated blue and red band reflectance using the relations,Gsyn= 0.4 · B+ 0.6· R for land, ocean,
aerosol, and cloud, andGsyn= 0.6 · B+ 0.6· R for coastline.

also possible to apply the equation,Gsyn = 0.4· B + 0.6· R,
to all classes although this simplest approach may cause a
little more bias in coastline. The difference is probably neg-
ligible considering the reflectance difference for coastline
in Fig. 6 atwB = 0.4 and 0.6. The approach shown in this
study is attractive for operational purposes because it pro-
duces RGB imagery well, needs only simple calculations,
and does not need a database for LUTs. While this approach
is promising, more case studies need to be conducted to re-
fine and confirm the methods and analysis.

6 Summary and discussion

The GOES-R ABI visible and near-infrared reflectance are
simulated using WRF, SMOKE, CMAQ, and SBDART mod-
els for cases of high aerosol loadings with haze and smoke
over the eastern United States. The simulations reproduce
the state of meteorological fields, background emissions, and
chemical transport of air pollutants. To represent more real-
istic scenarios, satellite-derived, biomass-burning emissions
are also included as an input to CMAQ. The simulated RGB
imagery appears realistic in various aerosol scenarios. We
classify the model scenes by seven classes based on their
spectral signatures at the 12 km spatial resolution. The green
band reflectance is synthesized from red and blue bands. The
resulting synthesized RGB images appear almost identical to
the model-simulated ones.

This study examines the use of air quality modeling to
simulate spectral signatures from various scenes. We show
that the model-based spectral signatures provide a simple
way to select relevant and to deselect irrelevant spectral in-
formation from multispectral data. As an exercise, we syn-
thesize true color imagery which perhaps appeals both to
professional and inexperienced users of GOES-R products
(Huff et al., 2012). We suggest that the green band re-
flectance is synthesized by a simple relationship such as
Gsyn = 0.4· B + 0.6· R, although the relationship can be fur-
ther improved with more case studies.

Acknowledgements.This research was sponsored by NOAA Air
Quality projects at UAHuntsville. PM2.5 data were obtained from
EPA’s Air Quality System (AQS). The author would like to thank
his team members for their help with producing some of the figures.

Edited by: L. M. Russell

References

Baum, B. A., Heymsfield, A. J., Yang, P., and Bedka, S. T.: Bulk
scattering properties for the remote sensing of ice clouds. Part
I: Microphysical data and models, J. Appl. Meteorol., 44, 1885–
1895, 2005.

Binkowski, F. S. and Roselle, S. J.: Models-3 Community
Multiscale Air Quality (CMAQ) model aerosol component
1. Model description, J. Geophys. Res.-Atmos., 108, 4183,
doi:10.1029/2001JD001409, 2003.

Evans, B. T. N. and Fournier, G. R.: Simple approximation to ex-
tinction efficiency valid over all size parameters, Appl. Optics,
29, 4666–4670, 1990.

Grell, G. A., Dudhia, J., and Stauffer, D. R.: A description of the
Fifth-Generation Penn State/NCAR Mesocale Model (MM5),
NCAR Technical Note, NCAR/TN 398+STR, Boulder, CO, 138,
1994.

Hess, M., Koepke, P., and Schult, I.: Optical Properties
of Aerosols and Clouds: The Software Package OPAC,
B. Am. Meteorol. Soc., 79, 831–844, doi:10.1175/1520-
0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998.

Hillger, D., Grasso, L., Miller, S., Brummer, R., and DeMaria, R.:
Synthetic advanced baseline imager true-color imagery, J. Appl.
Remote Sens., 5, 053520, doi:10.1117/1.3576112, 2011.

Houyoux, M. R., Vukovich, J. M., Coats Jr, C. J., Wheeler, N. J.
M., and Kasibhatla, P. S.: Emission inventory development and
processing for the Seasonal Model for Regional Air Quality (SM-
RAQ) project, J. Geophys. Res.-Atmos., 105, 9079–9090, 2000.

Huff, A. K., Hoff, R. M., Kondragunta, S., Zhang, H., Ciren, P., Xu,
C., Christopher, S., Yang, E. S., and Szykman, J.: The NOAA
air quality proving ground: Preparing the air quality community
for next-generation products from the GOES-R satellite, EM:
Air and Waste Management Association’s Magazine for Envi-
ronmental Managers (November), 32–37, 2012.

