Supplementary Material

1

Measurements of Total Hydroxyl Radical Reactivity during CABINEX 2009 – Part 1: Field Measurements

R. F. Hansen^{1,2}, S. Griffith^{2,3}, S. Dusanter^{3,4,5}, P. S. Rickly^{2,3}, P. S. Stevens^{1,2,3}, S. B. Bertman⁶,
M. A. Carroll^{7,8}, M. H. Erickson⁹, J. H. Flynn¹⁰, N. Grossberg¹⁰, B. T. Jobson⁹, B. L. Lefer¹⁰, H.
W. Wallace⁹

6 7

8	¹ Department o	f Chemistry.	Indiana	University.	Bloomington.	IN. USA
0	Department	i enemistry,	manuna	om onsig,	Dioonington,	\mathbf{m} , \mathbf{o}

- 9 ²Center for Research in Environmental Science, Indiana University, Bloomington, IN, USA
- ³School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
- ⁴Mines Douai, CE, F59508, Douai, France
- ⁵Université Lille Nord de France, F59000, Lille, France
- ⁶Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
- ⁷Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- ⁸Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor,
 MI, USA
- ⁹Department of Civil and Environmental Engineering, Washington State University, Pullman,
- 18 WA, USA
- ¹⁰Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
- 20
- 21

S1. Trends of temperature and $J(NO_2)$ during CABINEX

2	Ambient temperatures (black trace, panels a in Figures S3-S5) span the same range of				
3	values among the three heights (10–26°C). However, ambient temperatures measured at the 21n				
4	(17.9°C on average) and 31m (18.4°C on average) heights are generally higher on average than				
5	those measured at the 6m height (16.2°C on average). Values of $J(NO_2)$ from the 31 m height				
6	(red trace, panels a in Figures S3-S5) serve as a metric of UV radiation and as an indicator of				
7	cloud cover; the impact of cloud cover can be assessed by comparing the measured $J(NO_2)$ to				
8	that calculated under clear sky conditions by the Tropospheric Ultraviolet and Visible radiation				
9	model (TUV), version 4.4 (shown as a dashed line on panels a). The cloud cover was low				
10	$(J(NO_2) \approx 8 \times 10^{-3} \text{ s}^{-1})$ for most of the campaign, although there were several cloudy days as				
11	shown by the significant differences observed between measured and calculated values of $J(NO_2)$				
12	on 7, 15, 18, 22, 23, and 30 July as well as 1, 3, and 8 August.				

Figure S1. 30-min diurnal medians of measurements for the 6 m (left), 21 m (center), and 31 m
(right) heights.

3 Figure S2. 30-minute diurnal medians of OH reactivity at the 6 m (left), 21 m (center), and 31 m

4 (right) heights. Measured OH reactivity is shown by the line; calculated OH reactivity is

- 5 indicated by the colored bars. OVOCs include methyl vinyl ketone, methacrolein, MEK, acetone,
- 6 formaldehyde, acetaldehyde, methanol, and methyl peroxide. Top plots show the missing

2 Figure S3. Plots of missing OH reactivity from the 6 m height as a function of ambient isoprene,

- 3 MVK + MACR, and total monoterpene mixing ratios for 10 July (top panels), 9 July (middle
- 4 panels), and the entire 6 m dataset (bottom panels).