Atmos. Chem. Phys., 14, 3183–3194, 2014 www.atmos-chem-phys.net/14/3183/2014/

http://dx.doi.org/10.1029/2001JD001409
http://dx.doi.org/10.1175/1520-0477(1998)079%3C0831:OPOAAC%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1998)079%3C0831:OPOAAC%3E2.0.CO;2
http://dx.doi.org/10.1117/1.3576112


S. A. Christopher: Simulation of GOES-R ABI aerosol radiances 3193

King, M. D., Kaufman, Y. J., Menzel, W. P., and Tanre, D.: Remote
Sensing of Cloud, Aerosol, and Water Vapor Properties from the
Moderate Resolution Imaging Spectrometer (MODIS), IEEE T.
Geosci. Remote, 30, 2–27, 1992.

Miller, S. D., Schmidt, C. C., Schmit, T. J., and Hillger, D. W.: A
case for natural colour imagery from geostationary satellites, and
an approximation for the GOES-R ABI, Int. J. Remote Sens., 33,
3999–4028, 2012.

Myneni, R. B., Hall, F. G., Sellers, P. J., and Marshak, A. L.: The
interpretation of spectral vegetation indexes, IEEE T. Geosci. Re-
mote, 33, 481–486, 1995.

Pour-Biazar, A., McNider, R. T., Roselle, S. J., Suggs, R., Jedlovec,
G., Byun, D. W., Kim, S., Lin, C. J., Ho, T. C., Haines, S.,
Dornblaser, B., and Cameron, R.: Correcting photolysis rates
on the basis of satellite observed clouds, J. Geophys. Res., 112,
D10302, doi:10.1029/2006JD007422, 2007.

Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A
Research and Teaching Software Tool for Plane-Parallel Radia-
tive Transfer in the Earth’s Atmosphere, B. Am. Meteorol. Soc.,
79, 2101–2114, 1998.

Richards, J.: Remote Sensing Digital Image Analysis, An Intro-
duction, Springer, Fifth Edn., Springer-Verlag, Germany, 494 pp,
2012.

Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang,
T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P.,
Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale,
M., Doll, C., d’Entremont, R. P., Hu, B., Liang, S., Privette, J. L.,
and Roy, D.: First operational BRDF, albedo nadir reflectance
products from MODIS, Remote Sens. Environ., 83, 135–148,
doi:10.1016/s0034-4257(02)00091-3, 2002.

Schmit, T. J., Gunshor, M. M., Menzel, W. P., Gurka, J. J., Li, J.,
and Bachmeier, A. S.: Introducing the next-generation advanced
baseline imager on GOES-R, B. Am. Meteorol. Soc., 86, 1079–
1096, 2005.

Schmit, T. J., Li, J., Gurka, J. J., Goldberg, M. D., Schrab, K. J., Li,
J., and Feltz, W. F.: The GOES-R advanced baseline imager and
the continuation of current sounder products, J. Appl. Meteorol.
Clim., 47, 2696–2711, 2008.

Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K.: Nu-
merically stable algorithm for discrete-ordinate-method radiative
transfer in multiple scattering and emitting layered media, Appl.
Optics, 27, 2502–2509, 1988.

Vermote, E. F., Tanré, D., Deuzé, J. L., Herman, M., and Morcrette,
J. J.: Second simulation of the satellite signal in the solar spec-
trum, 6s: an overview, IEEE T. Geosci. Remote, 35, 675–686,
1997.

Yang, E.-S., Christopher, S. A., Kondragunta, S., and Zhang,
X.: Use of hourly Geostationary Operational Environmen-
tal Satellite (GOES) fire emissions in a Community Multi-
scale Air Quality (CMAQ) model for improving surface par-
ticulate matter predictions, J. Geophys. Res., 116, D04303,
doi:10.1029/2010jd014482, 2011.

Yu, S., Mathur, R., Pleim, J., Pouliot, G., Wong, D., Eder, B.,
Schere, K., Gilliam, R., and Rao, S. T.: Comparative evaluation
of the impact of WRF/NMM and WRF/ARW meteorology on
CMAQ simulations for PM2.5 and its related precursors during
the 2006 TexAQS/GoMACCS study, Atmos. Chem. Phys., 12,
4091–4106, doi:10.5194/acp-12-4091-2012, 2012.

www.atmos-chem-phys.net/14/3183/2014/ Atmos. Chem. Phys., 14, 3183–3194, 2014

http://dx.doi.org/10.1029/2006JD007422
http://dx.doi.org/10.1016/s0034-4257(02)00091-3
http://dx.doi.org/10.1029/2010jd014482
http://dx.doi.org/10.5194/acp-12-4091-2012


3194 S. A. Christopher: Simulation of GOES-R ABI aerosol radiances

Appendix A

Calculation of spectral extinction from CMAQ outputs

From CMAQ outputs, we have the aerosol mass concentra-
tions in µg m−3 of aerosol species for Aitken, accumulation
and coarse modes.

1. Convert mass concentrations of CMAQ aerosol
species to volume in m3 m−3.

2. Sum the volume over all species for Aitken, accu-
mulation and coarse modes. This is possible since all
species in each mode are assumed to have the same
size distribution.

3. Calculate the geometric mean diameter (Dg) and
geometric mean standard deviation (σg) using the
Eqs. (5a) and (5b) of Binkowski and Roselle (2003).
The standard deviation for coarse mode is constant at
2.2 (CMAQ source code assumption).

4. Evaluate the optical coefficients, including the effects
of hydroscopic growth, since we have the wet state
refractive index (m = n − ik) of each OPAC aerosol
mode (inso, soot, waso, etc.). The relative humidity is
obtained from the WRF outputs (water vapor mixing
ratio, pressure, and air temperature). In order to get
the wet radius (or diameter), we can use the fact that
only the mean diameter changes and the growth fac-
tor is universal as a function of RH. Therefore, we can
write D(wet)= g(RH)· D(dry), where the growth fac-
tor, g(RH), can be determined by the ratios of the wet
diameters to the dry diameters at RH= 0, 50, 70, 80,
90, 95, 98, and 99 in % (see OPAC optdat for water
soluble, sulfate, and sea salt).

5. Qext, the Mie extinction efficiency factor, is a function
of α and an index of refraction of the particles. It is
calculated from the Evans and Fournier approximation
(Evans and Fournier, 1990) for each CMAQ species.

6. The aerosol extinction coefficientbsp (km−1) must be
calculated from ambient aerosol characteristics as in-
dex of refraction (m = n − ik), volume concentration
and size distribution; at wavelengthλ, bsp (km−1) may
be expressed as (Binkowski and Roselle, 2003):

βsp =
3π

2λ

∫
∞

−∞

Qext

α

dV

dlnα
dlnα

The particle distribution is given in a lognormal form as

dV

dlnα
= VT(

A

π
)1/2exp[−A ln2(

α

αv
)]

whereα =
πD
λ

, αv =
πDg

λ
, andA =

1
2ln2σg

. VT is the total

particle volume concentration, andQext, the Mie extinction
efficiency factor as mentioned above.

If the water uptake effect is included, i.e., ambient envi-
ronments are considered, the above equation becomes,

βsp =
3π

2λ

∫
∞

−∞

Qext,amb

αamb

dVamb

dlnαamb
dlnαamb=

3π

2λ

∫
∞

−∞

Qext,amb

αdry

· g(RH)2
·

dVdry

dlnαdry
dlnαdry

=
3π

2λ
· g(RH)2

· Vdry · (
1

2π ln2σg
)(1/2)

·

∫
∞

0

Qext,amb

α2
· exp[−

1

2
·

ln2( α
αv

)

ln2σg
] · dα

where

αamb= g(RH) · αdry

dVamb

dlnαamb
= Vamb(

A

π
)1/2exp[−A ln2(

αamb

αv,amb
)]

= {Vdryg(RH)3
}(

A

π
)1/2exp[−A ln2(

αdry

αv,dry
)] = g(RH)3 dVdry

dlnαdry

dlnαamb=
dαamb

αamb
=

g(RH) · dαdry

g(RH) · αdry
=

dαdry

αdry
= dlnαdry

dlnα =
dα
α

and
α → 0 as lnα → −∞

α → ∞ as lnα → +∞

7. We now sum over all species to get aerosol extinc-
tion in each vertical layer. Single scattering albedo and
asymmetric parameter are assumed for each vertical
layer.
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